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AC Josephson current density in a Josephson junction with DC bias is spatially modulated

by an external magnetic field, and induces an electromagnetic (EM) field inside the junction.

The current-voltage (I-V ) curve exhibits peaks due to the resonance between the EM field

and the spatially modulated AC Josephson current density. This is called Fiske resonance.

Such a spatially modulated Josephson current density can be also induced by a non-uniform

insulating barrier and the Fiske resonance appears without external magnetic field. This is

called zero-field Fiske resonance (ZFFR). In this paper, we theoretically study the ZFFR

coupled with spin-waves in a superconductor/ferromagnetic insulator/superconductor junc-

tion (ferromagnetic Josephson junction) with a non-uniform ferromagnetic insulating barrier.

The resonant mode coupled with spin-waves can be induced without external magnetic field.

We find that the I-V curve shows resonant peaks associated with composite excitations of

spin-waves and the EM field in the junction. The voltage at the resonance is obtained as a

function of the normal modes of EM field. The ZFFRs coupled with spin-waves are found as

peak structures in the DC Josephson current density as a function of bias voltage.

1. Introduction

The DC Josephson effect is characterized by the DC current flowing without a voltage-drop

between two superconductors separated by a thin insulating barrier.1) When a DC voltage V is

applied to the junction, the AC Josephson current with frequency (2e/~)V flows in the junction

driven by the difference of phases in two superconducting order parameters, i.e., Josephson-

phase θ. If both the DC voltage and a magnetic field are applied to the junction, whose width

L is smaller than the Josephson penetration depth λJ, the AC Josephson current density is

spatially modulated and generates the electromagnetic (EM) field inside the junction. In this

case, the current-voltage (I-V ) curve exhibits peaks due to the resonance between the AC

Josephson current density and the EM field. This is called Fiske resonance.2–6)

Josephson junctions composed of ferromagnetic metal (FM) and superconductors (Ss) are

extensively studied for the last decade. The S/FM/S junctions exhibit fascinating phenomena

which are not observed in the conventional Josephson junctions.7–11) The interaction between

Cooper pairs and spin waves in the FM is of importance in the transport properties in the
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S/FM/S and S/I/FM/S junctions. The dynamics of θ coupled with spin-waves in the FM

has been investigated theoretically12–20) and experimentally.21) However, the Fiske resonance

coupled with spin-waves is not yet observed experimentally.

Another type of Josephson junction with ferromagnetic insulator (FI) instead of the FM

is also examined. It is reported that the dissipation effect in the S/FI/S junction is smaller

than that the S/FM/S junction.22–24) The damping of spin-waves is also very small in the FI

compared to the case of the FM.25–27) Therefore, the coupling between θ and spin-waves can

be observed more clearly in the S/FI/S junction. In fact, in the S/FI/S junction, it is expected

that the Fiske resonance has clear multiple structures associated with spin-wave excitation.28)

Here, we note that the Fiske resonance in the conventional Josephson junction is also

induced by the non-uniform insulating barrier in the junction, since AC Josephson current

density driven by a DC voltage is spatially modulated and then the EM field is generated

inside the junction. In this case, the Fiske resonance occurs without external magnetic field.

It is called zero-field Fiske resonance (ZFFR), which originates from the resonance between the

EM field and the spatially modulated AC Josephson current density due to the non-uniform

insulating barrier. This phenomenon has been widely studied experimentally and theoretically

in the Josephson junction.6,29–32)

In this paper, we theoretically study the ZFFR coupled with spin-waves in an S/FI/S

junction with a non-uniform FI. The merit of such a non-uniform geometry of junction is

that the spatially modulated AC Josephson current density can be induced with no external

magnetic field and thus the Fiske resonance occurs without external magnetic field. By solving

the equation of motion of θ coupled with spin-waves, it will be found that the I-V curve shows

resonant peaks. The voltage at the resonances is obtained as a function of the normal modes of

EM field, which indicates composite excitations of the EM field and spin-waves in the S/FI/S

junction. Dependence of those resonances on distributions of the Josephson critical current

density is presented.

The rest of this paper is organized as follows. In Sec. II, we formulate the Josephson

current in a Josephson junction with a non-uniform ferromagnetic insulator. In Sec. III, the DC

component of Josephson current density at the ZFFR with spin-waves is calculated analytically

and numerically. Summary is given in Sec. IV.

2. FORMULATION of JOSEPHSON CURRENT in FERROMAGNETIC

JOSEPHSON JUNCTION with MAGNETIC INSULATOR

The system considered is a Josephson junction with a FI sandwiched by two superconduc-

tors with s-wave symmetry as shown in Fig. 1. The geometry of the junction is assumed to

be a non-uniform junction to impose non-uniform Josephson current density without external

magnetic field.33) The magnetization in the FI is parallel to the z-direction. Here, we assume
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Fig. 1. (Color online) Schematic of a superconductor/ferromagnetic insulator/superconductor

(S/FI/S) junction with the magnetization M in the FI. The non-uniform geometry of the junction

with the width L is schematically illustrated.

a simple model of non-uniform Josephson current density given by,

J (y, t) = Jc (y) sin [ωJt+ θ (y, t)] , (1)

Jc (y) = J0.P (y)

[
(1− ζ)

cosh [κ (1− 2y/L)]

cosh (κ)

+ ζ
sinh [κ (1− 2y/L)]

sinh (κ)

]
, (2)

P (y) =

{
1 for 0 ≤ y ≤ L,
0 for y < 0 or L < y,

(3)

where Jc(y) and ωJ = (2e/~)V are the Josephson critical current density and Josephson

frequency with bias voltage V , respectively.34) J0 is the Josephson critical current density

for the uniform geometry of junction, i.e., ζ = κ = 0. The electromagnetic dynamics induces

θ(y, t) depending on space and time. The distribution of Jc(y) is determined by two parameters

κ and ζ, where 0 ≤ ζ ≤ 1 is imposed. In the S/FI/S junction, spin-waves can be excited by

the EM field inside the FI due to the AC Josephson current. In this situation, the equation

of motion for θ(y, t) coupled with spin waves is described by,28)

∂2θ (y, t)

∂y2
=

1

c2

[
∂2θ (y, t)

∂t2
+

1

µ0

∫ ∞
−∞

dy′dt′χ(y − y′, t− t′)∂
2θ (y′, t′)

∂t′2

+ Γ
∂θ(y, t)

∂t
+ Γ

1

µ0

∫ ∞
−∞

dy′dt′χ(y − y′, t− t′)∂θ (y′, t′)

∂t′

]
+

1

λ2J 〈Jc(y)〉
J(y, t) +

1

λ2J 〈Jc(y)〉
1

µ0

∫ ∞
−∞

dy′dt′χ(y − y′, t− t′)J(y′, t′), (4)

〈Jc(y)〉= 1

L

∫ L

0
dyJc(y). (5)
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The effective velocity of light in the FI c is given by c =
√
d/[(d+ 2λL)εµ0] , Josephson

penetration depth λJ =
√
~/[2eµ0(d+ 2λL)J0], dielectric constant ε and permeability µ0.

The London penetration depth is denoted by λL and Γ ≡ (εR)−1 means the damping factor

caused by quasi-particle resistivity R in the FI. The magnetic susceptibility of the FI in the

linearized Landau-Lifshitz-Gilbert equation is given by,25)

χ (q, ωJ) = γMz
ΩS + iαωJ

Ω2
S − (1 + α2)ω2

J + i2αΩSωJ
, (6)

where Mz, α, and γ are the z-component of the magnetization, Gilbert damping factor, and

the gyromagnetic ratio, respectively. Magnetic susceptibility and spin-wave energy ~ΩS in

a magnetic material are generally modified by geometry and thickness. On the other hand,

Eq. (6) is obtained by assuming a uniform FI. This is justified, because the magnetic sus-

ceptibility and ~ΩS are insensitive to the thickness of FI, provided that the conformation of

the ferromagnetic materials changes on a scale of nanometers.35) Therefore, we adopt Eq. (6)

and ~ΩS obtained in the uniform FI36) for the non-uniform FI as an approximation, since

we consider the thickness change of FI to be in a range of a few nanometers. In the FI, the

dispersion relation of spin-waves with the frequency ΩS is given by

ΩS = ΩB +
η

~
q2, (7)

where ΩB = γ(HK−Mz/µ0). The anisotropic field and the stiffness of spin-waves in the FI are

denoted by HK and η, respectively. The spin-wave having a finite wave number q is neglected

in the Fiske resonance because of the following reason: In Eq. (7), the first term ΩB is caused

by the anisotropic and demagnetizing fields, and the wave number q is given by nπ/L. In a

conventional FI, ~ΩB is about tens of µeV.25) On the other hand, ηq2 is of the order peV due

to the small stiffness of spin-waves37) when L is a few mm. Below, we only consider q = 0

mode for spin-waves with the constant frequency ΩB.

3. DC Josephson current density with ZFFR and numerical results

In order to obtain the solution of Eq (4), we expand θ(y, t) in terms of the normal modes

of the EM field generated by the AC Josephson current as follows,

θ(y, t) = Im

[ ∞∑
n=0

gne
iωJt cos (kny)

]
, (8)

where gn is a complex number and kn = nπ/L. This equation of θ(y, t) satisfies [∂θ/∂y]y=0 =

[∂θ/∂y]y=L = 0, which is Kulik’s boundary condition.5,6) We consider θ(y, t) to be a small

perturbation and solve Eq. (8) by taking J(y, t) to be Jc(y) sin(ωJt). Substituting Eq. (8) into

Eq. (4), gn is determined as,

gn =− c2J0
λ2J 〈Jc(y)〉
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× 1 + χ(−ωJ)/µ0
ω2
J[1 + χ(−ωJ)/µ0]− ω2

n + iΓωJ[1 + χ(−ωJ)/µ0]

× [(1− ζ)Bn + ζCn] , (9)

Bn =
2 cos(nπ/2)

cosh(κ)

∫ 1

0
dy cos(nπy/2) cosh(κy),

Cn =
2 sin(nπ/2)

sinh(κ)

∫ 1

0
dy sin(nπy/2) sinh(κy),

where ωn = (cπ/L)n.

Next, we calculate the DC Josephson current density JDC coupled with spin waves as a

function of V . The function, sin(ωJt+θ(y, t)), is expanded in terms of θ(y, t) and JDC is given

by

JDC ≈ lim
T→∞

1

T

∫ T

0
dt

1

L

∫ L

0
dyJc(y) cos(ωJt)θ(y, t). (10)

Introducing Eqs. (8) and (9) into Eq. (10), the analytic formula of JDC without external

magnetic field is obtained as,

JDC ≈
∞∑
n=0

c2κJ0
λ2J(1− ζ) tanh(κ)

Ψn(ωJ)

[
(1− ζ)

κ cos2
(
nπ
2

)
tanh(κ)

κ2 + (nπ/2)2
+ ζ

κ sin2
(
nπ
2

)
tanh−1(κ)

κ2 + (nπ/2)2

]2
,(11)

Ψn(ωJ)≡ ΓωJ[1 + 2χ1(ωJ)/µ0] + ω2
nχ2(ωJ)/µ0 + ΓωJ[χ2

1(ωJ) + χ2
2(ωJ)]/µ20[

ω2
J[1 + χ1(ωJ)/µ0]− [ω2

n + ΓωJχ2(ωJ)/µ0]
]2

+
[
ΓωJ[1 + χ1(ωJ)/µ0] + ω2

Jχ2(ωJ)/µ0
]2 ,(12)

where χ1(ωJ) = Re[χ(ωJ)], χ2(ωJ) = Im[χ(ωJ)]. Equation (11) clearly demonstrates that zero-

field resonant modes depend on parameters κ and ζ which determine the distribution of the

Josephson critical current density flowing through the FI. Hence, one can easily find that three

cases are possible for the zero-field resonance. When ζ = 0 (ζ = 1), the zero-field resonance

only appears at even (odd) numbers of n. On the other hand, when ζ 6= 0, 1, the zero-field

resonance appears at all integers n.

Next, we derive a condition for the ZFFR in the present system by analyzing Eq. (12).

When the denominator of Ψn(ωJ) is minimum with respect to ωJ, Ψn(ωJ) takes a maximum,

so that the DC Josephson current exhibits the resonant behavior. The DC voltage, at which

the resonance occurs, is determined by neglecting the damping term of Eq. (12) as α = Γ = 0.

Setting the denominator of Ψn(ωJ) to be zero, the voltage is given by

V ± =
~
2e

√√√√√1

2

ω2
n + Ω2

S +
γMzΩS

µ0
±

√(
ω2
n + Ω2

S +
γMzΩS

µ0

)2

− 4ω2
nΩ2

S

. (13)

We have two DC voltages, V + and V −, at which the ZFFR occurs for each n. The integer n is

determined by the mode of the EM field in the junction. Eq. (13) clearly shows that there are

two dispersion relations, which result from the coupling between the EM field and spin-waves

in the FI. Note that the amplitude of ZFFR strongly depends on κ and ζ as we will see in the
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Fig. 2. (Color online) DC Josephson current density (JDC) as a function of DC voltage (V ) in the

S/FI/S junction. The black solid line is the total DC Josephson current density. The dashed line

(Red) is the DC Josephson current density in n = 1, where n is the mode number of EM field (see

Eq. (11)). The inset is the distribution of Josephson critical current density as a function of y.

next section.

At last, we numerically evaluate Eq. (11). Parameters are set to be Mz = 0.1 T, α =

1 × 10−4,27) ΩB/ωL = 3, Γ/ωL = 0.5,38) γ = 2.2 × 105 m/A·s,39) and ωL ≡ cπ/L = 30 GHz.

Instead of plotting an I-V curve, JDC at the resonances will be shown as a function of the

voltage V below. The amplitude of JDC is associated with a height of resonant peak or a

jump in the I-V curve (for instance, see Ref6)). In the following numerical calculations, we

exclude the contribution of n = 0 in Eq.(11), since we discuss about the resonance between

the spatially modulated AC Josephson current and standing wave of EM field.

Figure 2 shows JDC induced by ZFFR as a function of V 40) for κ = 0 and ζ = 0.4. With

these parameters, Jc(y) is linearly distributed in the junction (see the inset of Fig. 2). The black

(solid) and red (dashed) lines are JDC and the component with n = 1 in Eq. (11), respectively.

This result clearly demonstrates that the Fiske resonance occurs without external magnetic

field, i.e., ZFFR. The additional resonance peak around V/(ωL~/2e) ≈ 3.3 arises from the

presence of spin-wave excitation in the FI. This resonance comes from the inhomogeneity of

Josephson critical current density induced by the non-uniform geometry of junction. Moreover,

in the present case, Eq. (11) becomes

JDC =
c2J0

λ2J(1− ζ)

∞∑
n=0

Ψn(ωJ)ζ2
[

sin (nπ/2)

(nπ/2)

]4
. (14)

In Eq. (14), it is found that the ZFFR only occurs at odd number of n. Since resonant peaks

of ZFFR with n > 1 are much smaller than that with n = 1, main contribution to the ZFFR

as depicted in Fig. 2 is the mode of n = 1.
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Fig. 3. (Color online) DC Josephson current density (JDC) as a function of DC voltage (V ) in the

S/FI/S junction. The black solid line is JDC. Red (solid), blue (dashed), and green (chain) lines are

the DC Josephson current densities in each n, where n is mode number of EM field (see Eq. (11)).

Inset is the distribution of Josephson critical current density as a function of y.

Figure 3 is the case for κ = 2 and ζ = 0.4. The black (solid) line is JDC. Red (solid),

blue (dashed), and green (chain) lines are each component with n in Eq. (11). It is found

that ZFFR peaks of JDC clearly appear at n ≥ 1 in Fig. 3 in contrast to Fig. 2. The reason

is simply due to the non-linear Josephson critical current density to contain both symmetric

and antisymmetric components with respect to y. The present non-linear distribution of the

Josephson critical current density will be more realistic. Therefore, we can expect that multiple

resonant peaks such as Fig. 3 is practically observed without external magnetic field.

4. Summary and Discussion

We have theoretically studied the zero-field Fiske resonance (ZFFR) in the S/FI/S junction

with several patterns of spatial variation in the Josephson critical current density, which is

induced by a non-uniform ferromagnetic insulating barrier. Such a non-uniform AC Josephson

current density can excite the EM field inside the FI without external magnetic field. It

is found that the current-voltage (I-V ) curve shows two resonant peaks without external

magnetic field in the present system, i.e., the ZFFR coupled with spin-waves occurs. Voltage

at the resonances is obtained as a function of the normal modes of EM field, which indicates

composite excitations of the EM field and spin-waves in the S/FI/S junction.

The present study will provide a platform to study the dynamics of Josephson phase and

the magnetic excitation. Furthermore, in the non-uniform S/FI/S junction, several applica-

tions such as spin-current emitter by utilizing spin-wave excitation in the FI 41) may be also

possible in analogy with the emission of coherent THz radiation in the high-Tc cuprate,42–44)
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although Josephson junctions based on the high-Tc cuprate are usually laminated structures

differently from the single Josephson junction discussed here. In fact, the inhomogeneity of

the junction was one of essential factors to realize the emission without external magnetic

field.42–44) However, novel devices using the S/FI/S junction are beyond the scope of the

present paper and will be studied elsewhere.
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