Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Axial U(1) symmetry at high temperatures in $$N_f=2+1$$ lattice QCD with chiral fermions

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kanamori, Issaku*; Kaneko, Takashi*; Nakamura, Yoshifumi*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.332_1 - 332_7, 2022/07

The axial U(1) anomaly in high-temperature QCD plays an important role to understand the phase diagram of QCD. The previous works by JLQCD Collaboration studied high-temperature QCD using 2-flavor dynamical chiral fermions such as the domain-wall fermion and reweighted overlap fermion. We extend our simulations to QCD with 2+1-flavor dynamical quarks, where the masses of the up, down, and strange quarks are near the physical point, and the temperatures are close to or higher than the pseudocritical temperature. In this talk, we will present the results for the Dirac spectrum, topological susceptibility, axial U(1) susceptibility, and hadronic collelators.

Journal Articles

What is chiral susceptibility probing?

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.050_1 - 050_9, 2022/07

In the early days of QCD, the axial $$U(1)$$ anomaly was considered as a trigger for the breaking of the $$SU(2)_Ltimes SU(2)_R$$ symmetry through topological excitations of gluon fields. However, it has been a challenge for lattice QCD to quantify the effect. In this work, we simulate QCD at high temperatures with chiral fermions. The exact chiral symmetry enables us to separate the contribution from the axial $$U(1)$$ breaking from others among the susceptibilities in the scalar and pseudoscalar channels. Our result in two-flavor QCD indicates that the chiral susceptibility, which is conventionally used as a probe for $$SU(2)_Ltimes SU(2)_R$$ breaking, is actually dominated by the axial $$U(1)$$ breaking at temperatures $$Tge 165$$ MeV.

2 (Records 1-2 displayed on this page)
  • 1