Refine your search:     
Report No.
 - 

Field-induced magnetic phase transitions in the triangular-lattice antiferromagnet CuFeO$$_{2}$$ investigated by time-of-flight neutron diffraction in long-pulse magnetic fields

Watanabe, Masao  ; Nakajima, Taro*; Inamura, Yasuhiro  ; Matsui, Kazuki*; Kanda, Tomoki*; Nomoto, Tetsuya*; Oishi, Kazuki*; Kawamura, Yukihiko*; Saito, Hiraku*; Tamatsukuri, Hiromu   ; Kohama, Yoshimitsu*

In recent years, due to advances in precision measurement technology in pulsed magnetic fields, a novel magnetic state was discovered in a strong magnetic field. We constructed a measurement environment that can comprehensively explore the reciprocal lattice space under magnetic fields up to 14 Tesla by combining the long-pulse magnetic field generated by the supercapacitor and pulsed neutrons at J-PARC. This equipment can generate a magnetic field that is sufficiently longer than the time width (about 10 milliseconds) of the multi-wavelength neutron pulse passing through the sample. This method was used to investigate the magnetic phase transition in the frustrated magnet CuFeO$$_{2}$$.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.