Refine your search:     
Report No.
 - 

Integrated modelling of toroidal rotation with the 3D non-local drift-kinetic code and boundary models for JT-60U analyses and predictive simulations

Honda, Mitsuru; Satake, Shinsuke*; Suzuki, Yasuhiro*; Yoshida, Maiko; Hayashi, Nobuhiko; Kamiya, Kensaku; Matsuyama, Akinobu; Shinohara, Koji; Matsunaga, Go; Nakata, Motoki; Ide, Shunsuke; Urano, Hajime

The integrated simulation framework for toroidal momentum transport is developed, which self-consistently calculates the neoclassical toroidal viscosity (NTV), the radial electric field $$E_r$$ and the resultant toroidal rotation $$V_phi$$ together with the scrape-off-layer(SOL)-physics based boundary model. The coupling of three codes, the 1.5D transport code, TOPICS, the 3D equilibrium code, VMEC and the 3D $$delta f$$ drift-kinetic equation solver, FORTEC-3D, makes it possible to calculate the NTV due to the non-axisymmetric perturbed magnetic field caused by toroidal field coils. Analyses reveal that the NTV significantly influences $$V_phi$$ in JT-60U and $$E_r$$ holds the key to determine the NTV profile. The sensitivity of the $$V_phi$$ profile to the boundary rotation necessitates a boundary condition modelling for toroidal momentum. Owing to the high-resolution measurement system in JT-60U, the $$E_r$$ gradient is found to be virtually zero at the separatrix regardless of toroidal rotation velocities. Focusing on $$E_r$$, the boundary model of toroidal momentum is developed in conjunction with the SOL/divertor plasma code D5PM. This modelling realizes self-consistent predictive simulations for operation scenario development in ITER.

Accesses

:

- Accesses

InCites™

:

Percentile:32.76

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.