Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron/$$gamma$$-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF(Ce) in a $$gamma$$-ray field

Kaburagi, Masaaki; Shimazoe, Kenji*; Terasaka, Yuta; Tomita, Hideki*; Yoshihashi, Sachiko*; Yamazaki, Atsushi*; Uritani, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1046, p.167636_1 - 167636_8, 2023/01

 Times Cited Count:3 Percentile:92.52(Instruments & Instrumentation)

We focus on the thickness and property controls of inorganic scintillators used for thermal neutron detection in intense $$gamma$$-ray fields without considering pulse shape discrimination techniques. GS20$$^{rm{TM}}$$ (a lithium glass) and LiCaAlF$$_6$$:Ce(LiCAF:Ce) cintillators with thicknesses of 0.5 and 1.0 mm, respectively, have been employed. Pulse signals generated by photomultiplier tubes, to which the scintillators were coupled, were inserted into a digital pulse processing unit with 1 Gsps, and the areas of waveforms were integrated for 360 ns. In a $$^{60}$$Co $$gamma$$-ray field, the neutron detection for GS20$$^{rm{TM}}$$ with a 0.5-mm thickness was possible at dose rates of up to 0.919 Gy/h; however, for LiCAF:Ce, neutron detection was possible at 0.473 Gy/h, and it failed at 0.709 Gy/h. Threfore, in a $$^{60}$$Co $$gamma$$-ray field, the neutron/$$gamma$$-ray discrimination of GS20$$^{rm{TM}}$$ was better than that of LiCAF:Ce due to its better energy resolution and higher detection efficiency.

Journal Articles

Development of the multi-cubic $$gamma$$-ray spectrometer and its performance under intense $$^{137}$$Cs and $$^{60}$$Co radiation fields

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1010, p.165544_1 - 165544_9, 2021/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The number of nuclear facilities being decommissioned has been increasing worldwide, in particular following the accident of the Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station in 2011. In these nuclear facilities, proper management of radioactive materials is required. Then, A $$gamma$$-ray spectrometer with four segmentations using small volume CeBr$$_{3}$$ scintillators with a dimension of $$5 times 5 times 5$$ $$rm{mm}^3$$ was developed. The four scintillators were coupled to a multi-anode photomultiplier tube specific to intense radiation fields. We performed the $$gamma$$-ray exposure study under $$^{137}$$Cs and $$^{60}$$Co radiation fields. Under the $$^{137}$$Cs radiation field, the relative energy resolution at 1375 mSv/h was the relative energy resolution at 1375 mSv/h was 9.2$$pm$$0.05%, 8.0$$pm$$0.08%, 8.0$$pm$$0.03%, and 9.0$$pm$$0.04% for the four channels, respectively.

Journal Articles

Gamma-ray spectroscopy with a CeBr$$_3$$ scintillator under intense $$gamma$$-ray fields for nuclear decommissioning

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 988, p.164900_1 - 164900_8, 2021/02

 Times Cited Count:11 Percentile:87.8(Instruments & Instrumentation)

An increasing number of nuclear facilities have been decommissioned worldwide following the 2011 accident of the TEPCO' Fukushima Daiichi Nuclear Power Station. During the decommissioning, radioactive materials have to be retrieved under proper management. In this study, a small cubic CeBr$$_3$$ spectrometer with dimensions of 5 mm $$times$$ 5 mm $$times$$ 5 mm was manufactured to perform $$gamma$$-ray spectroscopy under intense $$gamma$$-ray fields. Furthermore, thanks to a fast digital process unit and a customized photomultiplier, the device could perform $$gamma$$-ray spectroscopy at dose rates of over 1 Sv/h. The energy resolution (FWHM) at 662 keV ranged from 4.4% at 22 mSv/h to 5.2% at 1407 mSv/h for a $$^{137}$$Cs radiation field. Correspondingly, at 1333 keV, it ranged from 3.1% at 26 mSv/h to 4.2% at 2221 mSv/h for a $$^{60}$$Co radiation field, which suggested to realize $$gamma$$-ray assessment of $$^{134}$$Cs, $$^{137}$$Cs, $$^{60}$$Co, and $$^{154}$$Eu at dose rates of over 1 Sv/h.

Journal Articles

Characterization and performance study of high-dose $$^{60}$$Co $$gamma$$-ray calibration laboratory for radiation processing

Tachibana, Hiroyuki; Kojima, Takuji; ; ; Yotsumoto, Keiichi; Tanaka, Ryuichi

Radioisotopes, 48(4), p.247 - 256, 1999/04

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1