Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Detection of Simulated Fukushima Daiichi Fuel Debris Using a Remotely Operated Vehicle at the Naraha Test Facility

Nancekievill, M.*; Espinosa, J.*; Watson, S.*; Lennox, B.*; Jones, A.*; Joyce, M. J.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; et al.

Sensors (Internet), 19(20), p.4602_1 - 4602_16, 2019/10

 Times Cited Count:8 Percentile:46.59(Chemistry, Analytical)

In order to contribute to fuel debris search at the Fukushima Daiichi Nuclear Power Station, we developed a system to search for submerged fuel debris by mounting a sonar on the remotely operated vehicle (ROV). The system can obtain 3D images of submerged fuel debris in real time by using the positioning system, depth sensor, and collected sonar data. As a demonstration test, a simulated fuel debris was installed at the bottom of the water tank facility at the Naraha Center for Remote Control Technology Development, and a 3D image was successfully obtained.

Oral presentation

Technology development to evaluate dose rate distribution and to search for fuel debris submerged in water for decommissioning of Fukushima Daiichi Nuclear Power Station, 9; Tank tests of ROVs to map the debris in the primary containment vessel

Kamada, So*; Kato, Michio*; Nishimura, Kazuya*; Nancekievill, M.*; Jones, A. R.*; Lennox, B.*; Joyce, M. J.*; Okumura, Keisuke; Katakura, Junichi*

no journal, , 

As a part of technology development related to fuel debris exploration technology in the reactor containment vessel, demonstration tests of an remotely operated vehicle (ROV) for investigating the distribution and surface condition of submerged fuel debris were carried out by using the test water tank of Naraha Remote Technology Development Center of Japan Atomic Energy Agency and using the TRIGA Mark II research reactor of Jozef Stefan Institute of Slovenia. In the demonstration test, we confirmed the cooperation with the acoustic exploration device, the performance of the ROV positioning system, the operation in the reactor pool, and showed that it is possible to display 3D image of the shape of simulated fuel debris.

2 (Records 1-2 displayed on this page)
  • 1