Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on piping response under multiple excitations; Triple shaking table test of piping having three-supporting anchors

Watakabe, Tomoyoshi; Kaneko, Naoaki*; Aida, Shigekazu*; Otani, Akihito*; Tsukimori, Kazuyuki; Moriizumi, Makoto; Kitamura, Seiji

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 8 Pages, 2013/08

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many anchors. As the piping is excited by multiple inputs from the supporting anchors during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few tests involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model.

Journal Articles

Study on piping response under multiple excitation; Validation for multiple excitation analysis of piping

Kai, Satoru*; Watakabe, Tomoyoshi; Kaneko, Naoaki*; Tochiki, Kunihiro*; Moriizumi, Makoto; Tsukimori, Kazuyuki

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 10 Pages, 2013/08

The piping in a nuclear power plant is laid across multiple floors of a single building or multiple buildings which support the piping at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, only a few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation tests. This paper reports the validation results of the multiple excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model.

Journal Articles

Behavior of the energy of vibration failure experiment by using a 2-mass system model

Seki, Hajime*; Fujita, Satoshi*; Minagawa, Keisuke*; Kitamura, Seiji; Watakabe, Tomoyoshi

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 8 Pages, 2013/08

When we study the behavior of the pipes during an earthquake, the most important damage doesn't come from the maximal load by itself, but from the accumulation of the fatigue damage caused by the repetition of the cyclic load. Therefore, from the point of view of seismic design evaluation methods, techniques that can quantitatively assess the probability of fatigue failure of mechanical structures are needed. The relationship between failure and energy is evaluated, and examined by focusing on the Energy Balance Method said to be effective as an earthquake response analysis technique in the present. This study carries out failure experiments using 2-mass system model based on Energy Balance Method. Furthermore, we focus on the strain from the vicinity of broken point as local response.

3 (Records 1-3 displayed on this page)
  • 1