Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical simulation of oxygen infusion into desaturation resulting from artificial openings in sedimentary formations

Miyakawa, Kazuya; Aoyagi, Kazuhei; Akaki, Toshifumi*; Yamamoto, Hajime*

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.609 - 614, 2021/01

Desaturation is expected due to excavation of an underground repository, especially in the newly created fractures zone (EDZ). During the construction and operation of facilities, the air in the gallery infuses into the rock around the gallery though the excavation affected area and causes oxidation of host rock and groundwater, which increase nuclide mobilities. In the Horonobe underground research laboratory (HURL), which is excavated in the Neogene sedimentary formations, no pyrite dissolution or precipitation of calcium sulfates was found from the cores drilled in the rock around the gallery. The reason for no oxidation is estimated that the release of dissolved gases from groundwater due to pressure decrease flows against the air infusion. In this research, the mechanism of O$$_{2}$$ intrusion into the rock was investigated by numerical multiphase flow simulation considering advection and diffusion of groundwater and gases. In the simulation, only Darcy's and Henry's laws were considered, that is, chemical reaction related to oxidation was not handled. The effects of dissolved gas and rock permeability on O$$_{2}$$ infusion into the rock were almost identical. Decreasing humidity with relatively low permeability leads to extensive accumulation of O$$_{2}$$ into the EDZ even though with a relatively large amount of dissolved gas. In the HURL, the shotcrete attenuates O$$_{2}$$ concentration and keeps 100% humidity at the boundary of the gallery wall, which inhibits O$$_{2}$$ infusion. Without the shotcrete, humidity at the gallery wall decreases according to seasonal changes and ventilation, which promotes O$$_{2}$$ intrusion into the EDZ but the chemical reaction related to O$$_{2}$$ buffering such as pyrite oxidation consumes O$$_{2}$$.

Journal Articles

Tunnel excavation analysis of siliceous mudstone using a damage model

Mishima, Seiki*; Ogata, Sho*; Inui, Toru*; Yasuhara, Hideaki*; Kishida, Kiyoshi*; Aoyagi, Kazuhei

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.215 - 220, 2021/01

When the durability of the geological repository of high-level radioactive waste is evaluated, understanding the cracking behavior within the crystalline/sedimentary rocks during excavation of waste disposal cavities is important. In this study, we performed a numerical analysis that expressed the tunnel excavation carried out 350 m underground at the Horonobe Underground Research Center of the Japan Atomic Energy Agency. Simulated results are agreement with actual trends of fracture propagation, and the measured horizontal convergence of the tunnel was reproduced by the numerical analysis relatively well.

Journal Articles

Evaluation of acoustic anisotropy of granite by surface wave measurements

Okano, Aoi*; Kimoto, Kazushi*; Matsui, Hiroya

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.633 - 636, 2021/01

This study evaluates the acoustic anisotropy of granite using surface waves. It is well-known that granite shows acoustic anisotropy due to preferentially oriented microcracks. Therefore it may be possible to gain information on the microcracks from the measurement of the acoustic anisotropy. In the conventional rock core elastic wave test, acoustic anisotropy has been evaluated by the ultrasonic transmission test. However, it is difficult to apply this method to field measurement and irregularly-shaped specimens. Therefore, in this study, we attempted to evaluate the acoustic anisotropy of granite using surface waves. By this method, the acoustic anisotropy was evaluated based on the changes in the surface wave amplitude, velocity, and frequency when the transmission direction was varied stepwise at a constant angle. As a result, the proposed surface wave technique evaluated acoustic anisotropy successfully. Furthermore, it was found that the acoustic anisotropy emerges because the microcracks change the apparent rigidity of the granite specimen.

Journal Articles

Permeability measurement for macro-fractured Horonobe mudstone

Kamata, Kento*; Nara, Yoshitaka*; Matsui, Hiroya; Ozaki, Yusuke

Dai-15-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), p.205 - 209, 2021/01

When considering the projects such as radioactive waste disposal, it is important to evaluate the confinement performance of underground substances in rock mass. However, the change in permeability of macro-fractured mudstone has not been sufficiently studied. Therefore, in this study, we investigated its effect on permeability by introducing a macro-fracture into a cylindrical specimen of mudstone distributed in the Horonobe area, Hokkaido. First, the hydraulic conductivity was measured by subjecting a specimen with a macro-fracture introduced by a brazilian test to a falling head permeability test. After that, it was compared with the hydraulic conductivity of the intact specimen measured by the transient pulse method. As a result, it was confirmed that the hydraulic conductivity was increased by about one order due to the introduction of macro-fracture. The increase rate of hydraulic conductivity obtained from the results of this research was smaller than that of previous researches using granite and basalt.

4 (Records 1-4 displayed on this page)
  • 1