Refine your search:     
Report No.
 - 

Impacts of C-uptake by plants on the spatial distribution of $$^{14}$$C accumulated in vegetation around a nuclear facility; Application of a sophisticated land surface $$^{14}$$C model to the Rokkasho reprocessing plant, Japan

Ota, Masakazu  ; Katata, Genki; Nagai, Haruyasu  ; Terada, Hiroaki   

Impacts of plant C uptake on ($$^{14}$$C) distributions around a nuclear facility were investigated by a land surface $$^{14}$$C model (SOLVEG-II). The simulation combined the SOLVEG-II with a mesoscale model and an dispersion model was applied to $$^{14}$$CO$$_{2}$$ transfer at test operations of the Rokkasho reprocessing plant (RRP) in 2007. The calculated $$^{14}$$C-specific activities in rice grains agreed with the observations. Numerical experiment of chronic $$^{14}$$CO$$_{2}$$ release from the RRP showed that $$^{14}$$C-specific activities of rice plants at harvest differed from the annual mean ones in the air, which was attributed to seasonal variations in atmospheric $$^{14}$$CO$$_{2}$$ and plant growth. $$^{14}$$C accumulation in plant significantly increased when $$^{14}$$CO$$_{2}$$ releases were limited during daytime, compared with the results observed during nighttime, due to extensive $$^{14}$$CO$$_{2}$$ uptake by daytime photosynthesis. These results indicated that plant growth and photosynthesis should be considered in predictions of ingestion dose of $$^{14}$$C for long-term chronic and short-term diurnal releases of $$^{14}$$CO$$_{2}$$, respectively.

Accesses

:

- Accesses

InCites™

:

Percentile:22.17

Category:Environmental Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.