Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Archie's cementation factors for natural rocks; Measurements and insights from diagenetic perspectives

Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; Tachi, Yukio

Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05

Journal Articles

Petrophysical properties of representative geological rocks encountered in carbon storage and utilization

Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta

Energy Reports (Internet), 9, p.3661 - 3682, 2023/12

 Times Cited Count:4 Percentile:73.72(Energy & Fuels)

Journal Articles

Pressure-modulated magnetism and negative thermal expansion in the Ho$$_2$$Fe$$_{17}$$ intermetallic compound

Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.

Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04

 Times Cited Count:1 Percentile:45.8(Chemistry, Physical)

Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho$$_2$$Fe$$_{17}$$ on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.

Journal Articles

Structure of an aqueous RbCl solution in the gigapascal pressure range by neutron diffraction combined with empirical potential structure refinement modeling

Zhang, W. Q.*; Yamaguchi, Toshio*; Fang, C. H.*; Yoshida, Koji*; Zhou, Y. Q.*; Zhu, F. Y.*; Machida, Shinichi*; Hattori, Takanori; Li, W.*

Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02

 Times Cited Count:2 Percentile:32.24(Chemistry, Physical)

The ion hydration and association and hydrogen-bonded water structure in an aqueous 3 mol/kg RbCl solution were investigated at 298 K/0.1 MPa, 298 K/1 GPa, 523 K/1 GPa, and 523 K/4 GPa by neutron diffraction combined with EPSR methods. The second hydration layer of Rb$$^+$$ and Cl$$^-$$ becomes evident under elevated pressure and temperature conditions. The average oxygen coordination number of Rb$$^+$$ (Cl$$^-$$) in the first hydration layer increases from 6.3 (5.9) ambient pressure to 8.9 (9.1) at 4 GPa, while decreasing coordination distance from 0.290 nm (0.322 nm) to 0.288 nm (0.314 nm). The orientation of the water dipole in the first solvation shell of Rb$$^+$$ and a central water molecule is sensitive to pressure, but that in the first solvation shell of Cl$$^-$$ does not change very much. The number of contact-ion pairs Rb$$^+$$-Cl$$^-$$ decreases with elevated temperature and increases with elevated pressure. Water molecules are closely packed, and the tetrahedral hydrogen-bonded network of water molecules no longer exists in extreme conditions.

Journal Articles

The $$^{59}$$Fe(n,$$gamma$$)$$^{60}$$Fe cross section from the surrogate ratio method and its effect on the $$^{60}$$Fe nucleosynthesis

Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.

Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10

 Times Cited Count:1 Percentile:8.53(Astronomy & Astrophysics)

Journal Articles

Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect

Kong, L.*; Gong, J.*; Hu, Q.*; Capitani, F.*; Celeste, A.*; Hattori, Takanori; Sano, Asami; Li, N.*; Yang, W.*; Liu, G.*; et al.

Advanced Functional Materials, 31(9), p.2009131_1 - 2009131_12, 2021/02

 Times Cited Count:23 Percentile:80.82(Chemistry, Multidisciplinary)

The soft nature of organic-inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. However, these soft materials meanwhile feature a general characteristic that even a very mild pressure will lead to detrimental lattice distortion and weaken the critical light-matter interaction, thereby triggering the performance degradation. Here, using the methylammonium lead iodide as a representative exploratory platform, we observed the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable.

Oral presentation

Laser electron acceleration in cm-scale capillary-discharge plasma channel

Kameshima, Takashi; Kotaki, Hideyuki; Kando, Masaki; Daito, Izuru; Kawase, Keigo; Fukuda, Yuji; Chen, L. M.*; Homma, Takayuki; Kondo, Shuji; Esirkepov, T. Z.; et al.

no journal, , 

The acceleration method of laser plasma electron acceleration has very strong electric field, however, the acceleration length is veryshort. Hence, the energy gain of electron beams were confined to be approximately 100 MeV. Recently, this problem was solved by using discharge capillary. The feature of plasma was used that high dense plasma has low refractive index. Distributing plasma inside capillary as low dense plasma is in the center of capillary and high dense plasma is in the external side of capillary can make a laser pulse propaget inside capillary with initial focal spot size. Experiments with capillary were performed in China Academy of Engineering Physics (CAEP) and Japan Atomic Energy Agency (JAEA). We obtained the results of 4.4 J laser pulse optical guiding in 4 cm capillary and 0.56 GeV electron production in CAEP in 2006, and 1 J laser pulse optical guiding in 4 cm capillary and electron beams productions.

Oral presentation

Fluid flow and chemical transport in clay-rich media implicated by pore geometry and connectivity

Hu, Q.*; Wang, Q. M.*; Zhao, C.*; Zhang, T.*; Iltaf, H.*; Tachi, Yukio; Fukatsu, Yuta

no journal, , 

Oral presentation

Decimeter-scale laboratory studies of thermal, mechanical, hydrological and chemical processes in near-field systems of generic geological waste repositories

Hu, Q. H.*; Zhang, T.*; Shen, Y. Q.*; Tachi, Yukio; Fukatsu, Yuta; Borglin, S.*; Chang, C.*; Hampton, J.*

no journal, , 

9 (Records 1-9 displayed on this page)
  • 1