

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

Title	Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, 1; Source term estimation and local-scale atmospheric dispersion in early phase of the accident
Author(s)	Genki Katata, Masakazu Ota, Hiroaki Terada, Masamichi Chino, Haruyasu Nagai
Citation	Journal of Environmental Radioactivity, 109 ; p.103-113
Text Version	Author
URL	http://jolissrch-inter.tokai-sc.jaea.go.jp/search/servlet/search?5033139
DOI	http://dx.doi.org/10.1016/j.jenvrad.2012.02.006
Right	This is the author's version of a work that was accepted for publication in < Journal of Environmental Radioactivity>. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Environmental Radioactivity,, vol.109, p.103-113(Jul. 2012), http://dx.doi.org/10.1016/j.jenvrad.2012.02.006.

1	Atmospheric discharge and dispersion of radionuclides during the Fukushima
2	Daiichi Nuclear Power Plant accident. Part I: Source term estimation and
3	local-scale atmospheric dispersion in early phase of the accident
4	
5	Keywords: Source term; atmospheric dispersion; Fukushima Daiichi Nuclear Power
6	Plant accident; WSPEEDI-II; surface deposition; local-scale
7	
8	Abstract:
9	The atmospheric release of ¹³¹ I and ¹³⁷ Cs in the early phase of the Fukushima
10	Daiichi Nuclear Power Plant (FNPP1) accident from March 12-14, 2011 was estimated
11	by combining environmental data with atmospheric dispersion simulations under the
12	assumption of a unit release rate (1Bq h ⁻¹). For the simulation, WSPEEDI-II
13	computer-based nuclear emergency response system was used. Major releases of 131 I (>
14	10^{15} Bq h ⁻¹) were estimated when air dose rates increased in FNPP1 during the
15	afternoon on March 12 after the hydrogen explosion of Unit 1 and late at night on
16	March 14. The high-concentration plumes discharged during these periods flowed to the
17	northwest and south-southwest directions of FNPP1, respectively. These plumes caused

a large amount of dry deposition on the ground surface along their routes. Overall, the
spatial pattern of ¹³⁷Cs and the increases in the air dose rates observed at the monitoring
posts around FNPP1 were reproduced by WSPEEDI-II using estimated release rates.
The simulation indicated that air dose rates significantly increased in the
south-southwest region of FNPP1 by dry deposition of the high-concentration plume
discharged from the night of March 14 to the morning of March 15.

25 **1. Introduction**

From March 12, 2011, a significant amount of radioactive material was 26accidentally discharged into the atmosphere from the Fukushima Daiichi Nuclear Power 27Plant (hereafter referred to as FNPP1) which produced areas of high radiation doses 2829over a wide region of Japan (MEXT, 2011a, b). To assess the magnitude of the accident and radiological doses, estimation of the source term of the radionuclides discharged 30 into the atmosphere is required. Soon after the accident the source term of ¹³¹I and ¹³⁷Cs 3132from March 12 to April 5, 2011 was estimated by authors (Chino et al., 2011), using a reverse estimation method. This method calculates the release rates of radionuclides (Bq 33 h^{-1}) by coupling the atmospheric dispersion simulation under the assumption of a unit 34release rate (1Bq h⁻¹) with environmental monitoring data. In Chino et al. (2011), 3536 temporal changes in the release rates of March 15 were not estimated because some important equipment (e.g., stack monitors, radiation, and meteorological stations), 37which was deployed within 20 km of FNPP1 to measure air dose rates and 38meteorological conditions, did not work on March 15, 2011 due to the severe 39 earthquake and/or tsunami. Afterwards, the release rates during the morning and 40 afternoon of March 15, which formed the highest dose rate zone to the northwest of 41

FNPP1, were revised by the similar method based upon comparisons between calculated
and observed air dose rates from off-site monitoring posts > 20 km far from FNPP1
(Katata et al., 2011).

Because no environmental data was available, our previous paper of Chino et al. 45(2011) did not estimate the release rates in the early phase of the FNPP1 accident, i.e., 4647from the morning of March 12 to late at night on March 14, but they were assumed to be the same as the first estimated value taken at 21:00 JST on March 14. After the 48preliminary estimation was made, additional environmental monitoring data from 49March 12 to 14 including dust sampling data were reported by the Tokyo Electric Power 50Company (TEPCO) and the Ministry of Economy, Trade and Industry (METI) on May 5128 and June 3, respectively (TEPCO, 2011a; METI, 2011a). This enables us to estimate 52the atmospheric release during the early phase of the accident by the reverse estimation 53method. 54

Thus, the present study aims to estimate the source terms of ¹³¹I and ¹³⁷Cs from the morning of March 12 to late at night on March 14 by coupling additional dust sampling data around FNPP1 (METI, 2011a) with numerical simulations of a computer-based nuclear emergency response system, WSPEEDI-II (Terada et al., 2008) under the

59	assumption of a unit release rate (1 Bq h ⁻¹). A local-scale atmospheric dispersion is
60	analyzed by comparing air dose rates and surface deposition calculated by atmospheric
61	dispersion simulations using an estimated source term with observed ones from aerial
62	and ground-level monitoring. Evaluation of atmospheric release estimated by Chino et
63	al. (2011) by comparing WSPEEDI-II calculations with the data of surface deposition of
64	¹³¹ I and ¹³⁷ Cs collected from 9:00 JST on March 18, and analysis of regional-scale
65	atmospheric dispersion are described in a companion paper (Terada et al., 2011).

67 2. Methods

68 2.1 Study area and the environmental data

Atmospheric dispersion simulations were carried out for the 190-km square area in Fukushima Prefecture, Japan. The site of FNPP1 is located near the Pacific coast and lies on the eastern side of the Abukuma Highlands with an altitude of up to 1000 m. Three computational domains are set for meteorological prediction and two inner domains are used for atmospheric dispersion calculations (Katata et al., 2011). The locations of dust sampling and monitoring points used in the present study are shown in Fig. 1.

76	The dust sampling data from the early phase of the accident were obtained from
77	METI (METI, 2011a) and the Japan Atomic Energy Agency (JAEA, 2011a). The values
78	for the concentrations of ¹³¹ I, taken as the sum of both particulate and gaseous phases in
79	sampled air, are listed in Table 1. For estimation of the major release during the
80	afternoon of March 12, the measurements of air dose rate by monitoring cars from 6:00
81	to 15:00 JST on March 13 (METI, 2011a) were used because no dust sampling data
82	were available. To compare the calculated air dose rate with observed rate, the
83	equivalent gamma dose rate (Sv h ⁻¹) shown in most of the data was assumed to be equal
84	to the air absorbed gamma dose rate (Gy h ⁻¹). To validate the estimated source term, the
85	ground-level observations for the air dose rate in Fukushima (Fukushima Prefecture,
86	2011a, b; TEPCO, 2011b) and Ibaraki Prefectures (Ibaraki Prefecture, 2011; JAEA,
87	2011b) were used for comparison to calculations made by WSPEEDI-II.
88	

Table 1

91 Figure 1

93 **2.2 Reverse estimation methods**

94	The reverse estimation method (Chino et al., 2011) calculates the release rates	of
95	the individual radionuclides by coupling environmental monitoring data wi	ith
96	atmospheric dispersion simulations, assuming a unit release rate (1 Bq h ⁻¹).	

97

Method 1. Release rates are obtained as the ratio of measured to calculated air
concentrations of nuclide *i* at the sampling points, as follows:

$$100 Q_i = M_i / C_i (1)$$

101 where Q_i is the release rate (Bq h⁻¹) of *i* when discharged into the atmosphere, M_i the 102 measured air concentration (Bq m⁻³) of *i*, and C_i the dilution factor (h m⁻³) of *i*, which is 103 equal to the air concentration calculated under the assumption of a unit release rate. This 104 method of using the data of air concentrations is more reliable than the following 105 methods described below because it does not require an assumption for the composition 106 of radionuclides.

107

Method 2. When air concentration data were not available, release rates were
 estimated by comparing observed spatial patterns of air dose rates from radionuclides

on the ground surface (i.e., ground-shines) with calculated rates. This method was applied to estimate the release rate during the afternoon of March 12 after the hydrogen explosion occurred at Unit 1. First, the spatial pattern of the observed air dose rate due to ground-shines is reproduced by WSPEEDI-II assuming a unit release rate. Then, the conversion factor, which is equal to the release rate (Bq h^{-1}), is multiplied to the calculated contour values so that the absolute values of the calculation become similar to the measurements.

117

118 Method 3. When neither the dust sampling nor off-site air dose rate data were obtained around FNPP1, release rates were estimated by combining the data of air dose 119 rates observed at the boundary of FNPP1, the leeward of the nuclear reactors, with 120 isopleths of those derived from the Gaussian plume model (Taki et al., 1990) under the 121assumption of a unit release rate (1 Bq h^{-1}). This situation was found in the period from 1227:00 to 9:30 JST on March 14. The method requires data on the wind speed, the 123atmospheric stability, the release height, the downwind distance from the release point, 124the effective gamma-energy of the nuclides, and the composition of the major 125radionuclides. 126

128 2.3 Radionuclides

As described in the previous subsection, the compositions of the radionuclides are 129required for the calculation of dose rates when the data of air dose rates are used to 130estimated release rates. Major radioactive species of ¹³¹I, ¹³²I (¹³²Te), ¹³⁴Cs and ¹³⁷Cs 131were considered in the calculation. Iodine-132 is treated as ¹³²Te progeny nuclide and 132radioactive equilibrium between ¹³²Te (half life = 3.2 d) and ¹³²I (half life = 2.3 h) is 133assumed (Katata et al., 2011). From 5:00 JST on March 12 to 0:00 JST on March 15, the 134data for the ¹³⁷Cs concentration were rather limited compared with ¹³¹I. Thus, the fixed 135value of 0.1, determined from available datasets (METI, 2011a; Furuta et al., 2011), was 136used for the ratio of ¹³⁷Cs to ¹³¹I for the period from 5:00 JST on March 12 to 0:00 JST 137on March 15. The concentration of 134 Cs was given to be equal to that of 137 Cs based on 138the same datasets. While the radioactive ratio of 132 Te to 131 I varied widely from 0.1 to 3 139in the datasets, the overall values ranged from 1.9 to 2.5 on March 12, and later on, 140gradually decreased to 1.0. Considering this tendency, the ratios of ¹³²Te to ¹³¹I were set 141 to 2.0 until 16:00 JST on March 12, and 1.3 from 16:00 JST on March 12 to 21:30 JST 142on March 14 (see Table 3, vide infra). 143

In addition to the radioactivity ratio of deposited nuclides, the ratio of the 144radioactive noble gas, 133 Xe, to 131 I is also needed for calculations using *Method 3*. 145Because there were no available environmental data for 133 Xe near the site, the release 146rate of 4.0×10^{15} Bq h⁻¹ was used for ¹³³Xe, as estimated by the severe accident analysis 147for Unit 3 of FNPP1 (JNES, 2011). Although other nuclides such as ¹³⁶Cs, ¹³³I, and 148^{129m}Te were also observed at the monitoring points in and around FNPP1 (e.g., TEPCO 1492011c; Furuta et al. 2011), gamma air dose rates of these radionuclides calculated from 150both air concentration data and effective energies were relatively small compared with 151those for the major radioactive species of ¹³¹I, ¹³²I (¹³²Te), ¹³⁴Cs, and ¹³⁷Cs. Thus, the 152other radionuclides except for major species were neglected in the estimation of source 153term. 154

155

156 **2.4 Atmospheric dispersion simulation**

WSPEEDI-II used for the atmospheric dispersion simulation includes the combination of two models: a non-hydrostatic atmospheric dynamic model (MM5, Grell et al., 1994) and a Lagrangian particle dispersion model (GEARN, Terada and Chino, 2008). The performance of this system was evaluated by its application to the

161	field tracer experiment over Europe, ETEX (Furuno et al., 2004), Chernobyl nuclear
162	accident (Terada et al., 2004; Terada and Chino, 2005, 2008). A detailed description of
163	the models is provided in Terada et al. (2004) and Terada and Chino (2005).
164	The simulation conditions of WSPEEDI-II are summarized in Table 2. The sets of
165	calculations for one case were carried out using two sets of meteorological input data, a
166	Grid Point Value (GPV) of the Global Spectral Model for Japan region (GSM) and the
167	Meso-Scale Model (MSM) provided by the Japan Meteorological Agency (JMA).
168	Comparing the simulation results using the above two datasets, the air concentration,
169	which agreed better with observations, was used to estimate the release rates. According
170	to Katata et al. (2011), a four-dimensional data assimilation method was also employed
171	in this work using the wind data of FNPP1, Fukushima Daini Nuclear Power Plant
172	(hereinafter referred to as FNPP2) (METI, 2011b), and surface weather stations to
173	improve the prediction accuracy of the meteorological fields around FNPP1. While the
174	other settings were similar to Katata et al. (2011), calculation results for the
175	meteorological fields slightly changed in the present study because the initial and
176	boundary conditions of the meteorological input data are different.

178 **Table 2**

179

180	For Method 2, the result of the source term estimation is sensitive to the dry
181	deposition calculations. In GEARN, the amount of dry deposition of an each marker
182	particle was proportional to its radioactivity with constant values of dry deposition
183	velocity. The dry deposition velocity for ¹³¹ I and ¹³⁷ Cs was set at a constant 3 and 1 mm
184	s ⁻¹ , respectively, for the land-use category of short vegetation in MM5. As described in
185	Katata et al. (2011), values of dry deposition velocity that were five times larger were
186	applied to the category of forests because forests have tall canopy heights and large leaf
187	surface areas that enable them to capture a large amount of radionuclides in the
188	atmosphere.
189	Most emissions were simulated as "point source" at a given release height (Table 3,
190	vide infra). The release heights were set to values of 20 and 120 m by assuming the

191 situation of leakage from the primary containment vessel (PCV) and venting at the top 192 of stack with 120 m height, respectively. The settings of the release heights for each 193 period of source term estimation are provided in Table 3. Only for hydrogen explosions 194 at Units 1 and 3, an initial three-dimensional quadrangular source of emissions was

195	applied. In calculations with volume source, modeled radioactive particles are uniformly
196	distributed in the volume. Based on available videos online (e.g.,
197	http://www.youtube.com/watch?v=B3_ZRO5oATk&feature=related), the
198	three-dimensional sizes of the hydrogen explosions were assumed to be $(x, y, z) = (100, z)$
199	100, 100 m) and (100, 100, 300 m) for Units 1 and 3, respectively.
200	
201	2.5 Uncertainties in estimation methods
202	In three methods described in subsection 2.1, Method 1 is more accurate than other
203	two methods. Method 1 has errors that mainly arise due to the atmospheric dispersion
204	simulation and dust sampling data. In contrast, for Methods 2 and 3, the uncertainty in
205	the radioactivity ratio may cause significant errors in the source term estimation, as
206	described in subsection 2.1. In addition, these two methods also have potential errors
207	that are as described below.
208	In Method 2, the maximum value of the observed air dose rate is assumed to be 30
209	μ Gy h ⁻¹ , which is the upper limit of measurable dose of the NaI (Tl) scintillation counter.
210	Although the air dose rate higher than 30 μ Gy h ⁻¹ can be usually observed by the

211 ionization chamber at the monitoring posts in and around FNPP1 (Fig. 2c, 6, and 7), this

212	instrument was unfortunately not used during the period when the Method 2 was applied.
213	By comparing the value with that of contours calculated by WSPEEDI-II, the release
214	rate is estimated in this method. Therefore, if the real value of the observed air dose rate
215	was greater than 30 μ Gy h ⁻¹ , the release rate would be underestimated. The method has
216	also an uncertainty due to the dry deposition velocity in the calculations. From the
217	literature, the values of dry deposition velocity for ¹³¹ I and ¹³⁷ Cs vary by more than one
218	order of magnitude (Brandt et al., 2002). This variation in dry deposition velocity
219	directly affects the estimation result of the release rate because calculated and observed
220	air dose rates due to ground-shines were compared to each other by this method.
221	For <i>Method 3</i> , there are also two uncertainties due to the release rate of 133 Xe and
222	observed wind direction with a low accuracy (16-sectors). If no release of 133 Xe is
223	assumed to evaluate the situation where other major radionuclides are dominant, the
224	estimated release rate of 131 I could be double that of when the release rate of 133 Xe was
225	4.0×10^{15} Bq h ⁻¹ (subsection 2.3). With regard to wind direction, in principle, the
226	measured value has errors of $\pm 11.25^{\circ}$ due to the number of sectors being 16. If the
227	angle of the principal axis of the plume increases or decreases by 11.25° according to
228	the wind direction, the estimated release rate of ¹³¹ I can be 6 times as large as the one

when the principal axis is assumed to be along the monitoring post.

Therefore, in terms of accuracy of estimation, it should be better to use *Method 1* throughout the period of the source term estimation. However, as described in subsection 2.1, unfortunately *Methods 2* and *3* had to be adopted for the period when no dust sampling data was available.

234

3. Results of source term estimation

236Temporal changes in wind speed and direction, and air dose rates observed by monitoring cars around the monitoring posts (hereafter referred to as MPs), the gates, 237and the gym on/near the border of the site of FNPP1 are illustrated in Fig. 2. The map of 238monitoring points in FNPP1 is also depicted in Fig. 3 (TEPCO 2011d, reconstructed by 239240the authors). The release was assumed to start at 5:00 JST on March 12, just before the 241increases in air dose rate at the main gate and near MP8 in FNPP1 (No. 1, Fig. 2c) were observed. In the present study, release rates for the six periods from 5:00 JST on March 24212 to 0:00 JST on March 15 (Nos. 1-5 and 8, Fig. 2c) were estimated from 243environmental data. Four of them (Nos. 1, 2, 4, and 8, Fig. 2c) were estimated by 244comparing dust sampling data with calculation results. The estimation methods based on 245

246	the air dose rates in and around FNPP1 were applied to the remainder of the periods
247	(Nos. 3 and 5, Fig. 2c) because no dust sampling data was available. Following our
248	preliminary study (Chino et al., 2011), the release duration was determined from
249	assuming that the release with a certain release rate continued from/to the middle
250	periods between released times of sampled air. The value of 30 min was assumed to the
251	release duration for hydrogen explosions at Units 1 and 3, as explained below.
252	
253	Figure 2
254	
255	Figure 3
256	
257	The results of the estimated release rates of 131 I from 5:00 JST on March 12 to 0:00
258	JST on March 17 are summarized in Table 3. Figure 4 shows the temporal variation of
259	estimated release rates of ¹³¹ I and ¹³⁷ Cs during this period. Some values of release rates
260	estimated by our past studies of Chino et al. (2011) (Nos. 7, 9, and 13, Table 3) and
261	Katata et al. (2011) (Nos. 10–12, Table 3) are included in the table and the figure. The
262	major releases of ¹³¹ I greater than 10 ¹⁵ Bq h ⁻¹ were estimated during the afternoon on

March 12 after the hydrogen explosion at Unit 1 (No. 3, Table 3) and late at night on 263March 14 (No. 8, Table 3). The possible major release during the hydrogen explosion of 264Unit 3 at 11:00 JST on March 14 could not be estimated because the plume flowed to 265the Pacific Ocean on the northwesterly wind (open circle with No. 6, Fig. 2b). Thus, the 266267same value of release rate estimated for the hydrogen explosion of Unit 1 (i.e., $3.0 \times$ 10^{15} Bq h⁻¹) was assumed for this period (No. 6, Table 3). For other time periods before 26821:30 JST on 14 March (Nos. 1, 2, 4, 5, and 7, Table 3), estimated release rates of ¹³¹I 269had a value of 1.7×10^{13} to 8.4×10^{13} Bq h⁻¹, which was similar to our preliminary 270estimated value (No. 7, Table 3). 271

272

273 **Table 3**

274

```
275 Figure 4
```

276

277 **3.1 Event Nos. 1–3 on March 12, 2011**

From the morning to the afternoon of March 12, two values of release rate of ¹³¹I were estimated as 3.7×10^{13} (No. 1, Table 3) and 1.7×10^{13} Bq h⁻¹ (No. 2, Table 3)

using dust sampling data taken at Takase and Kawazoe, respectively (METI, 2011a). 280The major release was then suggested by the large increases in air dose rate observed 281near MP4, located northwest of FNPP1, soon after the hydrogen explosion of Unit 1 at 28215:30 JST (No. 3, Fig. 2c). The fact that the air dose rates also rose up to 20 μ Gy h⁻¹ at 283Minami-soma, located 24 km north-northwest of FNPP1, 4.5 h after the explosion 284(Fukushima Prefecture, 2011b) implies that the high-concentration plume passed over 285the north-northwest region from FNPP1 during the evening of March 12. Since no dust 286sampling data was available during this period, the release rate was estimated by 287Method 2 based on comparisons of the spatial patterns of observed and calculated air 288dose rates due to ground-shines in the region in the afternoon of March 13 (Fig. 5). It 289can be seen that the model generally reproduced the spatial distribution of observed air 290dose rates to the north-northwest direction of FNPP1. By multiplying 3.0×10^{15} to the 291maximum value of contours in calculation results assuming a unit release rate (1.0 \times 292 $10^{-14} \mu \text{Gy h}^{-1}$), the calculated air dose rate becomes similar to the observed one as 30 293 μ Gy h⁻¹, representing the upper measurable limit of the instrument (subsection 2.5). 294Thus, the release rate was estimated as 3.0×10^{15} Bq h⁻¹ (No. 3, Table 3). The release 295duration of the hydrogen explosion at Unit 1 was assumed to be 30 min because the 296

297	increase in air dose rate continued for approximately 30 to 60 min at MP4 (open circle
298	with No. 3 in Fig. 2c). This assumption was also expected from the fact that the high air
299	dose rates when the plume passed through continued to be observed at Minami-soma for
300	60 min (Fukushima Prefecture, 2011b).
301	
302	Figure 5
303	
304	3.2 Event No. 4 on March 12–13, 2011
305	The release rate of ^{131}I at 13:00 JST on March 13 was estimated as 8.4×10^{13} using
306	the dust sampling data (METI, 2011a) and was assumed to continue from 16:00 JST on
307	March 12 to 23:00 JST on March 13 (No. 4, Fig. 2c and Table 3).
308	
309	3.3 Event Nos. 5–7 on March 14, 2011
310	At 9:00 JST on March 14 (No. 5, Fig. 2c), Method 3, using a Gaussian plume
311	model, was employed because no off-site environmental data was obtained. Since the
312	southeasterly and south-southeasterly winds were frequently observed around the time,
313	the estimation was made by assuming that MP3, located northwest of Unit 3, was along

the center of the plume (ellipses with No. 5, Fig. 2b, c). The value of 255 μ Gy h⁻¹, 314formed by subtracting the minimum value of the air dose rate before the peak appeared 315at MP3 (263 μ Gy h⁻¹ at 8:10 JST) from the peak one (518 μ Gy h⁻¹ at 9:11 JST, 316 downward arrow with No. 5, Fig. 2c), was used for estimation. The release rate of ¹³¹I 317from 23:00 JST on March 13 to 11:00 JST on March 14 was 3.6×10^{13} Bg h⁻¹ (No. 5, 318 Table 3), under low wind speed (0.6 m s^{-1}) and stable atmospheric conditions based on 319 measurements in and around FNPP1. The release rates from 11:00 to 21:30 JST on 320March 14 (Nos. 6-7, Fig. 2c) were assumed to be the same as Event No. 3 and were 321taken from our preliminary results (Chino et al., 2011), as described above. 322

323

324 **3.4 Event No. 8 on March 14–15**

The release rate of ¹³¹I after the increase of air dose rate at the main gate of FNPP1 late at night on March 15 (No. 8, Fig. 2c) was estimated as 1.3×10^{15} Bq h⁻¹ using the dust sampling data at JAEA. The value was estimated to have decreased to 3.5×10^{14} Bq h⁻¹ at 0:00 JST on March 15 estimated by the authors at the same location (Chino et al., 2011; No. 9, Table 3).

4. Analysis of local-scale atmospheric dispersion from March 12–17

4.1 Air dose rate

Calculated air dose rates by WSPEEDI-II using the input data of MSM and 333 estimated release rates were compared with observed rates from the ground-level and 334335 aerial monitoring. Figure 6 and Movie 1 show the spatial distributions of calculated and measured air dose rates from March 12–17. The plume moves with rainfall intensity is 336 337shown in Movie 2. As described in section 3, the source term estimated in this paper included the events of major releases (> 10^{15} Bq h⁻¹) during the afternoon of March 12 338 339 and late at night on March 14, which did not appear in our previous work, Chino et al. (2011). Those releases significantly increased the amount of dry deposition, resulting in 340 increasing air dose rate along the routes of the plume, north-northwest and 341south-southwest of FNPP1 (Figs. 6b-d). It should be noted that no rainfall was observed 342343 in the area until the afternoon on March 15. In the figure and movies, overall, the increases in air dose rates at the monitoring posts during and after the plume passed 344345through were reproduced by the calculations.

The movement of the simulated plume from March 12 to 17 is explained as follows. The plume firstly flowed to the ocean until the early morning of March 12 (Fig.

348	6a). After the hydrogen explosion occurred at Unit 1 at 15:30 JST on March 12, the
349	high-concentration plume flowed from FNPP1 in a north-northwest direction and air
350	dose rates around the monitoring post of Minami-soma increased (Fig. 6b). The plume
351	was then carried by a southwesterly wind and flowed over the Pacific Ocean. From
352	March 13 to 14, due to the westerly wind, the plume mainly faced the ocean. The wind
353	direction changed clockwise late at night on March 14, and the high-concentration
354	plume dispersed to the south-southwest direction of FNPP1 (Fig. 6c). The air dose rates
355	rose in order of the monitoring posts at FNPP2, Iwaki, Kitaibaraki, and Tokai with the
356	pass of the plume. According to the ground-level monitoring (MEXT 2011b), the plume
357	dispersed on the northerly and north-easterly winds and caused surface deposition over
358	wide areas of East Japan (Terada et al., 2011, the companion paper). Then, the
359	high-concentration plume again changed its direction clockwise and flowed to the
360	southwest (Fig. 6d) and the northwest of FNPP1 (Fig. 6e). As shown in the simulation
361	results of Katata et al. (2011), the plume encountered a band of rain that caused wet
362	deposition in the areas around Koriyama, Iitate, and Fukushima. On the early morning
363	on March 16, the wind changed from southeasterly to northwesterly and the plume
364	flowed to the ocean through the coast of FNPP1 until the end of the simulation (Fig. 6f).

Figure 6

368	Figure 7 depicts the comparison between measured and calculated air dose rates at
369	several monitoring points in Fukushima and Ibaraki prefectures. It should be noted that
370	the calculations at the location to the 7 km west of Minami-soma was used for the
371	comparisons in Fig. 7d in order to adjust the distance of the principal axes of the
372	high-concentration plume discharged immediately after the hydrogen explosion at Unit
373	1 between calculations and observations at the latitude of Minami-soma (Fig. 5). The
374	calculations for air dose rates slightly differ from those shown in Katata et al. (2011)
375	because the initial and boundary conditions of meteorological input data are different.
376	Figure 7 shows that increases of observed air dose rates due to ground-shines were
377	generally reproduced by the model, while some discrepancies were found in
378	calculations at Fukushima (Fig. 7a) and several locations to the south-southwest
379	direction of FNPP1 (Figs. 7e-h). These discrepancies between observations and
380	calculations may be due to the errors in wind and precipitation fields predicted by the
381	model.

383 Figure 7

384

385 **4.2 Surface deposition of ¹³⁷Cs**

Figure 8a shows the distribution map for the surface deposition of 137 Cs 386 387 accumulated over the whole simulation period. Overall, the calculated distribution 388pattern of surface deposition around FNPP1 agreed with the observed one by combining airborne and ground-level monitoring (MEXT, 2011a). As described in Katata et al. 389 390 (2011), the areas where there was a large amount of surface deposition, southwest and northwest regions of FNPP1, correspond to those due to two major releases during the 391 morning and afternoon on March 15, respectively (Fig. 8d). By calculations, the 392high-concentration plume discharged during the hydrogen explosion at Unit 1 on March 393 39412 also caused a large amount of dry deposition in the north-northwest region of FNPP1 (Fig. 8b). Although the route of the plume was partially overlapped with that discharged 395396 during the afternoon of March 15, the former has a smaller amount of surface deposition than the latter (Fig. 8d). This is because the duration of the major release on March 12 397 was short (i.e., 30 min) compared with that during the afternoon on March 15 (No. 3 398

399	and 12, Table 3). To the south-southwest direction from the site, a large amount of dry
400	deposition appeared near FNPP1 due to the high-concentration plumes discharged from
401	the night of March 14 to the morning of March 15 (Fig. 8c). This indicates that the air
402	dose rate significantly increased in the south-southwest area of FNPP1 by dry
403	deposition of the high-concentration plume discharged from the night of March 14 to
404	the morning of March 15. In the area around Iwaki and Kitaibaraki, the accumulated
405	surface deposition of ¹³⁷ Cs until 9:00 JST on March 16 (Fig. 8a) was smaller than that
406	reported by airborne monitoring after July 22 (MEXT 2011a). This difference between
407	calculations and observations can be explained by the additional surface deposition after
408	9:00 JST on March 16. From atmospheric dispersion simulations of eastern Japan from
409	March 12 to May 1 (Terada et al., 2011, the companion paper) and measurements of air
410	dose rates in Fukushima and Ibaraki Prefectures (Fig. 7), surface deposition of ¹³⁷ Cs
411	also occurred due to wet deposition in the area around noon on March 16 and from
412	March 21 to 23.

413

Figure 8 414

416 **5.** Conclusion

The source term of ¹³¹I and ¹³⁷Cs in the early phase of the FNPP1 accident from 417March 12 to 14 was estimated by combining environmental data with atmospheric 418 dispersion simulations of a computer-based nuclear emergency response system, 419 WSPEEDI-II under the assumption of a unit release rate (1Bg h^{-1}). Major releases, 420greater than 10¹⁵ Bq h⁻¹ for ¹³¹I, were estimated during the afternoon of March 12 after 421the hydrogen explosion at Unit 1 and late at night on March 14. The release rate in other 422periods, from 5:00 JST on March 12 to 0:00 JST on March 15, were on the order of 10^{13} 423Bq h⁻¹, which was similar to the preliminary estimated value in the previous paper 424presented by the authors. The release rate of the hydrogen explosion at Unit 3 on March 42514 could not be estimated due to the lack of environmental data. The spatial pattern of 426 surface deposition of ¹³⁷Cs and increases in air dose rates observed at the monitoring 427posts around FNPP1 were generally reproduced by WSPEEDI-II using estimated 428release rates. The simulation results indicate that the amount of dry deposition of the 429high-concentration plume discharged during the afternoon of March 12 was clearly 430smaller than that of the total deposition from the afternoon to the evening of March 15, 431which formed the highest dose rate zone in the northwest region of FNPP1. The results 432

indicate that air dose rates largely increased in the south-southwest region of the site by
dry deposition of the high-concentration plume discharged from the night of March 14
to the morning of March 15.

436

437 Acknowledgments

438	The authors express their gratitude to Drs. H. Nakayama, T. Nakanishi, and J.
439	Koarashi of Japan Atomic Energy Agency and H. Yamazawa and S. Hirao of Nagoya
440	University for their helpful comments and suggestions. We also thank Mr. T. Kakefuda
441	and the Center for Computational Science and e-Systems (CCSE) in JAEA for their
442	support in providing the supercomputer resources of systems of JAEA. The data of GPV
443	and radioactive concentrations in air at JAEA were provided from the JMA and JAEA,
444	respectively.
445	

446 **References**

Brandt, J., Christensen, J.H., Frohn, L.M., 2002. Modelling transport and deposition of
caesium and iodine from the Chernobyl accident using the DREAM model. Atmos.
Chem. Phys., 2, 397-417.

451	Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., Yamazawa, H., 2011.
452	Preliminary estimation of release amounts of ¹³¹ I and ¹³⁷ Cs accidentally discharged from
453	the Fukushima Daiichi nuclear power plant into atmosphere. J. Nucl. Sci. Technol., 48,
454	1129-1134.
455	
456	Fukushima Prefecture, 2011a.
457	<http: 20-50km0315-0331.pdf="" j="" www.pref.fukushima.jp=""> (in Japanese, accessed 18</http:>
458	November 2011).
459	
460	Fukushima Prefecture, 2011b. <http: 7houbu0311-0331.pdf="" j="" www.pref.fukushima.jp=""></http:>
461	(in Japanese, accessed 18 November 2011).
462	
463	Furuno, A., Terada, H., Chino, M., Yamazawa, H., 2004. Experimental verification for
464	real-time environmental emergency response system: WSPEEDI by European tracer
465	experiment. Atmos. Environ., 38, 6989-6998.
466	

467	Furuta, S., Sumiya, S. Watanabe, H. Nakano, M., Imaizumi, K., Takeyasu, M., Nakada,
468	A., Fujita, H., Mizutani, T., Morisawa, M., Kokubun, Y., Kono, T., Nagaoka, M.,
469	Yokoyama, H., Hokama, T., Isozaki, T., Nemoto, M., Hiyama, Y., Onuma, T., Kato, C.,
470	Kurachi, T., 2011. Results of the Environmental Radiation Monitoring Following the
471	Accident at the Fukushima Daiichi Nuclear Power Plant. JAEA-Review 2011-035,
472	JAEA, in press (in Japanese with English abstract, available online).
473	
474	Grell, G.A., Dudhia, J., Stauffer, D.R., 1994. A description of the fifth-generation Penn
475	State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-3921STR, 122
476	pp.
477	
478	Ibaraki Prefecture, 2011. http://www.pref.ibaraki.jp/20110311eq/radiation.html (in
479	Japanese, accessed 18 November 2011).
480	

481 JAEA, Japan Atomic Energy Agency, Nuclear Emergency Assistance and Training
482 Center, 2011a. Personal communication.

- 484 JAEA, 2011b. Transition of radiation rates measured at environmental monitoring posts
- 485 of the sites of JAEA
- 486 http://www.jaea.go.jp/english/jishin/e-monitor.pdf> (accessed 18 November 2011).
- 487
- 488 JNES, Japan Nuclear Energy Safety Organization, 2011. JNES-RE-2011-0002,
- 489 JNES-RE-Report Series. http://www.jnes.go.jp/content/000119740.pdf> (in Japanese,
- 490 accessed 18 November 2011).
- 491
- 492 Katata, G., Terada, H., Nagai, H., Chino, M., 2011. Numerical reconstruction of high
- 493 dose rate zones due to the Fukushima Daiichi Nuclear Power Plant accident. J. Environ.
- 494 Radioact., in press (doi:10.1016/j.jenvrad.2011.09.011).
- 495
- 496 METI, Ministry of Economy, Trade and Industry, 2011a.
- 497 <http://www.meti.go.jp/press/2011/06/20110603019/20110603019.html> (in Japanese,
- 498 accessed 18 November 2011).

500 METI, 2011b. http://www.meti.go.jp/press/20110316001/20110316001-2.pdf (in

501 Japanese, accessed 18 November 2011).

502

- 503 MEXT, Ministry of Education, Culture, Sports Science and Technology, 2011a. MEXT
- and DOE Airborne Monitoring
- 505 http://radioactivity.mext.go.jp/en/monitoring_around_FukushimaNPP_MEXT_DOE_a
- 506 irborne_monitoring/> (accessed 18 November 2011).
- 507
- 508 MEXT, 2011b. Reading of environmental radioactivity level by prefecture (March 509 2011)
- 510 <http://radioactivity.mext.go.jp/en/monitoring_by_prefecture/2011/03/index.html>
- 511 (accessed 18 November 2011).

```
513 Prime Minister of Japan and His Cabinet, 2011. Report of Japanese Government to the
```

- 514 IAEA Ministerial Conference on Nuclear Safety The Accident at TEPCO's Fukushima
- 515 Nuclear Power Stations
- 516 http://www.kantei.go.jp/foreign/kan/topics/201106/iaea_houkokusho_e.html#top
- 517 (accessed 18 November 2011).

519	Taki, M., Kobayashi, H., Suzuki, T., Shimizu, I., 1990. Isopleths if surface air
520	concentration and surface air absorbed dose rate due to a radioactive cloud released
521	from a stack. JAERI-M-90-206 (in Japanese with English abstract).
522	
523	TEPCO, Tokyo Electric Power Company, 2011a. Additional monitoring data at
524	Fukushima Daiichi Nuclear Power Station
525	<http: 11052811-e.html="" corp-com="" en="" press="" release="" www.tepco.co.jp=""> (accessed 18</http:>
526	November 2011).
527	
528	TEPCO, 2011b. Radiation dose measured in the Fukushima Daini Nuclear Power
529	Station <http: en="" f2="" fukushima-np="" index-e.html="" nu="" www.tepco.co.jp=""> (accessed 18</http:>
530	November 2011).
531	
532	TEPCO, 2011c. Influence to surrounding environment, Archives
533	<http: en="" f1="" fukushima-np="" index2-e.html="" nu="" www.tepco.co.jp=""> (accessed 18 November</http:>
534	2011).

536 TEPCO, 2011d. Radiation dose measured in the Fukushima Daiichi Nuclear Power
537 Station http://www.tepco.co.jp/en/nu/fukushima-np/f1/index-e.html (accessed 18
538 November 2011).

539

```
Terada, H., Chino, M., 2005. Improvement of Worldwide Version of System for
Prediction of Environmental Emergency Dose Information (WSPEEDI), (II) Evaluation
of numerical models by <sup>137</sup>Cs deposition due to the Chernobyl nuclear accident. J. Nucl.
Sci. Technol., 42, 651-660.
```

544

545 Terada, H., Chino, M., 2008. Development of an atmospheric dispersion model for

546 accidental discharge of radionuclides with the function of simultaneous prediction for

547 multiple domains and its evaluation by application to the Chernobyl nuclear accident. J.

548 Nucl. Sci. Technol., 45, 920-931.

549

Terada, H., Furuno, A., Chino, M., 2004. Improvement of Worldwide Version of System
for Prediction of Environmental Emergency Dose Information (WSPEEDI), (I) New

- combination of models, atmospheric dynamic model MM5 and particle random walk
 model GEARN-new. J. Nucl. Sci. Technol., 41, 632-640.
- 554
- 555 Terada, H., Katata, G., Chino, M., Nagai, H., 2011. Atmospheric discharge and
- dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant accident.
- 557 Part II: Verification of the source term and regional-scale atmospheric dispersion. J.
- 558 Environ. Radioact., submitted (the companion paper).
- 559
- Terada, H., Nagai, H., Furuno, A., Kakefuda, T., Harayama, T., Chino, M., 2008.
 Development of Worldwide version of system for prediction of environmental
 emergency dose information: WSPEEDI 2nd version. Trans. At. Energy Soc. Japan., 7,
 257-267 (in Japanese with English abstract).

565 SUPPLEMENTARY MOVIE CAPTIONS

566

567	Movie 1	Simulated	spatial	distributions	of a	r dose rate	(shaded	areas,	µGy h⁻) from
-----	---------	-----------	---------	---------------	------	-------------	---------	--------	--------	--------

- 568 5:00 JST on March 12 to 0:00 JST on March 17, 2011. Values and colors of circles in
- the figures represent observed air dose rates at monitoring posts.

570

- 571 **Movie 2** Simulated spatial distributions of vertically accumulated concentration of ¹³¹I
- 572 (red contours, Bq m⁻³) and rainfall intensity (shaded areas, mm h⁻¹) from 5:00 JST on
- 573 March 12 to 0:00 JST on March 17, 2011.

575 FIGURE CAPTIONS

576

577 **Figure 1.**

578 Environmental monitoring points used in the present study from 5:00 JST on March 12 579 to 0:00 JST on March 17, 2011.

580

581 **Figure 2.**

(a) Wind speed, (b) wind direction, and (c) air dose rates observed around monitoring
posts (MP) at the FNPP1 from March 12 to 16, 2011 (TEPCO, 2011a). Words in
parentheses show the rough directions of the monitoring points from the nuclear
reactors (see Fig. 3). Numbers denoted in figures and arrows in (c) represent the
numbers of the estimation and release duration listed in Table 1.

587

588 **Figure 3.**

589 Map of monitoring points in FNPP1 (TEPCO 2011d, reconstructed by the authors).

590

591 **Figure 4.**

Temporal changes of estimated release rates of ¹³¹I and ¹³⁷Cs from March 12 to 17, 2011. The open circles represent the released time of sampled air for ¹³¹I shown in Table 3. Thin lines show prior estimations of Chino et al. (2011) and Katata et al. (2011). The date and time of important plant events (Prime Minister of Japan and His Cabinet, 2011) are also shown in the figure.

597

598 **Figure 5**.

599 Comparison of air dose rates in the north-northwest area of the FNPP1 between 600 measurements from 6:00 to 15:00 JST and calculations at 12:00 JST on March 13, 2011. 601 Dashed straight represent the main axes of observed and calculated plumes. As shown 602 in the horizontal arrow between two dashed lines, the principal axis of the calculated 603 plume seemed to be approximately 7 km further west from that of the observed axis at 604 the latitude of the monitoring post of Minamisoma (see subsection 4.1).

605

606 **Figure 6**.

607 Simulated spatial distributions of air dose rate from March 12 to 16, 2011. Values and 608 colors of circles in the figures represent observed air dose rates at monitoring posts. The 609 minimum significant digit is 0.01, which was determined from the observational data of 610 air dose rates.

611

612 **Figure 7.**

Temporal changes in calculated (lines) and observed (circles) air dose rates at the several monitoring posts shown in Fig. 1. Note that the calculations at the location 7 km west of Minamisoma was used for comparisons in (d) in order to adjust the distance of principal axes of the high-concentration plume discharged immediately after the hydrogen explosion at Unit 1 between calculations and observations at the latitude of Minamisoma (Fig. 5).

619

620 Figure 8.

Spatial distributions of accumulated surface deposition of ¹³⁷Cs (a) during the whole
simulation period, (b) from 9:00 JST on March 12 to 9:00 JST on March 13, 2011, (c)
from 9:00 JST on March 14 to 9:00 JST on March 15, 2011, and (d) from 9:00 JST on
March 15 to 9:00 JST on March 16, 2011.

625

☆ Fukushima Daiichi Nuclear Power Plant (FNPP1)

FIGURE 6

FIGURE 6 (continued)

FIGURE 7

1 TABLE CAPTIONS

- $\mathbf{2}$
- 3 **Table 1.**

4 Dust sampling data of ¹³¹I at sampling locations in Fig. 1 used for the source term estimation.

 $\mathbf{5}$

6 **Table 2.**

7 Simulation settings for atmospheric dynamic model (MM5) and atmospheric dispersion model (GEARN).

8

9 **Table 3.**

10 Release duration, release time of radioactive plume, sampling location in Fig. 1, estimated release rate of 131 I, 11 meteorological input data for MM5, radioactivity ratios of $(^{132}$ I+ 132 Te)/ 131 I and 131 I/ 137 Cs, and estimation

- 12 method in subsection 2.2 with release height, h.
- 13

Table 1 1

 $\mathbf{2}$

Data code	Sampling	Sampling date and time	¹³¹ I Concentr	ation (Bq m ⁻³)
in Fig. 1	location	(JST)	Observed	Calculated ^a
a	Takase ^b	3/12 08:39-3/12 08:49	37	1.0×10 ⁻¹²
b	Kawazoe ^b	3/12 12:00-3/12 12:10	165	1.0×10^{-11}
с	Otabashi ^b	3/13 15:08-3/13 15:18	84	1.0×10^{-12}
d	Tokai (JAEA) ^c	3/15 04:25-3/15 04:45	1260	1.0×10^{-12}

3

 ^a Calculations were carried out under the assumption of unit release rate (1Bq h⁻¹).
 ^b METI (2011a).
 ^c JAEA (2011a).

1 **Table 2**

\sim	
•)	
4	

	Domain 1	Domain 2	Domain 3			
Study areas	Tohoku and Kant	Tohoku and Kanto regions in Japan, same as Katata et al. (2011)				
Applied GEARN calculations	No	Yes	Yes			
Simulation period for GEARN	5 JST	March $12 - 0$ JST March 17,	2011			
Horizontal grid cell	100×100	190×130	190×190			
Spatial resolutions	9 km	3 km	1 km			
Boundary and initial condition	Grid Point Value (Global Spectral Model for Japan region, GSM,					
of MM5	and Meso-Scale Model, MSM) by Japan Meteorological Agency					
3D/surface analysis nudging ^a	tilized with wind data at FNPP1 (surface), FNPP2 (120 m), and surface weather stations					
Observation nudging ^d	Utilized with wind data at FNPP1 (surface) and FNPP2 (120 m)					
Release rates and heights	See Table 3					
Other parameters		Same as Katata et al. (2011)				

 $^{^{\}rm a}~$ Wind data at FNPP1 and FNPP2 were provided from METI (2011b).

Table 3	
---------	--

N.	Duration	Release time	Data code	Release rate of	GPV input	(¹³² I+ ¹³² Te)/	1311/1370-f	Estimation method
INO.	(JST)	of sampled air	in Fig. 1	131 I (Bq h ⁻¹)	data ^a	${}^{131}I^{b}$	I/ US	in subsection 2.2
1	3/12 05:00-3/12 09:30	3/12 08:00	a	3.7×10 ¹³	GMS	2.0	10	<i>Method 1, h</i> =20 m
2	3/12 09:30-3/12 15:30	3/12 11:30	b	1.7×10^{13}	GMS	2.0	10	<i>Method 1, h</i> =120 m
3	3/12 15:30-3/12 16:00	3/12 15:30	—	3.0×10 ¹⁵	MSM	2.0	10	<i>Method 2</i> , Volume ^c
4	3/12 16:00-3/13 23:00	3/13 13:00	с	8.4×10^{13}	GMS	1.3	10	<i>Method 1, h</i> =120 m
5	3/13 23:00-3/14 11:00	3/14 09:00	—	3.6×10 ¹³	—	1.3	10	<i>Method 3</i> , <i>h</i> =120 m
6	3/14 11:00-3/14 11:30	—	—	3.0×10 ¹⁵	—	1.3	10	Assumed same as No. 3 ^g
7	3/14 11:30-3/14 21:30	3/14 21:00	—	2.3×10^{13}	GMS	1.3	10	Chino et al. (2011)
8	3/14 21:30-3/15 00:00	3/14 22:30	d	1.3×10^{15}	GMS	1.0	10	<i>Method 1, h</i> =120 m
9	3/15 00:00-3/15 07:00	3/15 01:00	d	3.5×10^{14}	GMS	1.0	8.8	Chino et al. (2011)
10	3/15 07:00-3/15 10:00	—	—	3.0×10 ¹⁵	MSM	1.0	10	Katata et al. (2011)
11	3/15 10:00-3/15 13:00	—	—	8.0×10^{13}	MSM	1.0	10	Katata et al. (2011)
12	3/15 13:00-3/15 17:00	—	—	4.0×10^{15}	MSM	1.0	10	Katata et al. (2011)
13	3/15 17:00-3/17 00:00	3/16 04:00	d	2.1×10^{14}	GMS	1.0	70	Chino et al. (2011)

 ^a GSM is the Global Spectral Model for Japan region, and MSM the Meso-Scale Model.
 ^b Values of radioactive ratios were mainly determined from the available dust sampling data (see subsection 2.3).
 ^c Volume sources with the sizes of (x, y, z) = (100, 100, 100 m) and (100, 100, 300 m) were assumed for hydrogen explosions at Unit 1 and 3, respectively.