Refine your search:     
Report No.
 - 

Spin-transfer torques in antiferromagnetic textures; Efficiency and quantification method

Yamane, Yuta*; Ieda, Junichi   ; Sinova, J.*

We formulate a theory of spin-transfer torques in antiferromagnets, which covers the small to large limits of the exchange coupling energy relative to the kinetic energy of the inter-sublattice electron dynamics. Our theory suggests a natural definition of the efficiency of spin-transfer torques in antiferromagnets in terms of well-defined material parameters, revealing that the charge current couples predominantly to the antiferromagnetic order parameter and the sublattice-canting moment in, respectively, the limits of large and small exchange coupling. The effects can be quantified by analyzing the antiferromagnetic spin-wave dispersions in the presence of charge current: in the limit of large exchange coupling the spin-wave Doppler shift always occurs, whereas, in the opposite limit, the only spin-wave modes to react to the charge current are ones that carry a pronounced sublattice-canting moment. The findings offer a framework for understanding and designing spin-transfer torques in antiferromagnets belonging to different classes of sublattice structures such as, e.g., bipartite and layered antiferromagnets.

Accesses

:

- Accesses

InCites™

:

Percentile:75.74

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.