Refine your search:     
Report No.
 - 

2nd atmospheric model intercomparison project for Fukushima Daiichi Nuclear Power Plant Accident on March 2011; 2nd FDNPP-MIP

Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Grahn, H.*; Br$"a$nnstr$"o$m, N.*; von Schoenberg, P.*; Kondo, Hiroaki*; Terada, Hiroaki   ; Nagai, Haruyasu  ; Qu$'e$lo, D.*; Mathieu, A.*; Uchida, Junya*; Goto, Daisuke*; Tsuruta, Haruo*; Yamazawa, Hiromi*; Nakajima, Teruyuki*

The second intercomparison of atmospheric model targeting on the radionuclide (i.e. $$^{137}$$Cs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) on March 2011 is conducted. Thirteen atmospheric models, which include both the Lagrangian- and Eulerian-based dispersion models, participate in this model intercomparison project (MIP). The purposes of this MIP are to (1) understand the transport process of the radionuclide in atmosphere, (2) estimate the uncertainties in wet and dry deposition process among the models, (3) reveal the essential key processes to reproduce the plume of $$^{137}$$Cs, (4) assess the multi-model ensemble mean, and (5) obtain the knowledge for improving the physical processes of the models. To exclude the uncertainties of the model results originated from the emission inventory, all models used the same emission inventory. The meteorological data with fine spatiotemporal resolution, which was calculated by the Japanese operational weather forecast model coupled with the local ensemble transform Kalman Filter data assimilation system, was applied for all models to reduce the uncertainties originated from the difference in the meteorological field. As well as the comparison among the models, the comparison between the models and in-situ measurement from the national suspended particle matter (SPM) sampling network are conducted. The comparisons between the model results and the SPM data indicate that the $$^{137}$$Cs concentration near the FDNPP transported without precipitation process was relatively well reproduced by using the meteorological data with fine spatiotemporal resolution. On the contrary, $$^{137}$$Cs concentration accompanied with precipitation has large inter-model spread. In the presentation, we will discuss the more detailed analyses about the physical process to determine the $$^{137}$$Cs concentration.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.