Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research and development activities of JAEA for HTGR system realization

Mineo, Hideaki; Nishihara, Tetsuo; Ohashi, Hirofumi; Goto, Minoru; Sato, Hiroyuki; Takegami, Hiroaki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(9), p.504 - 508, 2020/09

High-Temperature Gas-cooled Reactor (HTGR) is one of thermal neutron reactor-type that employs helium gas coolant and graphite moderator. It has excellent inherent safety and can supply high-temperature heat which can be used not only for electric power generation but also for a wide range of application such as hydrogen production. Therefore, HTGR is expected to be an effective technology for reducing greenhouse gases in Japan as well as overseas. In this paper, we will introduce the forefront of technological development that JAEA is working toward the realization of an HTGR system consisting of a high temperature gas reactor and heat utilization facilities such as gas-turbine power generation and hydrogen production.

Journal Articles

High temperature gas cooled reactor development in Japan

Hishida, Makoto; *

Therm. Sci. Eng., 4(1), p.81 - 90, 1996/00

no abstracts in English

JAEA Reports

Stationary analysis program code STEDFAST for space, terrestrial and deep sea fast reactor $$cdot$$ gas turbine power generation system (User's manual)

; Sekiguchi, Nobutada

PNC TN9520 95-002, 66 Pages, 1995/02

PNC-TN9520-95-002.pdf:2.55MB

This analysis program code STEDFAST; Space, TErrestrial and Deep sea FAST reactor $$cdot$$ gas tubine system; is used to get the adequate values of system parameters on fast reactor $$cdot$$ gas turbine power generation systems used as power sources for deep sea, space and terrestrial cogeneration. Characteristics of the code are as follows. $$cdot$$ Objective systems of the code are a deep sea, a space and a terrestrial reactors. $$cdot$$ Primary coolants of the systems are NaK, Na, Pb and Li. Secondary coolant is the mixture gas of He and Xe. The ratio of He and Xe is arbitrary. $$cdot$$ Modeling of components in the systems was performed so that detailed modeling might be capable in future and that a transient analytical code could be easily made by using the code. $$cdot$$ A progra㎜ing language is MAC-FORTRAN. The code can be easily used in a personal computer. The code made possible instant calculation of various state values in a Brayton cycle, understanding the effects of many parameters on thermal efficiency and finding the most adequate values of the parameters. From now on, detailed modeling of the components will be performed. After that, the transient program code will be made.

Oral presentation

Demonstration plan for HTGR heat application technologies using the HTTR

Sato, Hiroyuki; Aoki, Takeshi; Yan, X.

no journal, , 

HTGR is expected to be used in various industrial fields due to its inherent safety characteristics and high temperature heat supply capability. JAEA is planning to connect heat application systems such as a helium gas turbine and a hydrogen production plant to the HTTR. This presentation reports summary and test plan for the HTTR direct gas turbine power generation system, HTTR hydrogen production system using steam methane reforming method and HTTR gas turbine cogeneration system.

4 (Records 1-4 displayed on this page)
  • 1