Refine your search:     
Report No.
 - 

Developing accelerator mass spectrometry capabilities for anthropogenic radionuclide analysis to extend the set of oceanographic tracers

Hain, K.*; Martschini, M.*; G$"u$lce, F.*; Honda, Maki   ; Lachner, J.*; Kern, M.*; Pitters, J.*; Quinto, F.*; Sakaguchi, Aya*; Steier, P.*; Wiederin, A.*; Wieser, A.*; Yokoyama, Akihiko*; Golser, R.*

Recent major advances in accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) regarding detection efficiency and isobar suppression have opened possibilities for the analysis of additional long-lived radionuclides at ultra-low environmental concentrations. These radionuclides, including $$^{233}$$U, $$^{135}$$Cs, $$^{99}$$Tc and $$^{90}$$Sr, will become important for oceanographic tracer application due to their generally conservative behavior in ocean water. In particular, the isotope ratios $$^{233}$$U/$$^{236}$$U and $$^{137}$$Cs/$$^{135}$$Cs have proven to be powerful fingerprints for emission source identification as they are not affected by elemental fractionation. Improved detection efficiencies allowed us to analyze all major long-lived actinides, i.e. $$^{236}$$U, $$^{237}$$Np, $$^{239, 240}$$Pu, $$^{241}$$Am as well as the very rare $$^{233}$$U, in the same 10 L water samples of an exemplary depth profile from the northwest Pacific Ocean. Especially for $$^{90}$$Sr analysis, our new approach has already been validated for selected reference materials (e.g. IAEA-A-12) and is ready for application in oceanographic studies. We estimate that a sample volume of only (1-3) L ocean water is sufficient for $$^{90}$$Sr as well as $$^{135}$$Cs analysis, respectively.

Accesses

:

- Accesses

InCites™

:

Percentile:95.34

Category:Environmental Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.