Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Influences of the ZrC coating process and heat treatment on ZrC-coated kernels used as fuel in Pu-burner high temperature gas-cooled reactor in Japan

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Journal of Nuclear Science and Technology, 58(1), p.107 - 116, 2021/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The concept of a Pu-burner high temperature gas-cooled reactor (HTGR) has been proposed for purpose of more safely reducing amount of recovered Pu. This concept employs coated fuel particles (CFPs) with ZrC coated PuO$$_{2}$$-YSZ kernel and with tristructural (TRISO) coating for very high Pu burn-up and high nuclear proliferation resistance. In this report, we investigate the microstructure of the region that includes the surface of an as-fabricated CeO$$_{2}$$-YSZ kernel simulating PuO$$_{2}$$-YSZ kernel. We found both Zr-rich grains and Ce-rich grains to be densely distributed in that region including surface of CeO$$_{2}$$-YSZ kernel. On the other hand, it has been reported that there was a porous region near surface of the CeO$$_{2}$$-YSZ kernel of Batch I. This finding confirms that Ce-rich grains near surface of CeO$$_{2}$$-YSZ kernels coated with ZrC layers have been corroded during the deposition of the ZrC layer, whereas the Zr-rich grains were hardly affected.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Development of fabrication and inspection technologies for oxidation-resistant fuel element for high-temperature gas-cooled reactors

Aihara, Jun; Yasuda, Atsushi*; Ueta, Shohei; Ogawa, Hiroaki; Honda, Masaki*; Ohira, Koichi*; Tachibana, Yukio

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(4), p.237 - 245, 2019/12

Development of fabrication and inspection technologies of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors (HTGRs) in severe oxidation accident was carried out. Simulated coated fuel particles (CFPs), alumina particles, were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter simulated oxidation resistant fuel elements with SiC/C mixed matrix. Simulated oxidation resistant fuel elements with matrix whose Si/C mole ratio is 1.00 were fabricated. Failure fraction of CFPs in fuel elements is one of very important inspection subjects of HTGR fuel. It is essential that CFPs are extracted from fuel elements without additional failure. Development of method for extraction of CFPs was carried out. Desolation of SiC by KOH method or pressurized acidolysis method should be applied to extraction of CFPs.

Journal Articles

Microstructures of ZrC coated kernels for fuel of Pu-burner high temperature gas-cooled reactor in Japan

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Journal of Nuclear Materials, 522, p.32 - 40, 2019/08

 Times Cited Count:3 Percentile:31.36(Materials Science, Multidisciplinary)

In order to realize Pu-burner high temperature gas-cooled reactor (HTGR), coated fuel particles (CFPs) with PuO$$_{2}$$-yittria stabilized zirconia (YSZ) fuel kernel coated with ZrC is employed for high nuclear proliferation resistance and very high burn-up. Japan Atomic Energy Agency (JAEA) have carried out ZrC coatings of particles which simulated PuO$$_{2}$$-YSZ kernels (CeO$$_{2}$$-YSZ particles or commercially available YSZ particles). Ce was used as simulating element of Pu. In this manuscript, microstructures of ZrC coated CeO$$_{2}$$-YSZ or YSZ particles were reported.

Journal Articles

Development of fabrication technology for oxidation-resistant fuel elements for high-temperature gas-cooled reactors

Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03

Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O$$_{2}$$ at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

Journal Articles

Development plan of high burnup fuel for high temperature gas-cooled reactors in future

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Blynskiy, P.*; Gizatulin, S.*; Sakaba, Nariaki; Tachibana, Yukio

Journal of Nuclear Science and Technology, 51(11-12), p.1355 - 1363, 2014/11

 Times Cited Count:10 Percentile:60.73(Nuclear Science & Technology)

Plan and status of research and development (R&D) were described on coated fuel particle (CFP) and fuel compacts for core of small sized high temperature gas-cooled reactor (HTGR) HTR50S at 2nd step of phase I (second core of HTR50S). Specifications of existing CFPs for high burnup (HTR50S2-type-CFPs) were adopted as specifications of CFPs, to reduce the R&D. HTR50S2-type-CFPs were fabricated based on technology developed in High Temperature Engineering Test Reactor (HTTR) project. First irradiation test of HTR50S2-type-CFPs is now being carried out. In addition, R&D for fuel compact with high packing fraction is needed, because volume fraction of fuel kernel to whole of HTR50S2-type-CFP is rather smaller than that of the HTTR-type-CFP. In addition, we describe outline of R&D plans for core of HTR50S in phase II and naturally safe HTGR.

Journal Articles

Fuel performance under continuous high-temperature operation of the HTTR

Ueta, Shohei; Aihara, Jun; Sakaba, Nariaki; Honda, Masaki*; Furihata, Noboru*; Sawa, Kazuhiro

Journal of Nuclear Science and Technology, 51(11-12), p.1345 - 1354, 2014/11

 Times Cited Count:9 Percentile:57.01(Nuclear Science & Technology)

Although the HTTR fuel was the first mass-produced HTGR fuel in Japan, it has been fabricated with the highest quality in the world on the basis of design principle and safety criteria to minimize both as-fabricated failure and on-operating-additional failure of the coated fuel particle. A precise technology for evaluating irradiation performance of the HTTR fuel has been developed by measuring fission gases released from fuel and constructing the fission gas release model. Through the HTTR operations including the continuous high temperature operation with 950 $$^{circ}$$C and 50 days, the measured fractional release of fission gas from fuel resulted less than 1.2 $$times$$ 10$$^{-8}$$, and a superior irradiation performance of Japanese HTGR fuel has been demonstrated. The HTTR fuel technologies could make a prospect for realization of the practical HTGR as well as the VHTR as a Generation IV nuclear power plant before the rest of the world.

Journal Articles

Irradiation performance of HTGR fuel in WWR-K research reactor

Ueta, Shohei; Shaimerdenov, A.*; Gizatulin, S.*; Chekushina, L.*; Honda, Masaki*; Takahashi, Masashi*; Kitagawa, Kenichi*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10

A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO$$_{2}$$ (less than 10% of $$^{235}$$U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel.

Journal Articles

Development of high temperature gas-cooled reactor (HTGR) fuel in Japan

Ueta, Shohei; Aihara, Jun; Sawa, Kazuhiro; Yasuda, Atsushi*; Honda, Masaki*; Furihata, Noboru*

Progress in Nuclear Energy, 53(7), p.788 - 793, 2011/09

 Times Cited Count:27 Percentile:87.9(Nuclear Science & Technology)

In Japan, high temperature gas-cooled reactor (HTGR) fuel fabrication technologies have been developed by Nuclear Fuel Industries, Ltd. (NFI) with the collaboration of JAEA through the HTTR project since 1960's. NFI successfully fabricated first and second loading fuel (0.9 tU each) for the HTTR of JAEA. Its excellent quality was confirmed from the first loading fuel through the long-termed high temperature operation by the end of March 2010. Based on the HTTR fuel technologies, silicon carbide (SiC) coated fuel is being developed for burn-up extension. For an advanced fuel designs, replacement of the SiC layer by a zirconium carbide (ZrC) layer is a very promising example. JAEA has performed ZrC coating tests to investigate the influence of coating parameters and material properties such as stoichiometry and density of ZrC.

Journal Articles

Development of high temperature gas-cooled reactor fuel for extended burnup

Ueta, Shohei; Aihara, Jun; Honda, Masaki*; Furihata, Noboru*; Sawa, Kazuhiro

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 2 Pages, 2010/05

Very High Temperature Reactor (VHTR) fuel is required to have excellent safety performance up to burnups of about 15 to 20% fissions per initial metal atom (FIMA), how are higher than the design of the Japanese HTTR fuel, 3.6% FIMA. In order to keep the integrity of TRISO fuel against the internal pressure increasing according to burnup, the SiC and the buffer layers should be designed to be thick, enough to increase the mechanical strength and to moderate the internal pressure in TRISO fuel, respectively. So far JAEA developed so-called extended burnup fuels whose target burnup was higher than those of the HTTR, and confirmed their performance by irradiation tests up to 9% FIMA. In this R&D, the new TRISO fuel designed for further extended burnup were fabricated. Indicated by the sphericity of the particle and so on, the quality of the new fuel resulted better than the past fuel for extended burnup.

JAEA Reports

None

Honda, Masaki*; *; *; *; *

JNC TJ8440 99-005, 244 Pages, 1999/03

JNC-TJ8440-99-005.pdf:21.82MB

no abstracts in English

Oral presentation

Fabrication and irradiation of high temperature gas-cooled reactor fuels

Honda, Masaki*; Sawa, Kazuhiro

no journal, , 

Japan can provide high quality fuel for high temperature-gas cooled reactors in commercial scale. Fabrication technologies, irradiation performance and irradiation test plan are introduced.

Oral presentation

Conceptual design study of small-sized high temperature gas-cooled reactor for developing countries, 3; Fuel design

Ueta, Shohei; Aihara, Jun; Mizutani, Yoshitaka; Ohashi, Hirofumi; Sakaba, Nariaki; Tachibana, Yukio; Honda, Masaki*; Tanaka, Hideki*; Furihata, Noboru*

no journal, , 

In the small-sized high temperature gas-cooled reactor, the improved fuel of which the burnup is designed over 100 GWd/t is used in order to upgrade economy and to decrease radioactive waste. On the other hand, to attain over three times higher burnup than that of a conventional HTTR fuel, 33 GWd/t, researches and developments of the fuel should be needed with regards to the design preventing the fuel from the failure by internal pressure due to gases in the coated fuel particle, the technologies for fabrication of the improved fuel, and the irradiation test to confirm its integrity under the irradiation. A design work, fabrication tests and a plan of the irradiation test for the improved fuel in order to demonstrate the performance are reported.

Oral presentation

Collaboration with Republic of Kazakhstan regarding development of HTGR, 2; Collaboration of irradiation performance of HTGR fuel

Ueta, Shohei; Mizutani, Yoshitaka; Sakaba, Nariaki; Furihata, Noboru*; Honda, Masaki*; Asset, S.*; Gizatulin, S.*; Chakrov, P.*

no journal, , 

A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel by WWR-K in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) is being carried out. The HTGR fuel specimens were newly designed at the target burnup of 100 GWd/t. A plan of the irradiation test and results on evaluation of the integrity of the HTGR fuel specimen based on fission gas (FP) release rate under the irradiation are reported.

Oral presentation

Study on a fabrication method of nitride fuels for MA transmutation via precursor carbon containing nitrate gel-spheres produced by a wet process using a dehydration reaction

Mizutani, Yoshitaka*; Honda, Masaki*; Nishi, Tsuyoshi*; Hayashi, Hirokazu

no journal, , 

no abstracts in English

Oral presentation

Characterization of fuel debris (27'A), 3; Mechanical properties of (U,Zr)O$$_{2}$$ solid solutions added stabilizing compounds for ZrO$$_{2}$$

Ikeuchi, Hirotomo; Yano, Kimihiko; Ogino, Hideki; Saiki, Yohei*; Honda, Masaki*; Kinoshita, Hideaki*; Muta, Hiroaki*; Yamanaka, Shinsuke*

no journal, , 

In the case of Fukushima Daiichi Nuclear Power Station (1F) Accident, it is estimated that the fuel assemblies were damaged seriously and that fuel deburis deposits in the core or the bottom of vessel. The methodology of defueling such as cutting and core boring is considered referring the case of Three Mile Island Unit 2 (TMI-2) Accident. It is supposed that fuel debris have various characteristics depending on the location. Especially, the information on mechanical properties of fuel debris is important in order to select and develop the defueling technologies. In this work, (U,Zr)O$$_{2}$$ as simulated debris including Y$$_{2}$$O$$_{3}$$, CeO$$_{2}$$, CaO, which exist as a fisson product or a component of concrete and behavior as stabilizer for ZrO$$_{2}$$, was prepared and their mechanical properties were evaluated.

Oral presentation

Research on advanced fuel element for upgrading safety of high temperature gas-cooled reactors, 2; Development of fabrication technology of oxidation resistant fuel element

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Ogawa, Hiroaki; Shibata, Taiju; Mizuta, Naoki; Inaba, Yoshitomo; Tachibana, Yukio

no journal, , 

Development of fabrication technology of fuel element of high temperature gas-cooled reactor with SiC/C mixed matrix was carried out to modify oxidation resistance. Dummy fuel elements with matrix, which Si/C ratio (about 0.551) was three times as large as those fabricated in precursor research, were fabricated. No Si peak was detected in XRD of matrix.

Oral presentation

Research on advanced fuel element for upgrading safety of high temperature gas-cooled reactors, 3; Development on inspection of oxidation resistant fuel element

Honda, Masaki*; Yasuda, Atsushi*; Ohira, Koichi*; Tachibana, Yukio

no journal, , 

For the purpose of upgrading safety of High Temperature Gas-cooled Reactor (HTGR), research on inspection technology for advanced fuel element was conducted with cooperation of JAEA from FY2014 to 2016. The advanced fuel element contains SiC as the matrix material and oxidation resistance is highly improved so that shape and integrity of the fuel element should be maintained even when large unexpected amount of air enters into the core in the air ingress (pipe rupture) accident which is a typical event for the HTGR. For the inspection technology, evaluation and inspection methods on homogeneity of SiC/C matrix and distribution of coated fuel particles as well as dissolution methods of coated fuel particles and SiC/C matrix for evaluation of failure fraction were developed and established.

19 (Records 1-19 displayed on this page)
  • 1