Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 48932

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermodynamic study of the complexation of humic acid by calorimetry

Kimuro, Shingo; Kirishima, Akira*; Kitatsuji, Yoshihiro; Miyakawa, Kazuya; Akiyama, Daisuke*; Sato, Nobuaki*

Journal of Chemical Thermodynamics, 132, p.352 - 362, 2019/05

A combination of potentiometry and calorimetry was used for the determination of the thermodynamic quantities of complexation of generic and groundwater humic acid (HA), which was isolated from deep groundwater at Horonobe, Hokkaido, Japan, with copper (II) ions and uranyl (VI) ions. The apparent complexation constant of Horonobe HA was independent of the pH, whereas that of generic HA was dependent on the pH. This observation indicates that the polyelectrolyte effect of Horonobe HA is negligible because of its small molecular size. In addition, the effect of the heterogeneity of Horonobe HA was not significant. Moreover, the complexation enthalpy of Horonobe HA was consistent with that of homogeneous poly(acrylic acid), which means the complexation of Horonobe HA was not affected by the functional group heterogeneity . Consequently, the characteristic complexation mechanism of Horonobe HA was revealed based on the determined thermodynamic quantities.

Journal Articles

Development of clearance verification equipment for uranium-bearing waste

Yokoyama, Kaoru; Ohashi, Yusuke

Applied Radiation and Isotopes, 145, p.19 - 23, 2019/03

Dismantled materials generated from nuclear facilities are reused or directed to repository sites. If scrap metals with complicated shapes can be cleared, the amounts of radioactive waste can be reduced. A clearance verification system is constructed to determine the amount of uranium in decontaminated metals in a drum using the 1.001 MeV gamma rays of $$^{234m}$$Pa, produced in the decay of $$^{238}$$U. The experimental study with simulated waste drums demonstrated that the quantification errors of uranium fall within 25 % for 0.5 g of uranium.

Journal Articles

The Threats of nuclear and radiological terrorism, and their countermeasures

Naoi, Yosuke

Gekkan Chian Foramu, 25(3), p.51 - 59, 2019/03

This reports describes the status quo of the nuclear and radiological terrorism around the world based on the cases that have actually occurred in the past, and summarizes how nuclear terrorism should be prevented, what should be done in order to internationally enhance nuclear security, and what countermeasures are to be actually taken in the international society.

Journal Articles

Fukushima $$^{137}$$Cs releases dispersion modelling over the Pacific Ocean; Comparisons of models with water, sediment and biota data

Peri$'a$$~n$ez, R.*; Bezhenar, R.*; Brovchenko, I.*; Jung, K. T.*; Kamidaira, Yuki; Kim, K. O.*; Kobayashi, Takuya; Liptak, L.*; Maderich, V.*; Min, B. I.*; et al.

Journal of Environmental Radioactivity, 198, p.50 - 63, 2019/03

A number of marine radionuclide dispersion models were applied to simulate $$^{137}$$Cs releases from Fukushima Daiichi Nuclear Power Plant accident in 2011 over the northwest Pacific. Simulations extended over two years and both direct releases into the ocean and deposition of atmospheric releases on the ocean surface were considered. Dispersion models included an embedded biological uptake model (BUM). Three types of BUMs were used: equilibrium, dynamic and allometric. Model results were compared with $$^{137}$$Cs measurements in water, sediment and biota. A reasonable agreement in model/model and model/data comparisons was obtained.

Journal Articles

Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere; Extension of WASAVIES to earth orbit

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Miyoshi, Yoshizumi*; Ueno, Haruka*; Nagamatsu, Aiko*

Journal of Space Weather and Space Climate (Internet), 9, p.A9_1 - A9_11, 2019/03

Real-time estimation of astronaut doses during solar particle events (SPE) is one of the most challenging tasks in cosmic-ray dosimetry. We therefore develop a new computational method that can nowcast the solar energetic particle (SEP) as well as galactic cosmic-ray (GCR) fluxes on any Earth orbit during a large SPE associating with ground level enhancement. It is an extended version of WArning System for AVIation Exposure to Solar Energetic Particle, WASAVIES. The extended version, called WASAVIES-EO, can calculate the GCR and SEP fluxes outside a satellite based on its two-line element data. Moreover, organ dose and dose-equivalent rates of astronauts in the International Space Station (ISS) can be estimated using the system, considering its shielding effect. The accuracy of WASAVIES-EO was validated based on the dose rates measured in ISS, as well as based on high-energy proton fluxes observed by POES satellites.

Journal Articles

Electronic structure in heavy fermion compound UPd$$_2$$Al$$_3$$ through directional Compton profile measurement

Koizumi, Akihisa*; Kubo, Yasunori*; Yamamoto, Etsuji; Haga, Yoshinori; Sakurai, Yoshiharu*

Journal of the Physical Society of Japan, 88(3), p.034714_1 - 034714_6, 2019/03

Journal Articles

Development of fabrication technology for oxidation-resistant fuel elements for high-temperature gas-cooled reactors

Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio

Nippon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03

Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O$$_{2}$$ at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.

Journal Articles

Study of an HTGR and renewable energy hybrid system for grid stability

Sato, Hiroyuki; Yan, X.

Nuclear Engineering and Design, 343, p.178 - 186, 2019/03

A hybrid system combining HTGR and renewable energy is investigated to compensate intermittent renewable energy power generation. A new proposal of using the inventory and bypass control devices already built in the gas turbine, is found to be effective to compensate hourly to daily variation of renewable energy. The reactor thermal power remains at constant full power while the heat output is increased or decreased subject to the need of reactor power generation. On the other hand, the massive heat capacity in the graphite core is shown to be sufficient to compensate renewable energy on a time scale of seconds to minutes and up to about 20% of the rated power output of the nuclear plant. Similarly, no additional control devices are required to perform this control operation. These findings demonstrate the technical and economic potential of the HTGR system to maintain the stability of a grid being incorporated with significant portfolios of renewable energy power generation.

Journal Articles

The Effects of plutonium content and self-irradiation on thermal conductivity of mixed oxide fuel

Ikusawa, Yoshihisa; Morimoto, Kyoichi; Kato, Masato; Saito, Kosuke; Uno, Masayoshi*

Nuclear Technology, 205(3), p.474 - 485, 2019/03

This study evaluated the effects of plutonium content and self-irradiation on the thermal conductivity of mixed-oxide (MOX) fuel. Samples of UO$$_{2}$$ fuel and various MOX fuels were tested. The MOX fuels had a range of plutonium contents, and some samples were stored for 20 years. The thermal conductivity of these samples was determined from thermal diffusivity measurements taken via laser flash analysis. Although the thermal conductivity decreased with increasing plutonium content, this effect was slight. The effect of self-irradiation was investigated using the stored samples. The reduction in thermal conductivity caused by self-irradiation depended on the plutonium content, its isotopic composition, and storage time. The reduction in thermal conductivity over 20 years' storage can be predicted from the change of lattice parameter. In addition, the decrease in thermal conductivity caused by self-irradiation was recovered with heat treatment, and recovered almost completely at temperatures over 1200 K. From these evaluation results, we formulated an equation for thermal conductivity that is based on the classical phonon-transport model. This equation can predict the thermal conductivity of MOX fuel thermal conductivity by accounting for the influences of plutonium content and self-irradiation.

Journal Articles

Study on use of superconducting magnet and first inelastic neutron scattering experiment under magnetic field at 4SEASONS spectrometer

Kajimoto, Ryoichi; Ishikado, Motoyuki*; Kira, Hiroshi*; Kaneko, Koji; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Inamura, Yasuhiro; Ikeuchi, Kazuhiko*; Iida, Kazuki*; Murai, Naoki; et al.

Physica B; Condensed Matter, 556, p.26 - 30, 2019/03

Journal Articles

Hadronic Paschen-Back effect

Iwasaki, Sachio; Oka, Makoto; Suzuki, Kei*; Yoshida, Tetsuya*

Physics Letters B, 790, p.71 - 76, 2019/03

We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rate. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.

Journal Articles

Observation of the competing fission modes in $$^{178}$$Pt

Tsekhanovich, I.*; Andreyev, A.; Nishio, Katsuhisa; Denis-Petit, D.*; Hirose, Kentaro; Makii, Hiroyuki; Matheson, Z.*; Morimoto, Koji*; Morita, Kosuke*; Nazarewicz, W.*; et al.

Physics Letters B, 790, p.583 - 588, 2019/03

Journal Articles

Status of JMTR decommissioning plan formulation, 2

Otsuka, Kaoru; Ide, Hiroshi; Nagata, Hiroshi; Oomori, Takazumi; Seki, Misaki; Hanakawa, Hiroki; Nemoto, Hiroyoshi; Watanabe, Masao; Iimura, Koichi; Tsuchiya, Kunihiko; et al.

UTNL-R-0499, p.12_1 - 12_8, 2019/03

no abstracts in English

Journal Articles

Determination of $$^{107}$$Pd in Pd purified by selective precipitation from spent nuclear fuel by laser ablation ICP-MS

Asai, Shiho; Ohata, Masaki*; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical and Bioanalytical Chemistry, 411(5), p.973 - 983, 2019/02

Determination of radiopalladium $$^{107}$$Pd is required for ensuring the radiation safety of Pd extracted from spent nuclear fuel for recycling or disposal. We employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to simplify an analytical procedure of $$^{107}$$Pd. Pd was separated through selective Pd precipitation reaction from spent nuclear fuel. Laser ablation allows direct measurement of the Pd precipitates, skipping the dissolution and dilution procedure. In this study, $$^{102}$$Pd in natural Pd standard solution was used as an internal standard, taking advantage of its absence in spent nuclear fuel. The Pd precipitate was uniformly embedded on the surface of the centrifugal filter, forming a microscopically thin flat surface of Pd. The resulting homogeneous Pd layer is suitable for obtaining a stable signal ratio of $$^{107}$$Pd/$$^{102}$$Pd. The amount of $$^{107}$$Pd obtained by LA-ICP-MS corresponds to the values obtained by conventional solution nebulization measurement.

Journal Articles

Assessment of the potential for criticality in the far field of a used nuclear fuel repository

Atz, M.*; Salazar, A.*; Hirano, Fumio; Fratoni, M.*; Ahn, J.*

Annals of Nuclear Energy, 124, p.28 - 38, 2019/02

The likelihood for criticality in the far field of a repository was evaluated for direct disposal of commercial light water reactor used nuclear fuel. Two models were used in combination for this evaluation: (1) a neutronics model to estimate the minimum critical masses of spherical, water-saturated depositions of fuel material; (2) a transport model to simulate the dissolution of fuel material from multiple canisters and the subsequent transport of the solutes through host rock to a single accumulation location. The results suggest that accumulation of a critical mass is possible under conservative conditions but that these conditions are unlikely to occur, especially in the vicinity of a carefully-arranged repository.

Journal Articles

3D-microstructure analysis of compacted Na- and Cs-montmorillonites with nanofocus X-ray computed tomography and correlation with macroscopic transport properties

Takahashi, Hiroaki*; Tachi, Yukio

Applied Clay Science, 168, p.211 - 222, 2019/02

Microstructural and mass transport properties of compacted Na- and Cs-montmorillonites with different swelling properties were investigated by combining 3D microstructure analysis using nanofocus X-ray CT and diffusion measurement of HDO. The X-ray CT observations indicated that macropores in the dry state of compacted Na-montmorillonite are filled with gel phases, and the grain sizes of clay particles shifted toward smaller values through the saturation and swelling processes. By contrast, no gel phase and no decrease in the grain and pore volumes were observed for saturated Cs-montmorillonite. The geometrical factors of the macropores including tortuosity and geometric constrictivity of saturated Cs-montmorillonite determined by the X-ray CT was consistent with the corresponding values derived in the HDO diffusion test. In the case of Na-montmorillonite, the larger differences between the geometric factors evaluated by the X-ray CT and the diffusion tests can be explained by the electrostatic constrictivity factor and the additional geometrical factors in gel phase and interlayer that are smaller than the detection limit of the X-ray CT.

Journal Articles

A Quasiclassical trajectory calculation to compute the reaction cross section and thermal rate constant for the cesium exchange reaction $$^{133}$$CsI + $$^{135}$$Cs $$rightarrow$$ $$^{133}$$Cs + I$$^{135}$$Cs

Kobayashi, Takanori*; Matsuoka, Leo*; Yokoyama, Keiichi

Computational and Theoretical Chemistry, 1150, p.40 - 48, 2019/02

One of important research targets in the development of cesium isotope separation system is design of recovery process of cesium atom. Relevant to this research target, the reaction cross section and reaction rate constant of a cesium exchange reaction through collision of the cesium iodide molecules with cesium atoms are calculated by a quasi-classical trajectory calculation based on a potential energy surface obtained by quantum chemistry calculations. Consequently, the rate constant is calculated to be 3.6 $$times$$ 10$$^{-10}$$ cm$$^{3}$$molecule$$^{-1}$$s$$^{-1}$$, as large as collision rate in the present condition. In addition, slightly positive temperature dependence is observed in the rate constant. This behavior is explained with the long-range attractive force and effect of subsequent dissociation process.

Journal Articles

Implementation of a gyrokinetic collision operator with an implicit time integration scheme and its computational performance

Maeyama, Shinya*; Watanabe, Tomohiko*; Idomura, Yasuhiro; Nakata, Motoki*; Nunami, Masanori*

Computer Physics Communications, 235, p.9 - 15, 2019/02

 Percentile:100(Computer Science, Interdisciplinary Applications)

We have implemented the Sugama collision operator in the gyrokinetic Vlasov simulation code, GKV, with an implicit time-integration scheme. The new method is versatile and independent of the details of the linearized collision operator, by means of an operator splitting, an implicit time integrator, and an iterative Krylov subspace solver. Numerical tests demonstrate stable computation over the time step size restricted by the collision term. An efficient implementation for parallel computation on distributed memory systems is realized by using the data transpose communication, which makes the iterative solver free from inter-node communications during iteration. Consequently, the present approach achieves enhancement of computational efficiency and reduction of computational time to solution simultaneously, and significantly accelerates the total performance of the application.

Journal Articles

Ion hydration and association in an aqueous calcium chloride solution in the GPa range

Yamaguchi, Toshio*; Nishino, Masaaki*; Yoshida, Koji*; Takumi, Masaharu*; Nagata, Kiyofumi*; Hattori, Takanori

European Journal of Inorganic Chemistry, 2019(8), p.1170 - 1177, 2019/02

Neutron diffraction measurements of an aqueous 2 mol dm$$^{-3}$$ CaCl$$_2$$ solutions in D$$_{2}$$O have been made at 1 GPa, 298 K as well as 0.1 MPa, 298 K. The experimental structure factors are subjected to Empirical Potential Structure Refinement (EPSR) modeling to reveal the ion hydration and association and solvent water at the atomic level. About seven water molecules surround Ca$$^{2+}$$ at the Ca-O and Ca-D distances of 2.44$AA$ $$ and 3.70$AA$ $$, respectively, at both pressures, suggesting no significant pressure effect on the cation hydration. On the other hand, the Cl$$^{-}$$ ion shows a drastic change in water oxygen coordination from 7 at 0.1 MPa to 14 at 1 GPa, accompanied by shortening of Cl-O distance from 3.18$AA$ $$ to 3.15$AA$ $$. However, the number of water hydrogen atoms around Cl$$^{-}$$ does not change significantly as 6.0~6.7 with shortening Cl-D distance from 2.22 to 2.18 $AA$ $$ on compression. The pressure effect on the solvent water structure is also drastic as an increase in water oxygen atoms of 4.7 at the O-O distance of 2.79 $AA$ $$ at 0.1 MPa to 10.3 at 2.85 $AA$ $$ at 1 GPa. The number of water hydrogen atoms, however, does not change as 1.2 at the O-D distance of 1.74 $AA$ $$ for both pressures, demonstrating the presence of the O$$cdots$$D hydrogen bonds which are significantly bent at 1 GPa at 298 K. This change of hydrogen bonds in water with pressure probably causes the drastic increase in water oxygen atoms around Cl$$^{-}$$.

Journal Articles

Population of nuclides with Z$$ge$$98 in multi-nucleon transfer reactions of $$^{48}$$Ca+$$^{248}$$Cm

Devaraja, H. M.*; Heinz, S.*; Beliuskina, O.*; Hofmann, S.*; Hornung, C.*; M$"u$nzenberg, G.*; Ackermann, D.*; Gupta, M.*; Gambhir, Y. K.*; Henderson, R. A.*; et al.

European Physical Journal A, 55(2), p.25_1 - 25_9, 2019/02

48932 (Records 1-20 displayed on this page)