Refine your search:     
Report No.
 - 

Study on Improved Procedure for Determination of Three Dimensional Distributions of the Initial Rock Stress (Third Report)

Mizuta, Yoshiaki*; Kaneko, Katsuhiko*; Matsuki, Koji*; Sugawara, Katsuhiko*; Sudo, Shigeaki*

In the fiscal year of 2003, our committee achieved the following work items during the contract period, from September 3rd, 2003 to February 13th, 2004. The more accurate numerical data with respect to the geological / geometrical conditions including the fault were provided from Tono Geoscience Center and the numerical models by Finite Element Method (FEM), Finite Difference Method (FDM) and Boundary Element Method (BEM) were built taking those strata data into account. For small region modeling by FEM, these layers models, Shoumasama model and Tohnou-Shoumasama model, as well as Thounou Mine model, were constructed, and each strain state at the far field boundary was determined. In order to get better agreement in local stress states with the measured values, a far field strain state was determined to the modified model in which material properties of upper granite and lower granite are different. In intermediate region modeling by FDM, actual strata data was taken into account, whereas strata boundary was assumed to be horizontal in former modeling, and far field stress field was analyzed. Intermediate region modeling by BEM was also carried out and field stress state was determined. In wide region modeling by FEM, the fault was built in the model and fault slip was taken into account, and evaluation of strain state at the far field boundary was carried out for inhomogeneous rock including fault. It was proposed to output three-dimensional distribution of the maximum shear stress coefficients in order to advance three-dimensional modeling. It will make clear effect of shape, scale and property of the fault on stress state characteristic. This report describes minutely the results of the studies mentional above.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.