Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 120

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of irradiation side on muon-induced single-event upsets in 65-nm Bulk SRAMs

Deng, Y.*; Watanabe, Yukinobu*; Manabe, Seiya*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro; Tampo, Motonobu*; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 71(4, Part 2), p.912 - 920, 2024/04

With the miniaturization of semiconductors and the decrease in operating voltage, there is a growing interest and discussion in whether the muons in cosmic rays may be the source of single event upsets (SEUs). In the case of neutron-induced SEUs, it was reported that the irradiation side has the impact on SEU cross sections. Here, to investigate the impact of irradiation direction on muon-induced SEUs, we have measured and simulate muon-induced SEUs in 65-nm bulk SRAMs with different muon irradiation directions. It was found that the peak SEU cross section for the package side irradiation is about twice large as that for the board side irradiation. We also revealed that the difference in observed SEU cross sections between the package side and the board side irradiation is caused by differences in energy straggling due to changes in penetration depth depending on the incident direction.

Journal Articles

Application of transition-edge sensors for micro-X-ray fluorescence measurements and micro-X-ray absorption near edge structure spectroscopy; a case study of uranium speciation in biotite obtained from a uranium mine

Yomogida, Takumi; Hashimoto, Tadashi; Okumura, Takuma*; Yamada, Shinya*; Tatsuno, Hideyuki*; Noda, Hirofumi*; Hayakawa, Ryota*; Okada, Shinji*; Takatori, Sayuri*; Isobe, Tadaaki*; et al.

Analyst, 149(10), p.2932 - 2941, 2024/03

In this study, we successfully applied a transition-edge sensor (TES) spectrometer as a detector for microbeam X-ray measurements from a synchrotron X-ray light source to determine uranium (U) distribution at the micro-scale and its chemical species in biotite obtained from the U mine. It is difficult to separate the fluorescent X-ray of the U L$$alpha$$$$_{1}$$ line at 13.615 keV from that of the Rb K$$alpha$$ line at 13.395 keV in the X-ray fluorescence spectrum with an energy resolution of approximately 220 eV of the conventional silicon drift detector (SDD). Meanwhile, the fluorescent X-rays of U L$$alpha$$$$_{1}$$ and Rb K$$alpha$$ were fully separated by TES with 50 eV energy resolution at the energy of around 13 keV. The successful peak separation by TES led to an accurate mapping analysis of trace U in micro-X-ray fluorescence measurements and a decrease in the signal-to-background ratio in micro-X-ray absorption near edge structure spectroscopy.

Journal Articles

A Terrestrial SER Estimation Methodology Based on Simulation Coupled With One-Time Neutron Irradiation Testing

Abe, Shinichiro; Hashimoto, Masanori*; Liao, W.*; Kato, Takashi*; Asai, Hiroaki*; Shimbo, Kenichi*; Matsuyama, Hideya*; Sato, Tatsuhiko; Kobayashi, Kazutoshi*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 70(8, Part 1), p.1652 - 1657, 2023/08

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by neutrons is a reliability problem for microelectronic devices in the terrestrial environment. Acceleration tests using white neutron beam provide realistic soft error rates (SERs), but only a few facilities can provide white neutron beam in the world. If single-source irradiation applicable to diverse neutron source can be utilized for the evaluation of the SER in the terrestrial environment, it contributes to solve the shortage of beam time. In this study, we investigated the feasibility of the SER estimation in the terrestrial environment by any one of these measured data with the SEU cross sections obtained by PHITS simulation. It was found that the SERs estimated by our proposed method are within a factor of 2.7 of that estimated by the Weibull function. We also investigated the effect of simplification which reduce the computational cost in simulation to the SER estimation.

JAEA Reports

Historical changes and Correspondence to Research and Test Reactors New Regulatory Standards for Monitoring Post in Oarai Research and Development Institute, JAEA

Hamaguchi, Takumi; Yamada, Junya; Komatsuzaki, Naoya*; Hatakeyama, Takumi; Seya, Natsumi; Muto, Yasunobu; Miyauchi, Hideaki; Hashimoto, Makoto

JAEA-Technology 2022-038, 65 Pages, 2023/03

JAEA-Technology-2022-038.pdf:4.3MB

New regulatory requirements were developed taking into account the lessons-learnt from the accident at Fukushima Daiichi Nuclear Power Station on March 2011. The new regulatory standards required that monitoring posts should be diversified in transmission systems and equipped with backup power supply equipment for design basis accidents. In this report, we look back on the history of monitoring posts in Oarai Research and Development Institute, explained the application for the permission of reactor installment license, application for approval of the design and construction method, pre-use operator's inspection and improvement design of monitoring posts. This report also includes about inspection based on act on special measures concerning nuclear emergency preparedness and the installation of KURAMA-II, which was carried out in conjunction with the improvement of monitoring post for new regulatory standards. As an appendix, application document for approval of the design and construction method are included.

Journal Articles

High-sensitive XANES analysis at Ce L$$_{2}$$-edge for Ce in bauxites using transition-edge sensors; Implications for Ti-rich geological samples

Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.

Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02

 Times Cited Count:4 Percentile:52.44(Chemistry, Analytical)

no abstracts in English

Journal Articles

Recent improvements of the Particle and Heavy Ion Transport code System; PHITS version 3.33

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

 Times Cited Count:8 Percentile:99.39(Nuclear Science & Technology)

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.

Journal Articles

Reactor physics experiment in a graphite moderation system for HTGR, 3

Fukaya, Yuji; Okita, Shoichiro; Kanda, Shun*; Goto, Masaki*; Nakajima, Kunihiro*; Sakon, Atsushi*; Sano, Tadafumi*; Hashimoto, Kengo*; Takahashi, Yoshiyuki*; Unesaki, Hironobu*

KURNS Progress Report 2021, P. 101, 2022/07

The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs) in 2018. The objectives are to intro-duce the generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to improve neutron instrumentation system by virtue of the particular characteristics due to a graphite moderation system. For this end, we composed B7/4"G2/8"p8EU(3)+3/8"p38EU in the B-rack of Kyoto University Critical Assembly (KUCA) in 2021.

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:1 Percentile:19.16(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

JAEA Reports

Examination of exposure management method for the eye lens at Oarai Research and Development Institute

Matsuoka, Amane; Yasumune, Takashi; Kojima, Nobuhiro; Miyauchi, Hideaki; Takasaki, Koji; Hashimoto, Makoto

JAEA-Review 2021-055, 11 Pages, 2021/12

JAEA-Review-2021-055.pdf:1.12MB

The dose limit for the eye lens was lowered on April 1 2021, and a 3 mm dose equivalent was added to the calculation. The guidelines require that lens dosimeters be worn and managed when there is a risk of exceeding control standards. In this report, in order to examine future management methods, we investigated whether work that might exceed the equivalent dose limit was performed in the past. As a result of the investigation, the exposure dose for all works after fiscal year 2008 was sufficiently low compared to the equivalent dose limit. For this reason, it is considered that there is no need for additional management of wearing a personal dosimeter near the eyes for the work that is normally performed. In the future, as in the past, the basic management method will be to wear a dosimeter only on the basic part of the trunk under uniform exposure conditions, and to wear a dosimeter on the basic part of the trunk and the maximum dose part under nonuniform exposure conditions. When performing work with a high exposure dose to the eye lens, a dosimeter should be worn near the eye to measure the 3 mm dose equivalent.

Journal Articles

Large scale production of $$^{64}$$Cu and $$^{67}$$Cu via the $$^{64}$$Zn(n, p)$$^{64}$$Cu and $$^{68}$$Zn(n, np/d)$$^{67}$$Cu reactions using accelerator neutrons

Kawabata, Masako*; Motoishi, Shoji*; Ota, Akio*; Motomura, Arata*; Saeki, Hideya*; Tsukada, Kazuaki; Hashimoto, Shintaro; Iwamoto, Nobuyuki; Nagai, Yasuki*; Hashimoto, Kazuyuki*

Journal of Radioanalytical and Nuclear Chemistry, 330(3), p.913 - 922, 2021/12

 Times Cited Count:7 Percentile:75.12(Chemistry, Analytical)

Both $$^{64}$$Cu and $$^{67}$$Cu are promising radionuclides in nuclear medicine. Production yields of these radionuclides were quantified by irradiating 55.4 g of natural zinc with accelerator neutrons. Clinically suitable $$^{64}$$Cu and $$^{67}$$Cu yields were estimated by experimental based numerical simulations using 100 g of enriched $$^{64}$$Zn and $$^{68}$$Zn, respectively, and elevated neutron fluxes from 40 MeV, 2 mA deuterons. A combined thermal- and resin-separation method was developed to isolate $$^{64}$$Cu and $$^{67}$$Cu from zinc, resulting in 73% separation efficiency and 97% zinc recovery. Such methods can provide large scale production of $$^{64}$$Cu and $$^{67}$$Cu for clinical applications.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:10.16(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:15 Percentile:82.53(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

Journal Articles

An Electron-capture efficiency in femtosecond filamentation

Nakashima, Nobuaki*; Yatsuhashi, Tomoyuki*; Sakota, Kenji*; Iwakura, Izumi*; Hashimoto, Sena*; Yokoyama, Keiichi; Matsuda, Shohei

Chemical Physics Letters, 752, p.137570_1 - 137570_5, 2020/08

 Times Cited Count:1 Percentile:4.74(Chemistry, Physical)

Photo-redox reactions between Eu$$^{3+}$$ and Eu$$^{2+}$$ ions are induced by laser irradiation in alcoholic solution. Efficiency, wavelength dependence, and laser-power dependence are investigated with three different lasers. Nano second laser pulses at a wavelength of 308 nm is found to cause one-photon redox reactions with a quantum yield around 0.5. Nano second laser pulses at a wavelength of 394 nm induces two-photon reduction of Eu$$^{3+}$$ to form Eu$$^{2+}$$. When the pulse energy is 5 mJ, the quantum yield is measured to be 0.015. Although the quantum yield is one order of magnitude lower than that of the one photon reduction, reduction phenomena can be easily observed under the moderate laser field strength. Because of the two-photon nature, there should be a room to improve the efficiency by increasing the laser field strength.

Journal Articles

Impact of the angle of incidence on negative muon-induced SEU cross sections of 65-nm Bulk and FDSOI SRAMs

Liao, W.*; Hashimoto, Masanori*; Manabe, Seiya*; Watanabe, Yukinobu*; Abe, Shinichiro; Tampo, Motonobu*; Takeshita, Soshi*; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 67(7), p.1566 - 1572, 2020/07

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

Muon-induced single event upset (SEU) is predicted to increase with technology scaling. The angle of incidence of terrestrial muons is not always perpendicular to the chip surface. Consequently, the impact of the angle of incidence of muons on SEUs should be evaluated. This study conducts negative muon irradiation tests on bulk SRAM and FDSOI SRAM at two angles of incidence: 0 degree (vertical) and 45 degree (tilted). The tilted incidence drifts the muon energy peak to a higher energy. Moreover, the SEU characteristics (i.e., such as the voltage dependences of the SEU cross sections and multiple cells upset patterns) between the vertical and tilted incidences are similar.

Journal Articles

Measurement of single-event upsets in 65-nm SRAMs under irradiation of spallation neutrons at J-PARC MLF

Kuroda, Junya*; Manabe, Seiya*; Watanabe, Yukinobu*; Ito, Kojiro*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro; Harada, Masahide; Oikawa, Kenichi; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 67(7), p.1599 - 1605, 2020/07

 Times Cited Count:4 Percentile:43.68(Engineering, Electrical & Electronic)

Soft errors induced by terrestrial radiation in semiconductor devices have been of concern from the viewpoint of their reliability. Generally, to evaluate the soft error rates (SERs), neutron irradiation tests are performed at neutron facility. We have performed SER measurement for the 65-nm bulk SRAM and the FDSOI SRAM at RCNP in Osaka University and CYRIC in Tohoku University. In this study, we performed SER measurement for the same devices at BL10 in J-PARC MLF. The increasing rate of SER by reducing the supply voltage at J-PARC BL10 is larger than those obtained at RCNP and CYRIC. From PHITS simulation, the cause of this difference can be explained by the influence of the protons generated by neutron elastic scattering with hydrogen atoms in the package resin.

Journal Articles

Impact of hydrided and non-hydrided materials near transistors on neutron-induced single event upsets

Abe, Shinichiro; Sato, Tatsuhiko; Kuroda, Junya*; Manabe, Seiya*; Watanabe, Yukinobu*; Liao, W.*; Ito, Kojiro*; Hashimoto, Masanori*; Harada, Masahide; Oikawa, Kenichi; et al.

Proceedings of IEEE International Reliability Physics Symposium (IRPS 2020) (Internet), 6 Pages, 2020/04

 Times Cited Count:2 Percentile:62.88(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by neutrons have been recognized as a serious reliability problem for microelectronic devices on the ground level. In our previous work, it was found that hydride placed in front of the memory chip has considerably impact on SEU cross sections because H ions generated via elastic scattering of neutrons with hydrogen atoms are only emitted in a forward direction. In this study, the effect of components neighboring transistors on neutron-induced SEUs was investigated for 65-nm bulk SRAMs by using PHITS. It was found that the shape of the SEU cross section around few MeV comes from the thickness and the position of components placed in front of transistors when that components do not contains hydrogen atoms. By considering components adjoin memory cells in the test board used in the simulation, measured data at J-PARC BL10 were reproduced well. In addition, it was found that the effect of components neighboring transistors on neutron-induced SERs does not negligible in terrestrial environment.

Journal Articles

Characterizing SRAM and FF soft error rates with measurement and simulation

Hashimoto, Masanori*; Kobayashi, Kazutoshi*; Furuta, Jun*; Abe, Shinichiro; Watanabe, Yukinobu*

Integration, 69, p.161 - 179, 2019/11

 Times Cited Count:11 Percentile:64.8(Computer Science, Hardware & Architecture)

Soft error originating from cosmic ray is a serious concern for reliability demanding applications. Device miniaturization and lower voltage operation degrade the immunity of SRAM and flip-flops, and then soft error countermeasures will be demanded in more and more products. This paper characterizes and discusses soft error rates of SRAM and flip-flops in the terrestrial environment with the results of investigation for soft error phenomena by measurements and simulations.

Journal Articles

Impact of irradiation side on neutron-induced single-event upsets in 65-nm Bulk SRAMs

Abe, Shinichiro; Liao, W.*; Manabe, Seiya*; Sato, Tatsuhiko; Hashimoto, Masanori*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 66(7, Part 2 ), p.1374 - 1380, 2019/07

 Times Cited Count:7 Percentile:60.64(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by secondary cosmic-ray neutrons have recognized as a serious reliability problem for microelectronic devices. Acceleration tests at neutron facilities are convenient to validate soft error rates (SERs) quickly, but some corrections caused from measurement conditions are required to derive realistic SERs at actual environment or to compare other measured data. In this study, the effect of irradiation side on neutron-induced SEU cross sections was investigated by performing neutron transport simulation using PHITS. SERs for 65-nm bulk CMOS SRAMs are estimated using the sensitive volume model. It was found from simulation that SERs for the sealant side irradiation are 30-50% larger than those for the board side irradiation. This difference comes from the difference of production yield and angular distribution of secondary H and He ions, which are the main cause of SEUs. Thus the direction of neutron irradiation should be reported when the result of acceleration tests are published. This result also indicates that SERs can be reduced by equipping device with sealant side facing downward.

Journal Articles

Similarity analysis on neutron- and negative muon-induced MCUs in 65-nm bulk SRAM

Liao, W.*; Hashimoto, Masanori*; Manabe, Seiya*; Abe, Shinichiro; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 66(7), p.1390 - 1397, 2019/07

 Times Cited Count:13 Percentile:81.51(Engineering, Electrical & Electronic)

Multiple-cell upset (MCU) in static random access memory (SRAM) is a major concern in radiation effects on microelectronic devices since it can spoil error correcting codes. Neutron-induced MCUs have been characterized for terrestrial environment. On the other hand, negative muon-induced MCUs were recently reported. Neutron- and negative muon-induced MCUs are both caused by secondary ions, and hence, they are expected to have some similarity. In this paper, we compare negative muon- and neutron-induced MCUs in 65-nm bulk SRAMs at the irradiation experiments using spallation and quasi-monoenergetic neutrons and monoenergetic negative muons. The measurement results show that the dependencies of MCU event cross section on operating voltage are almost identical. The Monte Carlo simulation is conducted to investigate the deposited charge. The distributions of deposited charge obtained by the simulation are consistent with the above-mentioned experimental observations.

Journal Articles

Estimation of muon-induced SEU rates for 65-nm bulk and UTBB-SOI SRAMs

Manabe, Seiya*; Watanabe, Yukinobu*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro

IEEE Transactions on Nuclear Science, 66(7), p.1398 - 1403, 2019/07

 Times Cited Count:8 Percentile:65.31(Engineering, Electrical & Electronic)

Cosmic ray-induced soft errors have been recognized as a major threat for electronics used at ground level. Recently, cosmic-ray muon-induced soft errors have received much attention due to the reduction of soft error immunity on SRAMs. In the previous studies, muon-induced soft error rates (SERs) for various technology devices were predicted with only the positive muon irradiation tests and simulation. In this paper, the muon-induced SEU rates for the 65-nm bulk and UTBB-SOI SRAMs are estimated by using the experimental data of both negative and positive muons. The experimental results showed that the negative muon SEU cross sections for the bulk SRAM are significantly larger than those for the UTBB-SOI. Estimation of muon-induced SEU rates at ground level was performed using PHITS with the experimental results. The muon-induced SER on the first floor of the building was estimated to be at most 10% of the neutron-induced SER on the same floor.

120 (Records 1-20 displayed on this page)