Refine your search:     
Report No.
 - 

Development of a method for calculating effective displacement damage doses in semiconductors and applications to space field

Iwamoto, Yosuke   ; Sato, Tatsuhiko   

The displacement damage dose (DDD) has been used as an index to determine the lifetime of semiconductor devices used in space radiation environments. Recently, a new index, effective DDD, has been proposed, which takes into account the defect generation efficiency of materials obtained from molecular dynamics simulations. In this study, we developed a method to calculate both conventional and effective DDD for typical semiconductor materials such as SiC, InAs, GaAs, and GaN in the PHITS code. As a result, in the arsenic compounds InAs and GaAs, the number of defects increases due to amorphization and the effective DDD is larger than the conventional DDD, while in SiC the relationship is reversed due to defect recombination. The improved PHITS can be used to calculate the effective DDD of semiconductors in cosmic ray environments, and PHITS can make a significant contribution to the evaluation of radiation damage of new semiconductor devices in space.

Accesses

:

- Accesses

InCites™

:

Percentile:50.96

Category:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.