Refine your search:     
Report No.
 - 

Neutronics assessment of advanced shield materials using metal hydride and borohydride for fusion reactors

Hayashi, Takao; Tobita, Kenji; Nishio, Satoshi; Ikeda, Kazuki*; Nakamori, Yuko*; Orimo, Shinichi*; DEMO Plant Design Team

Neutron transport calculations were carried out to evaluate the capability of metal hydrides and borohydrides as an advanced shielding material. Some hydrides indicated considerably higher hydrogen content than polyethylene and solid hydrogen. The hydrogen-rich hydrides show superior neutron shielding capability to the conventional materials. From the temperature dependence of dissociation pressure, ZrH$$_{2}$$ and TiH$$_{2}$$ can be used without releasing hydrogen at the temperature of less than 640 $$^{circ}$$C at 1 atm. ZrH$$_{2}$$ and Mg(BH$$_{4}$$)$$_{2}$$ can reduce the thickness of the shield by 30% and 20% compared to a combination of steel and water, respectively. Mixing some hydrides with F82H produces considerable effects in $$gamma$$-ray shielding. The neutron and $$gamma$$-ray shielding capabilities decrease in order of ZrH$$_{2}$$ $$>$$ Mg(BH$$_{4}$$)$$_{2}$$ and F82H $$>$$ TiH$$_{2}$$ and F82H $$>$$ water and F82H.

Accesses

:

- Accesses

InCites™

:

Percentile:79.98

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.