<table>
<thead>
<tr>
<th>Title</th>
<th>Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takuya Kobayashi, Haruyasu Nagai, Masamichi Chino, Hideyuki Kawamura</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Nuclear Science and Technology 50(3) ; p.255-264 CORRIGENDUM 1, CORRIGENDUM 2</td>
</tr>
<tr>
<td>Text Version</td>
<td>Publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://jolissrch.inter.tokai-sc.jaea.go.jp/search/servlet/search?5039304</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1080/00223131.2013.772449</td>
</tr>
<tr>
<td>Right</td>
<td>The Version of Scholarly Record of this Article is published in Journal of Nuclear Science and Technology (2013) , available online at: http://www.tandfonline.com/10.1080/00223131.2013.772449 [Notice]This article published as Open select article.</td>
</tr>
</tbody>
</table>
Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations

Takuya Kobayashi, Haruyasu Nagai, Masamichi Chino, and Hideyuki Kawamura

Japan Atomic Energy Agency, Ibaraki, Japan

Published online: 15 Mar 2013.

To link to this article: http://dx.doi.org/10.1080/00223131.2013.772449

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Versions of published Taylor & Francis and Routledge Open articles and Taylor & Francis and Routledge Open Select articles posted to institutional or subject repositories or any other third-party website are without warranty from Taylor & Francis of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. Any opinions and views expressed in this article are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Taylor & Francis and Routledge Open articles are normally published under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/. However, authors may opt to publish under a Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ Taylor & Francis and Routledge Open Select articles are currently published under a license to publish, which is based upon the Creative Commons Attribution-Non-Commercial No-Derivatives License, but allows for text and data mining of work. Authors also have the option of publishing an Open Select article under the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/.

It is essential that you check the license status of any given Open and Open Select article to confirm conditions of access and use.
Fukushima NPP Accident Related

Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations

Takuya Kobayashi∗, Haruyasu Nagai, Masamichi Chino and Hideyuki Kawamura
Japan Atomic Energy Agency, 2-4, Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
(Received 29 November 2012; accepted final version for publication 18 December 2012)

The source term of the atmospheric release of 131I and 137Cs due to the Fukushima Dai-ichi Nuclear Power Plant accident estimated by previous studies was validated and refined by coupling atmospheric and oceanic dispersion simulations with observed 134Cs in seawater collected from the Pacific Ocean. By assuming the same release rate for 134Cs and 137Cs, the sea surface concentration of 134Cs was calculated using the previously estimated source term and was compared with measurement data. The release rate of 137Cs was refined to reduce underestimation of measurements, which resulted in a larger value than that previously estimated. In addition, the release rate of 131I was refined to follow the radioactivity ratio of 137Cs. As a result, the total amounts of 131I and 137Cs discharged into the atmosphere from 5 JST on March 12 to 0 JST on March 20 were estimated to be approximately 2.0×10^{17} and 1.3×10^{16} Bq, respectively.

Keywords: release amounts; 131I; 137Cs; atmosphere; ocean; Fukushima Dai-ichi nuclear power plant; monitoring data; dispersion simulation; WSPEEDI-II; SEA-GEARN

1. Introduction

A large amount of radionuclides was discharged into the atmosphere by the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident in Japan, which was caused by the great east Japan earthquake and tsunami on March 11, 2011. The radionuclides released from the FNPP1 were transferred eastward by a strong jet stream and reached the west coast of North America within four days [1]. A portion of the airborne radionuclides was deposited into the Pacific Ocean by a dry/wet deposition process. Moreover, water used to cool a damaged nuclear reactor leaked into the ocean. Tokyo Electric Power Company (TEPCO) estimated that 4.7×10^{15} Bq of radioactive materials including 131I, 134Cs, and 137Cs were released directly into the ocean from a pit of the Unit 2 reactor during April 1–6, 2011 [2]. In addition, TEPCO confirmed the following accidental/intentional direct releases into the ocean: (1) an intentional discharge of 1.5×10^{11} Bq of low-level wastewater during April 4–10, (2) an accidental release estimated at 2.0×10^{13} Bq from the Unit 3 reactor on May 11, and (3) an accidental leakage of 2.6×10^{10} Bq from a desalination plant on December 4.

Assessment of the accident’s influence on the marine environment should include a fundamental understanding of the actual conditions of radionuclide release into the ocean through direct and atmospheric pathways. Numerical simulations of radionuclide migration near the coastal region attributed to the FNPP1 accident have been performed by several authors [3–6]. In addition, long-term climatological simulation models that include 10–30 year forecasting results for the entire Pacific region have been reported [7,8]. These studies performed atmospheric dispersion simulations of the radionuclide release into the ocean through the atmospheric pathway on the basis of the source term estimated by previous studies [9–12]. However, it should be noted that while the source term for the period in which the plume flowed over land in Japan is reasonable, that for the period in which the plume flowed into and deposited over the ocean could not be verified [12]. Therefore, it is important to validate the source term of atmospheric release through measurements of the seawater collected from the Pacific Ocean.

In this study, as a first step toward a better understanding of radionuclide dispersion in the Pacific Ocean due to the FNPP1 accident, the source term of atmospheric release estimated by a previous study [12] was validated by coupling atmospheric and oceanic...
dispersion simulations with 134Cs observed in the seawater collected from the Pacific Ocean.

The oceanic dispersion of 134Cs has been simulated using 134Cs deposition on the sea surface calculated by an atmospheric dispersion model. The source term of 134Cs was given by that determined by Terada et al. [12], hereafter the initial source term, by assuming the same release rate for 134Cs and 137Cs. The simulation results obtained using the initial source term showed good agreement with most observed sea surface concentration of 134Cs. However, the simulation results for the eastern North Pacific showed a tendency of underestimating observed sea surface concentration of 134Cs. We believed that this tendency resulted from an underestimation of the initial source term. Therefore, the source term of the atmospheric release of radionuclides, hereafter the new source term, was refined to reduce the underestimation of observed sea surface concentration of 134Cs collected from the Pacific Ocean. This refinement of the source term is a first effort to feed oceanic dispersion analysis results back into atmospheric dispersion analysis.

In Section 2, we describe the four models and discuss the validation results of the initial source term and the estimation method for the new source term from observed 134Cs in seawater. In Section 3, the results of the new source term and simulation of 134Cs using the new source term are explained.

2. Methods

2.1. Numerical models for atmospheric dispersion

The Worldwide Version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI-II) [13] was used to simulate the atmospheric dispersion of radionuclides released from the FNPP1 over the Pacific Ocean. WSPEEDI-II calculates air concentration and the sea surface deposition of radionuclides and radiological doses using the nonhydrostatic mesoscale meteorological prediction model (MM5) [14] and the Lagrangian particle dispersion model (GEARN) [15]. Concerning deposition processes for radioesium in GEARN, the deposition velocity was set at a constant of 1 mm s$^{-1}$ [10]; the amount of wet deposition of each particle was proportional to its radioactivity with the scavenging coefficient Λ s$^{-1}$ calculated from the precipitation intensity γ mm h$^{-1}$, with $\Lambda = \alpha \gamma^\beta$. The constants α and β were set at 5.0 \times 10$^{-3}$ and 0.8, respectively [12].

The calculation period of WSPEEDI-II was from 5 JST (UTC + 9 h) on March 12 to 0 JST on May 1. The computational domain includes the entire North Pacific region (Figure 1) with a horizontal resolution of 80 km. In the vertical resolutions, 23 sigma levels from the surface to 100 hPa and 20 levels from the surface (with a bottom layer of 20 m thickness) to 10 km were set in MM5 and GEARN, respectively. The radioactivity ratio of 134Cs/137Cs was assumed to be 1.0 [16]; therefore, we also treated the release rate of 134Cs to be the same as that of 137Cs in this study. Thus, the source term of 134Cs was given by the initial source term of 137Cs in Terada et al. [12]. The calculated deposition amounts were given to the Lagrangian oceanic particle dispersion model (SEA-GEARN) every 24 h. Further details of WSPEEDI-II and its prediction performance are described in Terada et al. [15].

2.2. Numerical models for oceanic dispersion

SEA-GEARN used the 10-day mean ocean current, simulated by the coupled ocean–atmosphere global model K7 [17], as an input variable. K7 is a fully coupled global general circulation model (GCM) developed by Data Research Center for Marine–Earth Sciences, Japan Agency for Marine–Earth Science and Technology (JAMSTEC/DrC). The coupled GCM is composed of the Atmospheric GCM for the Earth Simulator (AFES) [18] and the Ocean–Sea Ice GCM for the Earth Simulator (OIFES) [19]. The resolution of the AFES component is T42 horizontally (approximately 2.8°) and 24 layers in vertical σ coordinates. The resolution of the OIFES component is 1° horizontally and 45 vertical layers. The four-dimensional variation method, one of the highly efficient data assimilation techniques, was used to execute reanalysis data in K7.

The assimilated elements for the OIFES included temperature and salinity from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) database, sea surface temperature from OISST version 2, sea surface dynamic height anomaly data from TOPEX/Poseidon altimetry, and the monthly mean temperature and salinity field of the World Ocean Database 2001 (WOD2001). The assimilated elements for the AFES included air temperature, specific humidity, and wind vector from National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP). Further details of K7 and its prediction performance are described in Sugiura et al. [17]. The optimization of the initial value of OIFES and sea surface bulk correction coefficients, including the coefficients of each bulk formula of latent heat, sensible heat, and momentum flux, were iterated to approach the observed dataset during the reanalysis period from January 1 to June 30.

SEA-GEARN is a particle random-walk model to simulate radionuclide transport in oceans [20]. Cesium-134 (half life = 2.1 years) was considered in the calculation. The computational domain includes the entire North Pacific region (Figure 1). The horizontal and vertical resolutions are same as those of OIFES in K7. Turbulent mixing was modeled using the Smagorinsky formula [21] for horizontal fluxes. For vertical fluxes, the average for the mixed layer of an entire calculation period of K7, namely 4×10^{-3} m2 s$^{-1}$, was used for the entire model grid. The time step was 20 min.
Figure 1. Simulation area and locations of the sampling stations used for verification and refinement of the source term of atmospheric release from the Fukushima Dai-ichi Nuclear Power Plant (FNPP1). Circles (triangles) on the map indicate calculations within (without) a factor of 10 of the measurements in Figure 3. Crosses on the map indicate that 134Cs released directly into the ocean from the FNPP1 may have an influence on the 134Cs concentration in surface water, as indicated by a preliminary modeling study. Numbers with the prefix “J” indicate the sampling points reported by Honda et al. [22], and those without the prefix “J” indicate the sampling points reported by the Meteorological Research Institute [23].

calculation period of SEA-GEARN was from March 12 to June 30.

The source term of radionuclides released directly into the ocean from the FNPP1 was estimated by modifying the release period (from March 21 to April 30) given by Kawamura et al. [4]. In particular, analysis of the 131I/137Cs activity ratio [3] indicated that the direct release into the ocean began on March 26 and was extended up to June 30. As a result of the above modification, the total amount of direct release into the ocean from March 26 to June 30 was estimated to be approximately 1.1×10^{16} Bq for 131I and 3.5×10^{15} Bq for 137Cs. Because the monitoring data of 131I near the FNPP1 became less than the detection limit on and after May 30, the release period of 131I became shorter, from March 26 to May 29, than that of radioactive cesium.

2.3. Measurement data for the ocean used for the estimation of the new source term

Imprints of former atmospheric nuclear tests were detected in the seawater sample of 137Cs. Thus, 134Cs was adopted for the estimation of the new source term. 134Cs measured in the seawater used for the estimation was observed by Honda et al. [22] and the Meteorological Research Institute, Japan (MRI) [23]. We used SEA-GEARN to perform a preliminary simulation that only considered the direct release from the FNPP1 into the ocean and excluded atmospheric deposition on the sea surface. Sampling points that could have been influenced by direct release from the FNPP1, indicated by crosses on the map shown in Figure 1, as well as those below detection limits were excluded from the new source term estimation. Thus, the measurement data of 54 points were used for the estimation of the new source
Figure 2. Horizontal distribution of sea surface 134Cs obtained by simulation with the initial source term on (a) March 20, (b) April 10, and (c) May 1. Colors of circles in the figures represent observed sea surface concentration of 134Cs at sampling points (b) from March 31 to April 18 and (c) from April 21 to May 17, 2011.
term during observation periods of April 14–May 3, 2011 for Honda et al. [22] and March 31–May 17, 2011 for MRI [23].

2.4. Validation of the source term by 134Cs simulation

The horizontal distribution of the sea surface concentration of 134Cs used for calculation with the initial source term and for measurements obtained during March 31–May 17 is shown in Figure 2. Because a coarse resolution of the horizontal grid space was used in the calculation, the results of the surface concentration of radionuclides close to the Japanese coast that are reported in Kawamura et al. [4] are not detailed in the present study. An image of the horizontal distribution recorded on March 20 (Figure 2(a)) shows that 134Cs was deposited on the sea surface along Fukushima and Miyagi prefectures and in the offshore area northeast and southeast of the FNPP1. Less than 1×10^{-3} Bq L$^{-1}$ of 134Cs, a substantially low amount, reached the coastal area of California, USA and the Bering Sea. One to two months after the FNPP1 accident (Figure 2 (b) and (c)), approximately 1×10^{-3} Bq L$^{-1}$ of 134Cs was reported near Japan in areas such as the Okhotsk Sea and Japan Sea. Thus, the FNPP1 accident widely dispersed radionuclides across the entire North Pacific region.

The results of a comparison between the simulation and measurements of the sea surface concentration of 134Cs and statistics on the percentage of calculations of sea surface concentration of 134Cs that are within factors of 2, 5, and 10 of the measurements are plotted in Figure 3 and summarized in Table 1, respectively. The simulation results using the initial source term showed good agreement with observed data (Figure 3) with an FA10 of 75% (Table 1). However, simulation results in some area of the eastern North Pacific (Nos. 21, 25, 37, 49, 55–58, and 60 in Figure 3) showed a tendency of underestimation against observed data. The horizontal distribution of the sea surface concentration of 134Cs in Figure 2 indicates that the simulation results in the eastern North Pacific were also lower than the measurement results. This tendency indicates that the actual abundance of 134Cs in the eastern North Pacific was higher than that obtained by calculation using the initial source term. We attributed this tendency to an underestimation of the release rate in the initial source term for some periods. The initial source term was estimated on the basis of environmental monitoring data on land. However, monitoring data in the ocean were not considered. Therefore, the source term of the atmospheric release of radionuclides, hereafter the new source term, was refined using 134Cs observed in the seawater collected from the North Pacific.

2.5. Estimation of the new source term

We set the estimation period as March 12–20 to reflect the large release rate change reported by previous studies [10,12]. The release period was separated into 18 terms, as shown in Figure 4. Numbers with the prefix “a” in the figure indicate a period in which the release rates were determined on the basis of land monitoring data [9,10]. We estimated the new release rate during these periods. No land monitoring data was available; therefore, the hydrogen explosion at Unit 3 was assumed to be the same as the explosions at Unit 1 in the initial source term [12]. For this reason, the Unit 3 event was time-averaged.

Table 1. Statistics of sea surface concentration of 134Cs calculated from data points between March 31 and May 17, 2011. Values of FA2, FA5, and FA10 denote the percentage of calculations within factors of 2, 5, and 10 of the measurements, respectively.

<table>
<thead>
<tr>
<th>Release rate used for calculations</th>
<th>FA2 (%)</th>
<th>FA5 (%)</th>
<th>FA10 (%)</th>
<th>Correlation coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial source term</td>
<td>35</td>
<td>60</td>
<td>75</td>
<td>0.54</td>
</tr>
<tr>
<td>New source term</td>
<td>37</td>
<td>65</td>
<td>77</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Figure 3. Scatter diagram of the sea surface concentration of 134Cs comparing measurements and calculations using the initial source term. Solid lines show 1:1 lines, and the areas between two long-dashed (short-dashed) lines indicate the bands within a factor of 10 (5). The numbers in the figure denote the sampling points shown in Figure 1.
to “term 5” for estimation using measurement data in the ocean.

The new release rates at each term were estimated by the following method. First, two model simulations were conducted to calculate the sea surface concentration of 134Cs. These included atmospheric dispersion simulation by GEARN that used the initial release rate, followed by oceanic dispersion simulation by SEA-GEARN that used sources such as direct release from the FNPP1 into the ocean and atmospheric deposition derived from the simulation of GEARN. The correction coefficient for the initial source term, which assumed that these dispersion simulations are correct, was obtained by measuring the calculated sea surface concentration of 134Cs at the sampling point i as follows:

$$R = \frac{M_i}{C_i},$$

where R_i is the correction coefficient at the sampling point i, M_i is the measured sea surface concentration (Bq L$^{-1}$) of 134Cs at the sampling point i, and C_i is the calculated sea surface concentration (Bq L$^{-1}$) of 134Cs at the sampling point i at 12 JST on the same observed date. The range of R_i was 0.024 to 706.

Next, to investigate the correction quantity on the basis of the cumulative deposition amount, i.e., to estimate which release period should be corrected, the contribution of deposition must be measured for each release period at each sampling point. In particular, unit release (1 Bq h$^{-1}$) calculations during each of the 18 terms of the release periods shown in Figure 4 were performed by GEARN. The daily deposition data of each simulation result were used as the input in the calculation of SEA-GEARN. The direct release from the FNPP1 into the ocean was not considered in the calculation of SEA-GEARN. The sea surface concentration D_j (Bq L$^{-1}$) of 134Cs at the sampling point i at 12 JST on the same observed date were extracted from the calculation results of each term. A large D_j indicates that the term j at the sampling point i has a large contribution to the deposition. The contribution at each term j and sampling point i are obtained by considering the initial source term as follows:

$$U_{ij} = D_{ij} \cdot I Rate_j,$$

where $I Rate_j$ is the initial release rate (Bq h$^{-1}$) at term j, which was estimated by Terada et al. [12]. As a result, the contribution ratio at each term j to the sum of all terms at the sampling point i is written as

$$CU_{ij} = \frac{U_{ij}}{\sum_{j=1}^{18} U_{i(j)}},$$

The correction coefficient X_j, which considers the weighting of the contribution ratio at each sampling point i, is written as

$$X_j = 10^{\left(\frac{\sum_{i=1}^{14} CU_{i(j)} \log_{10} R_{ij} \sum_{i=1}^{14} CU_{i(j)}}{\sum_{i=1}^{14} \sum_{j=1}^{18} CU_{i(j)}}\right)}.$$

Finally, in this study, the new release rate $N Rate_j$ (Bq h$^{-1}$) at term j is written by multiplying $I Rate_j$ with the rate X_j.

$$N Rate_j = I Rate_j \cdot X_j.$$

3. Results

3.1. Estimation results for the new source term

The new release rate of 137Cs was derived from that of 134Cs because the assumed radioactivity ratio of 134Cs/137Cs is 1.0. The radioactivity ratio of 131I/137Cs determined by Terada et al. [12] was also used for estimating the new release rate of 131I. The time variation and values of the new source terms of 131I and 137Cs are shown in Table 2. These time variations are compared with the initial release rate in Figure 4. For estimating the new release rate, a coarse oceanographic model of 1° horizontal resolution was used; therefore, a sharp change in the release rate could not be expressed.

The correction coefficient X_i exceeded one in all periods. The lowest value was 1.1 at term 10, from 18 JST on March 17 to 6 JST on March 18, and the highest value was 4.4 at term 3, from 15 to 23 JST on March 13; the average value was 2.5.

The new release rate of 137Cs reached the peak of 8.9×10^{13} Bq h$^{-1}$ at the term of the hydrogen explosion in Unit 1, from 15:30 to 16 JST on March 12, and dropped to 2.3×10^{13} Bq h$^{-1}$ at term 1, from 16 JST on March 12 to 0 JST on March 13. The rate increased gradually with time to reach 3.7×10^{13} Bq h$^{-1}$ at term 3, from 15 to 23 JST on March 13. Because the
At term 5, from 11 to 19 JST on March 14, the total estimation was $2.0 \times 10^{14} \text{ Bq}$ during the period in which the release rate of the hydrogen explosion in Unit 3 was time-averaged. However, it was impossible to classify the volume of the amount released as a result of this explosion.

The temporal change of the release rate for term a3, from 19 JST on March 14 to 17 JST on March 15, was estimated in detail by previous investigations [9,10]. However, only air dose rates were available as measurements; the release rates of major radionuclides were determined through reproduction of the air dose rates from ground shine by assuming the radioactivity ratio of the radionuclides. The new release rate was 1.8 times larger than the initial release rate. Thus, atmospheric dispersion simulation with the new release rate will result in overestimation of the surface deposition concentration. The contribution of the wet deposition according to rain or snow coverage at this accident is high. Then, for atmospheric dispersion simulation, increasing the wet deposition intensity by approximately 0.6 corrects the new estimation, and the surface deposition concentration would be in agreement with the land monitoring data. However, when the wet deposition intensity is 0.6 times, the sea surface concentration may be underestimated again. Moreover, considering the overestimation of 137Cs deposition on the land near the northern part of Japan reported by Terada et al. [12] compared with airborne monitoring, it is expected that the atmospheric dispersion calculation with the initial release rate for this period could reproduce the measurements of 134Cs in sea water by reducing the error in deposition prediction. The appropriate source term is obtained by conducting sensitivity analysis of the parameter of wet deposition intensity and repeating the same work as reported in this study by using model simulation and the observed sea surface concentration.

The total amounts of 131I and 137Cs discharged into the atmosphere from 5 JST on March 12 to 0 JST on May 1 are estimated to be approximately 2.0×10^{17} and $1.3 \times 10^{16} \text{ Bq}$, respectively.

3.2. Cesium-134 simulation with the new source term

The horizontal distribution of the sea surface concentration of 134Cs used for calculation with the new source term and for measurements from March 31 to May 17, 2011 is shown in Figure 5. A comparison of Figure 5 with Figure 2 reveals that the simulation results with the new source term increased the traffic transport of radionuclides to the east. As shown in Figure 5 (b)
and (c), the extension of a green contour area of approximately 1×10^{-2} Bq L$^{-1}$ northeast of the FNPP1 agrees with the observed data. Figure 6 shows the results of comparison between the simulation and measurements of the sea surface concentration of 134Cs using the new source term. The results obtained with the initial source term are also plotted for comparison. Because all the new release rates at all 18 terms increased, the simulated concentration increased relative to the results obtained with the initial release rate. The statistics on the
Table 3. Amounts of 131I and 137Cs released into the atmosphere and ocean and those deposited on land and ocean surfaces (Bq).

<table>
<thead>
<tr>
<th></th>
<th>131I</th>
<th>137Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>New source term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosphere</td>
<td>2.0×10^{17}</td>
<td>1.3×10^{16}</td>
</tr>
<tr>
<td>Ocean</td>
<td>1.1×10^{16}</td>
<td>3.5×10^{15}</td>
</tr>
<tr>
<td>Deposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>7.4×10^{16}</td>
<td>5.8×10^{15}</td>
</tr>
<tr>
<td>Ocean</td>
<td>9.9×10^{16}</td>
<td>7.6×10^{15}</td>
</tr>
<tr>
<td>Gross supply to the North Pacific</td>
<td>1.1×10^{17}</td>
<td>1.1×10^{16}</td>
</tr>
</tbody>
</table>

percentage of calculations of the sea surface concentration of 134Cs that are within factors of 2, 5, and 10 of the measurements are summarized in Table 1. All statistic values were improved. A comparison of the statistics obtained with the new source term with those obtained with the initial source term reveals that FA5 increased from 60% to 65%. These results indicate that radionuclides observed in seawater can be actually used for estimating the atmospheric source term of nuclear accidents that occur in coastal areas. However, the simulation results in some areas of the eastern North Pacific remain underestimated (Figure 6). As stated in Section 3.1, verification of the atmospheric deposition process plays an important role in resolving these underestimation issues.

Table 3 summarizes the amounts of 131I and 137Cs that were released into the atmosphere and the ocean and those deposited on the land and ocean surfaces. The deposition amounts of 131I were 7.4×10^{16} and 9.9×10^{16} Bq on the land and ocean surfaces, respectively. For 137Cs, the deposition amounts were 5.8×10^{15} and 7.6×10^{15} Bq on the land and ocean surfaces, respectively. The results of gross supply to the North Pacific from atmospheric deposition and from direct release from the FNPP1 can be estimated to be 1.1×10^{17} and 1.1×10^{16} Bq for 131I and 137Cs, respectively. The new source term of atmospheric and oceanic release offers important information for presuming the remaining radionuclides at the FNPP1.

4. Summary

The source term of the atmospheric release of radionuclides from the FNPP1 has been refined using observed 134Cs in the seawater collected from the Pacific Ocean and four types of numerical models. The results indicated that the release rates of 137Cs and 131I became larger than those previously estimated for most of the period. In addition, total amounts of 131I and 137Cs discharged into the atmosphere from 5 JST on March 12 to 0 JST on May 1 were estimated to be approximately 2.0×10^{17} and 1.3×10^{16} Bq, respectively. A comparison of the statistics obtained using the new source term with those obtained with the initial source term showed that all statistic values were improved. This study demonstrated the effectiveness of using radionuclides observed in seawater for estimating the source term of atmospheric release in case of nuclear accidents occurring in coastal areas.

The new source term obtained in this study is a first guess value; therefore, these results contain uncertainty. Various types of models that include physical processes and parameters, resolutions, and regions in addition to environmental data are needed to determine the probable source term. Detailed source term estimation obtained using the coupled atmospheric and oceanic dispersion simulation remains a topic for future research.

Acknowledgements

The authors would like to thank Akiko Furuno for providing the WSPEEDI-II results; Yoichi Ishikawa, Hiromichi Igarashi, and Shiro Nishikawa for providing the K7 results; and Toyokazu Kakefuda for his technical support.
References

It has recently come to the authors’ attention that there is an error in the abstract in the published version of this paper. The integration time period for total amounts in the last sentence of the abstract is not correct. The correct sentence should read as follows:

As a result, the total amounts of 131I and 137Cs discharged into the atmosphere from 5 JST on 12 March to 0 JST on 1 May were estimated to be approximately 2.0×10^{17} and 1.3×10^{16} Bq, respectively.

The authors would like to apologize for this oversight.

Taylor & Francis
May 2013
CORRIGENDUM

It has recently come to the authors’ attention that there is an error in Figure 4 in the published version of this paper. The errors are in the release rate in “I-131” and “I-131 (Terada et al. (2012))” for the estimation periods 6-13. The remainder of the figure was correct. Note that Table 2 showing the source data of Figure 4 is correct and the text making reference to Figure 4 is not affected by this error. The figure is now reproduced correctly below:

![Figure 4](image)

Figure 4. Time variation of estimated new release rates of 131I and 137Cs from March 12 to 20, 2011. Dotted lines show the initial release rates reported by Terada et al. [12]. Divided periods of estimation are represented by gray lines. The date and time of important plant events are also shown in figure. This figure is modified from Figure 4 of Katata et al. [10].

The authors would like to apologize for this oversight.

Taylor & Francis
May 2013