Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

MATXS multigroup file problem due to NJOY unresolved resonance processing

Konno, Chikara; Tada, Kenichi; Kwon, Saerom*

Proceedings of 14th International Conference on Radiation Shielding and 21st Topical Meeting of the Radiation Protection and Shielding Division (ICRS-14/RPSD 2022) (Internet), p.440 - 443, 2022/11

Neutron spectra inside a sphere of 1 m in radius, made of one natural isotope with unresolved resonance data, with an isotropic neutron source of 20 MeV at the center were calculated with the ANISN code and JENDL-4.0 MATXS file MATXSLIB-J40. Then unphysical neutron spectra produced in unresolved resonance data processing with the NJOY code were obtained. We examined its reasons and specified that unrealistic cross sections in dips between resonances caused the unphysical neutron spectra. We also demonstrated that this problem was solved by modifying NJOY.

Journal Articles

Influence of differences in model parameters observed in Europe and Japan, on the effective dose predicted by the European model for inhabited areas (ERMIN)

Hirouchi, Jun; Charnock, T.*

Proceedings of 14th International Conference on Radiation Shielding and 21st Topical Meeting of the Radiation Protection and Shielding Division (ICRS-14/RPSD 2022) (Internet), p.195 - 198, 2022/09

ERMIN (EuRopean Model for Inhabited Areas), which was compared and validated with other models by EMRAS II program, is a code that provides a module to two European nuclear accident decision support systems and calculates doses for people in inhabited areas contaminated by radionuclides. Parameters in ERMIN are principally based on observations after the Chernobyl accident. However, these parameters may differ among countries. In order to understand the uncertainty and variability of calculated doses when applying ERMIN elsewhere, it is important to investigate the degree of influence of each parameter on doses. Therefore, in this study, the parameters in Japan obtained by our literature surveys were compared with those used in ERMIN. We calculated doses using the values and uncertainties of those parameters and investigated the differences in doses and the influence of each parameter on doses. The results showed that the retention parameters, soil migration parameters, air exchange rate, and indoor deposition rate have a significant influence on the dose assessment.

Oral presentation

Improved heavy ion inelastic reaction simulation of PHITS by JQMD2.1

Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji*

no journal, , 

For prediction of radiological impact of heavy ions in accelerator facilities, space missions and cancer therapy, nuclear reaction models play a fundamental role. As one of such models, JAERI Quantum molecular dynamics (JQMD) has been successfully used to describe production of residue and secondary particles in nucleus-nucleus collisions. However, it has been pinpointed that JQMD underestimates light clusters such as deuterons and trions. In this study, a new feature called in-flight coalescence, which binds nucleons during time evolution to enhance formation of light cluster, is implemented to the latest version of JQMD and benchmarked against experimental data. The new version JQMD Ver.2.1 reproduced light cluster production at the forward angle without undesired side effects on proton production.

3 (Records 1-3 displayed on this page)
  • 1