Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 45

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

$$mu$$SR studies on copper minerals

Fujihara, Masayoshi; Okabe, Hirotaka*; Koda, Akihiro*

Interactions (Internet), 245(1), p.13_1 - 13_6, 2024/12

Quantum states are difficult to observe experimentally. In addition, ideal model materials have not been found for some of the lattice systems in which exotic quantum states are predicted to be realized. Numerous candidates for low-dimensional quantum magnets are hidden in copper minerals, and the number of candidates is increasing every year. We succeeded to synthesize seven copper minerals by imitating the environment where they are discovered and reported their quantum states. The properties of pulsed muons are very suitable for investigating the spin state of artificial copper minerals.

Journal Articles

Pulsed muon facility of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.

Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12

Journal Articles

Assessment of hydrogen embrittlement behavior in Al-Zn-Mg alloy through multi-modal 3D image-based simulation

Fujihara, Hiro*; Toda, Hiroyuki*; Ebihara, Kenichi; Kobayashi, Masakazu*; Mayama, Tsuyoshi*; Hirayama, Kyosuke*; Shimizu, Kazuyuki*; Takeuchi, Akihisa*; Uesugi, Masayuki*

International Journal of Plasticity, 174, p.103897_1 - 103897_22, 2024/03

 Times Cited Count:0

Hydrogen(H) embrittlement in high-strength aluminum(Al) alloys is a crucial problem. H accumulation at the interface of precipitates in Al alloy is considered to cause embrittlement. However, there is no quantitative knowledge regarding the interaction between H distribution and stress field near cracks. In this study, using a multi-modal three-dimensional image-based simulation combining the crystal plasticity finite element method and H diffusion analysis, we tried to capture the stress distribution near the crack, its influence on the H distribution, and the probability of crack initiation in the experimental condition. As a result, it was found that grain boundary cracks transition to quasi-cleavage cracks in the region where the cohesive energy of the semi-coherent interface of MgZn$$_2$$ precipitates decreases due to H accumulation near the tip. We believe the present simulation method successfully bridges nanoscale delamination and macroscale brittle fracture.

Journal Articles

Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy

Tang, J.*; Wang, Y.*; Fujihara, Hiro*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Ebihara, Kenichi; Takeuchi, Akihisa*; Uesugi, Masayuki*; Toda, Hiroyuki*

Scripta Materialia, 239, p.115804_1 - 115804_5, 2024/01

 Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)

Stress corrosion cracking (SCC) behaviors induced by the combination of external and internal hydrogen (H) in an Al-Zn-Mg-Cu alloy were systematically investigated via in situ 3D characterization techniques. SCC of the Al-Zn-Mg-Cu alloy could initiate and propagate in the potential crack region where the H concentration exceeded a critical value, in which the nanoscopic H-induced decohesion of $$eta$$-MgZn$$_2$$ precipitates resulted in macroscopic cracking. External H that penetrated the alloy from the environment played a crucial role during the SCC of the Al-Zn-Mg-Cu alloy by generating gradient-distributed H-affected zones near the crack tips, which made Al alloys in water environment more sensitive to SCC. Additionally, the pre-existing internal H was driven toward the crack tips during plastic deformation. It was involved in the SCC and made contributions to both the cracks initiation and propagation.

Journal Articles

Multi-modal 3D image-based simulation of hydrogen embrittlement crack initiation in Al-Zn-Mg alloy

Higa, Ryota*; Fujihara, Hiro*; Toda, Hiroyuki*; Kobayashi, Masakazu*; Ebihara, Kenichi; Takeuchi, Akihisa*

Keikinzoku, 73(11), p.530 - 536, 2023/11

In Al-Zn-Mg alloys, suppression of hydrogen embrittlement is necessary to improve their strength. In this study, the distribution of stress, strain, and hydrogen concentration in the actual fracture region was investigated using the crystal plasticity finite element method and hydrogen diffusion analysis based on a model derived from three-dimensional polycrystalline microstructural data obtained by X-ray CT. In addition, the distributions of stress, strain, and hydrogen concentration were compared with the actual crack initiation behavior by combining in-situ observation of tensile tests using X-ray CT and simulation. The results show that stress loading perpendicular to the grain boundary due to crystal plasticity dominates grain boundary crack initiation. It was also found that internal hydrogen accumulation due to crystal plasticity has little effect on crack initiation.

Journal Articles

Hydrogen embrittlement and its prevention in 7XXX aluminum alloys with high Zn concentrations

Shimizu, Kazuyuki*; Toda, Hiroyuki*; Fujihara, Hiro*; Yamaguchi, Masatake; Uesugi, Masayuki*; Takeuchi, Akihisa*; Nishijima, Masahiko*; Kamada, Yasuhiro*

Corrosion, 79(8), p.818 - 830, 2023/08

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

7xxx aluminum alloys are representative high-strength aluminum alloys; however, mechanical property degradation due to hydrogen hinders further strengthening. We propose the dispersion of Mn-based second-phase particles as a novel technique for preventing 7xxx aluminum alloy hydrogen embrittlement. In this study, the deformation and fracture behaviors of high hydrogen 7xxx alloys containing 0.0% Mn and 0.6% Mn are observed in situ using synchrotron radiation X-ray tomography. The obtained macroscopic hydrogen embrittlement is quantitatively analyzed based on hydrogen partitioning in alloys. Adding 0.6% Mn, generating second-phase particles with high hydrogen trapping abilities, significantly suppresses hydrogen-induced quasicleavage fracture.

Journal Articles

Atomic reconstruction induced by uniaxial stress in MnP

Kozawa, Tatsuya*; Fujihara, Masayoshi; Uchihara, Takeru*; Mitsuda, Setsuo*; Yano, Shinichiro*; Tamatsukuri, Hiromu; Munakata, Koji*; Nakao, Akiko*

Scientific Reports (Internet), 13, p.13750_1 - 13750_8, 2023/08

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

In condensed matter physics, pressure is frequently used to modify the stability of both electronic states and atomic arrangements. Under isotropic pressure, the intermetallic compound MnP has recently attracted attention for the interplay between pressure-induced superconductivity and complicated magnetic order in the vicinity. By contrast, we use uniaxial stress, a directional type of pressure, to investigate the effect on the magnetism and crystal structure of this compound. An irreversible magnetisation response induced by uniaxial stress is discovered in MnP at uniaxial stress as low as 0.04 GPa. Neutron diffraction experiments reveal that uniaxial stress forms crystal domains that satisfy pseudo-rotational symmetry unique to the MnP-type structure. The structure of the coexisting domains accounts for the stress-induced magnetism. We term this first discovered phenomenon atomic reconstruction (AR) induced by uniaxial stress. Furthermore, our calculation results provide guidelines on the search for AR candidates. AR allows crystal domain engineering to control anisotropic properties of materials, including dielectricity, elasticity, electrical conduction, magnetism and superconductivity. A wide-ranging exploration of potential AR candidates would ensure that crystal domain engineering yields unconventional methods to design functional multi-domain materials for a wide variety of purposes.

Journal Articles

Study on $$^{rm 99m}$$Tc separation/concentration technology from $$^{99}$$Mo by (n, $$gamma$$) method

Fujita, Yoshitaka; Hu, X.*; Takeuchi, Tomoaki; Takeda, Ryoma; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; Hori, Junichi*; Suzuki, Tatsuya*; Suematsu, Hisayuki*; Ide, Hiroshi

KURNS Progress Report 2022, P. 110, 2023/07

no abstracts in English

Journal Articles

Spin gap in the weakly interacting quantum spin chain antiferromagnet KCuPO$$_{4}$$$$cdot$$H$$_{2}$$O

Fujihara, Masayoshi; Hagihara, Masato; Morita, Katsuhiro*; Murai, Naoki; Koda, Akihiro*; Okabe, Hirotaka*; Mitsuda, Setsuo*

Physical Review B, 107(5), p.054435_1 - 054435_8, 2023/02

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

The $$S$$ = 1/2 Heisenberg linear chain antiferromagnet is the simplest spin model; nevertheless it serves as a platform for various quantum many-body phenomena. Here, we report the magnetic behavior of a quasi-one-dimensional antiferromagnet KCuPO$$_{4}$$$$cdot$$H$$_{2}$$O. A long-range commensurate antiferromagnetic order with ordered moment 0.31(1) $$mu_{rm{B}}$$ per spin occurs at $$T_{rm{N}}$$ = 11.7(1) K. Above $$T_{rm{N}}$$, the inelastic neutron excitation is characterized by a two spinon continuum. The intrachain interaction $$J$$ and interchain interaction $$|J'|$$ are estimated to be 172 K and 4.25(4) K, respectively; thus the ratio of the $$|J'|$$/$$J$$ = 0.0247(3). At lower energies, below $$T_{rm{N}}$$, a spin gap is observed in the dispersive excitations. These results are consistent with characteristics observed in weakly interacting $$S$$ = 1/2 Heisenberg chain system.

Journal Articles

Birchite Cd$$_{2}$$Cu$$_{2}$$(PO$$_{4}$$)$$_{2}$$SO$$_{4}$$ $$cdot$$ 5H$$_{2}$$O as a model antiferromagnetic spin-1/2 Heisenberg $${it J}$$$$_{1}$$-$${it J}$$$$_{2}$$ chain

Fujihara, Masayoshi; Jeschke, H. O.*; Morita, Katsuhiro*; Kuwai, Tomohiko*; Koda, Akihiro*; Okabe, Hirotaka*; Matsuo, Akira*; Kindo, Koichi*; Mitsuda, Setsuo*

Physical Review Materials (Internet), 6(11), p.114408_1 - 114408_8, 2022/11

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

$${it S}$$ = 1/2 Heisenberg $${it J}$$$$_{1}$$-$${it J}$$$$_{2}$$ chain antiferromagnets have been investigated extensively due to their exotic magnetic states. Here, we report the magnetic behavior of birchite Cd$$_{2}$$Cu$$_{2}$$(PO$$_{4}$$)$$_{2}$$SO$$_{4}$$$$cdot$$5H$$_{2}$$O and its effective spin model. Experimental studies by magnetic susceptibility, magnetization, heat capacity, and $$mu$$SR measurements indicate the absence of long-range order down to 0.4 K. Theoretical studies reveal that birchite is a model compound for the $${it J}$$$$_{1}$$-$${it J}$$$$_{2}$$ antiferromagnetic chain: the intrachain interactions $${it J}$$$$_{1}$$ and $${it J}$$$$_{2}$$ are antiferromagnetic and their magnitude is about 100 times larger than the interchain interactions. The magnitude of $${it J}$$$$_{2}$$ is two to three times larger than that of $${it J}$$$$_{1}$$, thus the spin gap is expected to be only a few percent of that of $${it J}$$$$_{1}$$. The temperature dependence of the specific heat shows a broad peak at about 1 K ($$simeq$$ 0.036 $${it J}$$$$_{1}$$), which suggests the presence of a spin gap.

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n, $$gamma$$) method, 4

Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.

KURNS Progress Report 2021, P. 118, 2022/07

no abstracts in English

Journal Articles

Development of stabilization treatment technology for radioactive aluminum waste

Seki, Misaki; Fujita, Yoshitaka; Fujihara, Yasuyuki*; Zhang, J.*; Yoshinaga, Hisao*; Sano, Tadafumi*; Hori, Junichi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; et al.

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(1), p.2 - 9, 2022/06

no abstracts in English

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n, $$gamma$$) method, 3

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Daigo, Fumihisa; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.

KURNS Progress Report 2020, P. 136, 2021/08

no abstracts in English

Journal Articles

Research on activation assessment of a reactor structural materials for decommissioning, 2

Seki, Misaki; Ishikawa, Koji*; Sano, Tadafumi*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2019, P. 279, 2020/08

no abstracts in English

Journal Articles

Gapless spin liquid in a square-kagome lattice antiferromagnet

Fujihara, Masayoshi*; Morita, Katsuhiro*; Mole, R.*; Mitsuda, Setsuo*; Toyama, Takami*; Yano, Shinichiro*; Yu, D.*; Sota, Shigetoshi*; Kuwai, Tomohiko*; Koda, Akihiro*; et al.

Nature Communications (Internet), 11, p.3429_1 - 3429_7, 2020/07

 Times Cited Count:37 Percentile:90.63(Multidisciplinary Sciences)

Journal Articles

Research on activation assessment of a reactor structural materials for decommissioning

Seki, Misaki; Ishikawa, Koji*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 257, 2019/08

no abstracts in English

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n,$$gamma$$) method

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 155, 2019/08

no abstracts in English

Journal Articles

Optimization of mechanical properties in aluminum alloys $$via$$ hydrogen partitioning control

Toda, Hiroyuki*; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Su, H.*; Fujihara, Hiro*; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; et al.

Tetsu To Hagane, 105(2), p.240 - 253, 2019/02

 Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)

no abstracts in English

Journal Articles

Safe and rapid development of capillary electrophoresis for ultratrace uranyl ions in radioactive samples by way of fluorescent probe selection for actinide ions from a chemical library

Haraga, Tomoko; Ouchi, Kazuki; Sato, Yoshiyuki; Hoshino, Hitoshi*; Tanana, Rei*; Fujihara, Takashi*; Kurokawa, Hideki*; Shibukawa, Masami*; Ishimori, Kenichiro; Kameo, Yutaka; et al.

Analytica Chimica Acta, 1032, p.188 - 196, 2018/11

 Times Cited Count:12 Percentile:45.99(Chemistry, Analytical)

The development of safe, rapid and highly sensitive analytical methods for radioactive samples, especially actinide (An) ions, represents an important challenge. Here we propose a methodology for selecting appropriate emissive probes for An ions with very low consumption and emission of radioactivity by capillary electrophoresis-laser-induced fluorescence detection (CE-LIF), using a small chemical library of probes with eight different chelating moieties. It was found that the emissive probe, which possesses the tetradentate chelating moiety, was suitable for detecting uranyl ions. The detection limit for the uranyl-probe complex using CE-LIF combined with dynamic ternary complexation and on-capillary concentration techniques was determined to be 0.7 ppt. This method was successfully applied to real radioactive liquid samples collected from nuclear facilities.

Journal Articles

Neutron irradiation effect of high-density MoO$$_{3}$$ pellets for Mo-99 production

Fujita, Yoshitaka; Nishikata, Kaori; Namekawa, Yoji*; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Zhang, J.*

KURRI Progress Report 2017, P. 126, 2018/08

no abstracts in English

45 (Records 1-20 displayed on this page)