Refine your search:     
Report No.
 - 

Experimental results of the $$gamma$$-ray imaging capability with a Si/CdTe semiconductor Compton camera

Takeda, Shinichiro*; Aono, Hiroyuki*; Okuyama, Sho*; Ishikawa, Shinnosuke*; Odaka, Hirokazu*; Watanabe, Shin*; Kokubun, Motohide*; Takahashi, Tadayuki*; Nakazawa, Kazuhiro*; Tajima, Hiroyasu*; Kawachi, Naoki

A semiconductor Compton camera that combines silicon (Si) and Cadmium Telluride (CdTe) detectors was developed, and its imaging capability was examined with various kinds of $$gamma$$-ray targets such as a point source, arranged point sources and an extended source. The camera consists of one double-sided Si strip detector and four layers of CdTe pad detectors, and was designed to minimize the distance between a scatterer and the target. This is because the spatial resolution with Compton imaging improves as the target approaches the scatterer. This new camera realizes a minimum distance of 25 mm. By placing the target at a distance of 30 mm from the detector, resolving power better than 3 mm was demonstrated experimentally for a 364 keV ($$^{131}$$I) $$gamma$$-ray. Positional determination with accuracy of 1 mm was also demonstrated. As a deconvolution method, we selected the iteration algorithm (called List-Mode Expectation-Maximizing Maximum Likelihood), and applied it to several kinds of experimental data. The Compton back projection images of the arranged point sources and an extended object were successfully deconvolved.

Accesses

:

- Accesses

InCites™

:

Percentile:96.08

Category:Engineering, Electrical & Electronic

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.