

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

T: 41a	Cellulose gels produced in room temperature ionic liquids by
Title	ionizing radiation
Author(s)	Atsushi Kimura, Naotsugu Nagasawa, Mitsumasa Taguchi
Citation	Radiation Physics and Chemistry, 103, pp.216-221
Text Version	Author
	http://jolissrch-inter.tokai-
URL	sc.jaea.go.jp/search/servlet/search?5046677
DOI	http://dx.doi.org/10.1016/j.radphyschem.2014.06.003
	This is the author's version of a work that was accepted for
	publication in Radiation Physics and Chemistry. Changes resulting
	from the publishing process, such as peer review, editing, corrections,
Dicht	structural formatting, and other quality control mechanisms, may
night	not be reflected in this document. Changes may have been made to
	this work since it was submitted for publication. A definitive version
	was subsequently published in Radiation Physics and Chemistry,
	vol.103, Oct 2014, DOI: 10.1016/j.radphyschem.2014.06.003.

1	Cellulose gels produced in room temperature ionic liquids
2	by ionizing radiation
3 4 5	Atsushi Kimura ^{a,*} , Naotsugu Nagasawa ^a , and Mitsumasa Taguchi ^a
6	^a Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
7	*Corresponding author:
8	E-mail: kimura.atsushi81@jaea.go.jp, nagasawa.naotsugu@jaea.go.jp,
9	taguchi.mitsumasa@jaea.go.jp
10	TEL: 81-27-346-9384 FAX: 81-27-346-9687
11	
12	Abstract
13	Cellulose-based gels were produced in room temperature ionic liquids (RTILs)
14	by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt.% in
15	1-ethyl-3-methylimidazolium (EMI)-acetate or <i>N</i> , <i>N</i> -diethyl- <i>N</i> -methyl-
16	N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt.%, and
17	irradiated with γ -rays under aerated condition to produce new cellulose gels. The gel
18	fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of
19	10 kGy were 13 % and 19 %, respectively. The formation of gel fractions was found to
20	depend on the initial concentration of cellulose, water content, and irradiation

22	dichloromethane, N, N-dimethylacetamide, and RTILs.
23	
24	Highlight
25	• Cellulose gels were produced in room temperature ionic liquids (RTILs).
26	• Water plays a crucial role in the cross-linking reaction.
27	• Cellulose gels swollen with RTILs show good electronic conductivity (3.0
28	$mS \cdot cm^{-1}$).
29	
30	Keywords
31	cellulose, gel, room temperature ionic liquid, ionizing radiation.
32	
33	
34	
35	
36	
37	
38	

temperature. The obtained gel readily absorbed water, methanol, ethanol,

39 **1. Introduction**

40 In recent years, natural polymers have attracted significant attention as alternative green materials because of the exhaustion of petroleum and non-renewable resources, 41 42 and the increase in environmental pollution. Polysaccharides such as cellulose, 43 chitin/chitosan, starch, and alginic acid are natural polymers. Large quantities of polysaccharide-based biomass are ubiquitous on Earth. They possess unique structures, 44 45 distinctive properties, and offer the advantages of being non-toxic and biodegradable. 46 They are often modified to produce functional materials, such as viscose rayon, 47 personal care products, and biodegradable plastics. Ionizing radiation is widely used as 48 a convenient tool for the modification of polysaccharides via decomposition, grafting, 49 and cross-linking (Seko et al., 2005). Besides, chemically modified polysaccharides 50 such as carboxymethyl cellulose, hydroxypropylmethyl cellulose, carboxymethyl 51 chitin/chitosan, and carboxymethyl starch, all of which dissolve in water at high 52 concentrations, have also been irradiated with ionizing radiation to obtain derivative 53 gels that are used as materials for making water absorbents and wound dressings (Fei 54 et al., 2000; Wach et al., 2001; Zhao et al., 2003; Zhao et al., 2008; Nagasawa et al., 55 2004; Pekel et al., 2004; Wang et al., 2007). Until now, radiation cross-linked materials have only been produced either from polysaccharide derivatives or using cross-linking 56

57 reagents, as certain natural polysaccharides have poor solubility in water and organic 58 solvents as well as low chemical reactivity (Kumar, 2000). These limitations could 59 possibly be circumvented by the use of organic solutions that have high 60 proton-accepting ability, such as chloroform in dimethylsulfoxide, 61 N-methylmorpholine-N-oxide, lithium chloride (LiCl) in N,N-dimethylacetamide, 62 calcium chloride in methanol, and room temperature ionic liquids (RTILs), which can 63 cleave the hydrogen bonds of the polysaccharides to form solutions in the 64 concentration range of 0.1-20 wt.% (Swatloski et al., 2002; Heinze et al., 2005; 65 Fukaya et al., 2008).

66 Among these organic solutions, RTILs have attracted much attention in the 67 diverse fields of chemistry, biology, engineering, and environmental science because of 68 their unique functionalities such as specific solubility, chemical and thermal stabilities, 69 unusual dynamical properties linked to high viscosity, and wide potential windows 70 (Rogers, 2003). So far, several studies have been reported in the fields of photo- and 71 radiation chemistry to identify more effective reactions between the charged reactive 72 species in RTILs (Wishart et al., 2003; Wishart et al., 2005; Kondoh et al., 2009; Katoh 73 et al., 2009; Kimura et al., 2010). In addition, extensive fundamental and applied 74 research have been conducted on RTILs used in various fields such as

75	radiation-induced polymerization (Qi et al., 2008) and radiation-induced grafting
76	polymerization (Hao et al., 2009). However, to the best of our knowledge, there are no
77	studies reported so far on the use of RTILs in radiation cross-linking reactions.
78	Therefore, in this study, we focus on the application of RTILs as "specific
79	solvents for the dissolution of polysaccharides," and their use in establishing a "proper
80	reaction field for radiation cross-linking." We propose a new method for the radiation
81	modification of polysaccharides using RTILs to produce new functional and
82	sustainable materials. Cellulose was selected as the polysaccharide of choice as it is the
83	most prevalent plant-derived polysaccharide, which comprises the main component of
84	plant plasma membranes and fibrous raw materials such as paper, wood material, and
85	cotton. Recently, it has been reported that the degree of polymerization of 5 wt.%
86	cellulose dissolved in 1-butyl-3-methylimidazolium (BMI) –chloride tends to reduce as
87	a function of dose (Hao et al. 2012). Meanwhile, the scission reaction is preferred over
88	the cross-linking reaction when the concentration of polysaccharide in the organic
89	solvent is less than approximately 10 wt.% (Tabata et al., 1991; Nagasawa et al., 2004).
90	We assume that cross-linked materials could be produced from cellulose via ionizing
91	radiation in RTILs, which are capable of dissolving more than 10 wt.% of cellulose.

 $\mathbf{5}$

92	We designed and synthesized some RTILs as the reaction medium, in which
93	cellulose could be dissolved to concentrations in excess of 10 wt.%, and further
94	investigated the radiation-induced cross-linking of cellulose in each RTIL. The
95	outcome of this study is expected to provide insights on new ways of functionalizing
96	materials, including cellulose and other natural polymers.
97	

- 98 **2. Experimental**
- 99 2.1 Sample preparation

100 Cellulose powder (Microcrystalline grade, Merck) was used as received and its
101 viscosity-average molecular weight was estimated by the following
102 Mark–Kuhn–Houwink–Sakurada equation:

$$103 \qquad [\eta] = K M_v^{\alpha} \tag{1}$$

104 where $[\eta]$ and M_v are the viscosity and viscosity-average molecular weight of the 105 sample solution, respectively, and K and α are constants reported as 1.278×10^{-4} 106 cm³·g⁻¹ and 1.19, respectively (McCormick, 1985). In the typical process, 107 pre-determined quantity of cellulose was dissolved in the solution of 9 wt.% LiCl 108 (Wako, 98 %) in *N*, *N*-dimethylacetamide (DMAc, Wako, 97 %). The viscosity of the 109 cellulose solutions in the concentration range 1 - 4 g·L⁻¹ was measured using Ostwald

110	and oscillatory viscometers (CBC Co., Ltd., Viscomate VM-10A). The weight-average
111	molecular weight of cellulose was analyzed using a high-performance liquid
112	chromatograph (HPLC, Shimadzu, SCL-10A) with gel permeation chromatography
113	(GPC) columns (TSL-GEL ALPHA and 2500, Tosoh) and a refractive index detector
114	(RI 704, GL Science). For HPLC measurement, the flow rate of the 30 mmol \cdot L ⁻¹
115	LiCl/DMAc eluent was maintained as 0.3 mL·min ⁻¹ , and the column temperature was
116	set at 313 K. Subsequently, 100 μ L each of the prepared cellulose solutions was
117	injected to the HPLC. The standard for the GPC analysis was prepared by dissolving
118	1-4 g \cdot L ⁻¹ of polymethylmethacrylate (PMMA, Shodex, molecular mass in the range
119	1.8×10^3 – 2.0×10^5 g·mol ⁻¹) in a solution of 0.2 wt.% LiCl/DMAc.
120	Cellulose was dissolved in each RTIL using a hybrid mixer (KEYENCE,
121	HM-500) to achieve initial concentrations in the range 1–30 wt.% and to obtain various
122	viscous and paste-like solutions. The RTILs used in this study, namely,
123	BMI-bis(trifluoromethylsulfonyl)amide (TFSA), BMI-thiocyanate, BMI-chloride,
124	diallylimidazolium (DAI)-chloride, <i>N</i> , <i>N</i> -diethyl- <i>N</i> -methyl- <i>N</i> -(2-methoxyethyl)
125	ammonium (DEMA)-chloride, and 1-ethyl-3-methylimidazolium (EMI)-bromide, were
126	purchased from Kanto Chemical Co., Inc., Japan. EMI-acetate, at 90 % concentration,
127	was also purchased from Aldrich Chemical Co., Inc. The other RTILs used in this study,

128	namely, BMI-acetate, DAI-formate, DAI-acetate, DEMA-formate, and DEMA-acetate
129	were synthesized by the methodology reported in the literature (Fukaya et al., 2008). In
130	the typical process, RTILs having halides, namely, BMI-chloride, DAI-chloride, and
131	DEMA-bromide, were used as precursors, which were converted into their respective
132	hydroxides using a column filled with an anion-exchange resin (Aldrich, Amberlite
133	IRA 400-OH). The obtained aqueous solutions of RTILs with a pH of 12 were
134	neutralized with either formic acid (Wako, 97 %) or acetic acid (Wako, 1 mol·L ⁻¹
135	aqueous solution) to prepare RTILs functionalized with formate or acetate, respectively.
136	These RTILs were then washed with hexane (Wako, 96 %) and pure water (TOC: 4
137	ppb, electrical resistance: 18.2 M Ω ·cm ⁻¹) supplied from a Millipore Milli-Q system,
138	and vacuum dried overnight at 353 K. All the sample solutions were prepared in a
139	glove bag (Glass-Col) or glove box (Sanplatec) under dry or wet air saturated
140	conditions. The water content in the RTIL solutions was controlled by changing the
141	humidity of the surrounding air. This humidity was controlled by using a $0.1-2$
142	$mol \cdot L^{-1}$ aqueous solution of calcium chloride (Wako, 99 %) in both the bag and box
143	(Stokes, 1949). The water content in the cellulose solutions was measured with a
144	thermo-balance (Shimadzu AUW120D) and a Karl Fischer titration system (Kyoto
145	Electronics Manufacturing Co., Ltd., MKC-501).

146 $2.2^{60}Co \gamma$ -ray irradiation

The cellulose solutions were irradiated using a 60 Co γ -ray source facility at the 147 Japan Atomic Energy Agency, Takasaki, in the dose range of 5–100 kGy ($Gy = J \cdot kg^{-1}$) 148 with the dose rates ranging from $5-10 \text{ kGy} \cdot \text{h}^{-1}$. The temperature of the sample 149 150 solutions was controlled using a thermostatic chamber (DTU-1C, TAITEC) during the 151 irradiation. Dosimetric experiments were carried out with an ethanol (Wako, > 99.7 %, 152 HPLC grade)-chlorobenzene (Aldrich, 99.9 %, HPLC grade) dosimeter and an 153 alanine-based dosimeter (Hitachi Cable, Ltd., AMINOGRAY, alanine 70 %, 154 polystyrene 30 %, volume: $\phi 3 \times 30$ mm) in a plastic container ($\phi 12 \times 50$ mm, 4 mm in thickness) (Kojima et al., 1993). 155

156

157 2.3 Measurements

The irradiated sample solutions were subsequently washed with a solution of 5 wt.% LiCl/DMAc to remove any residues of unreacted cellulose, RTILs, and degradation products. The residual matter was rinsed with water on a stainless steel mesh (SUS316, 200 mesh) and then dried overnight at 353 K. The dried sample was weighed in a thermo-balance. Rheological measurement of the sample solutions after γ -ray irradiation was performed on a dynamic viscoelasticity measurement system (TA

164	instruments, ARES RDA-3) at 353 K, in the frequency range of 0.5–100 rad s ⁻¹ .
165	Besides, the residual solutions containing unreacted cellulose, RTILs, and degradation
166	products were analyzed in the HPLC system with the GPC column and the refractive
167	index detector. Electrical conductivity of the samples was evaluated using a chemical
168	impedance analyzer (HIOKI, 3522-50) at the frequency of 100 kHz and temperature of
169	298 К.
170	
171	
172	3. Results and Discussion
173	3.1 Radiation modification of cellulose in RTILs
174	The weight-average molecular weight of cellulose before irradiation was 1.3×10^5
175	g·mol ⁻¹ , as determined using the Mark-Kuhn-Howink-Sakurada equation and GPC
176	analysis. The paste-like solutions of cellulose were prepared in each RTIL with initial
177	cellulose concentration in the range 10-30 wt.% at 298 K. As listed in Table 1, the
178	concentration of cellulose dissolved in carboxylate-based RTILs was found to be
179	higher than those dissolved in other RTILs.
180	
181	
182	

Cation	Anion	Concentration of cellulose in paste-like solution (wt.%)
	bis(trifluoromethylsulfonyl)amide	Insoluble
	thiocyanate	Insoluble
(BMI)	chloride	10
	formate	20
	formate acetate	20 20
(2711)	<u> </u>	<u>.</u>
\rightarrow $+$ \rightarrow 0	chloride	10
	formate	20
(DEMA)	acetate	20
(EMI)	acetate	20–30

Table 1 Solubility and gel fraction of cellulose mixed in room temperature ionic liquidsunder dehydrated condition at 298 K.

185 The paste-like solution obtained by mixing 20 wt.% cellulose in EMI-acetate under 186 dehydrated conditions was first irradiated with γ -rays at a dose of 10 kGy and then 187 washed with a solution of 5 wt.% LiCl/DMAc to remove any residues of unreacted 188 cellulose, degradation products, and EMI-acetate. However, the gel products were not 189 retained in the process. It has been reported that the radiation-induced reduction of 190 chlorophenols in RTILs can occur effectively under dehydrated conditions at a dose of 20 kGy (Kimura et al., 2008, 2010). In the present case, the amount of 191 192 radiation-induced species was not considered sufficient to cause the cross-linking 193 reaction of cellulose. Therefore, water, which is a source of reactive species such as

hydroxyl radicals and hydrated electrons produced by ionizing radiation, was added to the dried cellulose solution to enhance the radiation-induced cross-linking of cellulose. The cellulose EMI-acetate solution with a water content of 18 wt.%, was prepared under humidity-controlled air conditions and left overnight to form a physical gel. The gel thus obtained could be completely dissolved in a 5 wt.% LiCl/DMAc solution. The physical gel was irradiated with γ -rays at a dose of 10 kGy, followed by washing with a 5 wt.% LiCl/DMAc solution to obtain an insoluble residue.

201 The physical properties of the insoluble product thus obtained were evaluated by 202 dynamic viscoelasticity measurements (Techwipharat et al. 2008; Zhou et al. 2008). 203 The interactions among the cellulose chains of the physical gel are weak and reversible, 204 and the gel reverts to a sol at temperatures above 353 K. Figure 1 shows the storage 205 modulus (G') and loss modulus (G") of the solution containing 20 wt.% of cellulose in 206 EMI-acetate before and after irradiation measured at 353 K. The G' and G" values of 207 the as-prepared physical gel (before irradiation) increase with frequency, without 208 showing the crossover point of G' and G''. This indicates that the as-prepared sample 209 (before irradiation) is a sol at 353 K (Song et al., 2011). On the other hand, after 210 irradiation, the G' curve of the insoluble product obtained by irradiation at a dose of 20 kGy was almost constant, while that of the G" increased with frequency. This implies 211

that the irradiated sample is a gel at 353 K. Based on these results, the obtained

213 insoluble product can be considered as a cellulose gel.

214 215 **Figure 1** Dynamic viscoelasticity measurement of 20 wt.% cellulose in EMI-acetate, 216 containing 18 wt.% of water at 353 K under aerated conditions, before and after γ -ray 217 irradiation at 20 kGy.

The cellulose gel fraction was separated from the γ -ray irradiated solution of 20 wt.% cellulose dissolved in EMI-acetate with 18 wt.% of water at 298 K under aerated conditions. The soluble part, i.e., the sol, was evaluated using the GPC system with the refractive index detector. The peak retention time of 40.0 min could be assigned to the cellulose before irradiation. However, with increase in irradiation dose, the retention times slowly shift towards higher values, as shown in Figure 2.

226 Figure 2 Gel permeation chromatograph of the solution of 20 wt.% cellulose 227 dissolved in EMI-acetate with 18 wt.% of water at 298 K under aerated conditions, 228 compared with a neat cellulose gel at doses of 0 Gy (line), 20 kGy (dot line), 50 kGy 229 (chain line), and 200 kGy (two-dot chain line).

For the absorbed dose of up to 20 kGy, the intensity of the peak at 40.0 min was clearly 231 reduced by approximately 13 %. This could be attributed to the fact that the irradiation 232 products mainly consist of the cellulose gel and degradation products. The 233 weight-average molecular weight of the cellulose samples at the dose of 0, 20, 50, and 200 kGy was found to be 1.3×10^5 , 1.1×10^5 , 1.0×10^5 , and 8.8×10^4 g·mol⁻¹, 234 235 respectively, as evaluated using the PMMA standard solution. As mentioned earlier, it has been reported that the degree of polymerization and the weight-average molecular 236 237 weight of cellulose dissolved in BMI-chloride are reduced by approximately 50 % at 238 the dose of 200 kGy (Hao et al. 2012). In the present study, the rate of decrease in the 239 weight-average molecular weight of cellulose dissolved in EMI-acetate was found to

240	be 32 % at the same dose of 200 kGy. This is lower than that reported for cellulose
241	dissolved in BMI-chloride. The intensity of the peak at the retention time of 47.0 min
242	increased when the dose was greater than 20 kGy (Figure 2). This peak can be assigned
243	to the irradiation products corresponding to the weight-average molecular weight of
244	$7.1 \times 10^3 \text{ g} \cdot \text{mol}^{-1}$.

246 3.2 Mechanism underlying the formation of cellulose gels in RTILs

In general, the solid cellulose is decomposed by ionizing radiation (Charlesby et 247 248 al. 1957; McLaren 1978; Kumakura et al. 1979; Charlesby 1995; Takacs et al. 1999; 249 Driscoll et al. 2009). Upon γ -ray irradiation, radicals emerge preferentially as a result of the fracture of C-H bonds in the weakened 1 and 4 positions of cellulose. 250 251 Subsequently, the direct cleavage of the chemical bonds occurs at these positions in the 252 polymer chains to produce cellulose of lower molecular weight (Yershov et al. 1977; Hao et al. 2012). However, in this study, cellulose gel was produced when the solution 253 254 of 20 wt.% cellulose dissolved in EMI-acetate was irradiated under humid conditions without cross-linking agents. 255 256 Reactive intermediates, such as solvated electrons, hydrogen atoms, positive ions,

257 excited molecules, and radicals, are formed in the organic solvent (Woods et al.,

258 1994.).

259	$S \longrightarrow e^{-}solv, H, S^{+}, S^{*}, S^{*}$ (2)
260	where S, e_{solv}^- , and H are represent solvent, solvated electrons, and hydrogen atoms,
261	respectively. The rate constants corresponding to the reaction of radiation-induced
262	reductive species, such as solvated electrons, with some aromatic and halogenated
263	organic solutes is typically higher than the corresponding diffusion-controlled rate
264	constants in RTILs under dehydrated conditions (Wishart et al., 2003; Wishart et al.,
265	2005; Kimura et al., 2008; Kimura et al., 2010). The cellulose gel, however, was not
266	produced in EMI-acetate under dehydrated conditions. The solvated electrons have low
267	reactivity toward cellulose as a saturated hydrocarbon, and are not related to the
268	radiation-induced cross-linking of cellulose under the conditions.
269	The cellulose EMI-acetate solution having 18 wt.% of water was irradiated with
270	γ -rays to produce the cellulose gel as stated above. In this reaction, water is
271	decomposed by the ionizing radiation, resulting in the formation of a hydroxyl radical,
272	hydrated electron, hydrogen atom, proton and hydroxide ion (Getoff et al., 1996).
273	$H_2O \longrightarrow OH, e_{aq}, H, H^+, OH^-$ (3)
274	The hydroxyl radicals, in particular, contribute to the production of cellulose gel,
275	owing to their high reactivity toward saturated hydrocarbons and high yield upon water

radiolysis (Buxton et al., 1988). Besides, the hydroxyl radicals, hydrated electrons (e_{aq}) and the electrons solvated by the EMI-acetate (e_{solv}) also react with the alkylimidazolium of the EMI-acetate to form alkylimidazolium radicals (Behar et al., 2001; Wishart et al., 2005).

$$280 \qquad \cdot \text{ OH} \quad + \quad \text{EMI}^+ \quad \rightarrow \quad \text{HO-EMI}^+ \cdot \tag{4}$$

$$281 \qquad e^{-}_{aq} / e^{-}_{solv} + EMI^{+} \rightarrow EMI^{-}$$
(5)

As mentioned earlier, γ -ray irradiation of the solution of 20 wt.% cellulose dissolved in EMI-acetate under dehydrated condition did not result in the formation of gel. Therefore, the solvated electrons and alkylimidazolium radicals cannot be related to the radiation-induced cross-linking of cellulose. On the other hand, hydroxyl radicals are considered to oxidize the carbon atoms of cellulose to produce cellulose radicals (Isogai et al., 1998).

288 [Cellulose]-H +
$$\cdot$$
 OH \rightarrow [Cellulose] \cdot + H₂O (6)

There is a possibility that the cellulose radicals are formed in the solid phase or in another organic solvent upon γ -ray irradiation. However, the macro-sized cellulose radicals would not diffuse easily in the solid phase. Besides, the solubility of cellulose is less than 10 wt.% in organic solvents, such as chloroform in dimethylsulfoxide, *N*-methylmorpholine-*N*-oxide, LiCl in DMAc, and calcium chloride in methanol. In 294 contrast, the radiation-induced cellulose radicals in EMI-acetate readily diffuse more 295 easily than that in the solid phase to facilitate cross-linking reaction, and solubility of 296 cellulose in EMI-acetate is higher than that in the organic solvent systems listed. Based 297 on these observations, following reaction paths are proposed for the formation of the 298 cellulose gel.

299 [Cellulose]· + [Cellulose]· \rightarrow [Cellulose]-[Cellulose] (7) 300 The cellulose having radicals at the 6th carbon atom is expected to participate in the 301 cross-linking reaction because the side chain of the polysaccharide derivatives is 302 considered to be the cross-linking position (Saiki et al., 2010; Saiki et al., 2011).

303

304 *3.3 Gel fraction of cellulose in RTILs under several conditions*

It has been reported that structure of the cellulose polymer chains in EMI-acetate tends to change as a function of the concentration of cellulose and the temperature of γ -ray irradiation (Song et al., 2011). This effect was further analyzed in this study, as the yield of the obtained cellulose gel was found to depend on the oriented structures of the cellulose polymer chains. The yield of the gel obtained by γ -ray irradiation of cellulose dissolved in EMI-acetate was estimated in terms of the gel fraction by the following equation:

312 Gel fraction (%) =
$$(W/W_0) \times 100$$
 (8)

where W_0 and W are the initial mass of the dried sample before irradiation and the final mass of the insoluble product obtained after irradiation, washing, and drying, respectively. The gel fraction of the cellulose gel in EMI-acetate having 18 wt.% of water under air-saturated conditions increased with increase of dose at 298 K, and reached a maximum value of 17 % at the dose of 10 kGy, as shown in Figure 3.

Figure 3 Gel fraction of 20 wt.% cellulose in EMI-acetate containing 18 wt.% of water
under aerated conditions plotted as a function of the absorbed dose.

325	production of the cellulose gel was obtained under the physical gel condition at
326	temperatures less than 298 K. In addition, a paste-like solution of 20 wt.% cellulose in
327	DEMA-formate with 18 wt.% of water under air-saturated conditions at 298 K was
328	also irradiated at a γ -ray dose of 10 kGy. This resulted in the formation of cellulose gel
329	with a yield of 19 %. However, the formation of cellulose gel was not obtained in other
330	RTILs in the presence of water, as listed in Table 1. This could be attributed to the fact
331	that the cellulose was heterogeneously dispersed in these RTILs, as opposed to that in
332	the EMI-acetate and DEMA-formate.

333 Furthermore, the cellulose at an initial concentration of 1–50 wt.%in EMI-acetate having 18 wt.% of water under air-saturated conditions at 298 K was also irradiated at 334 335 a dose of 10 kGy. For initial concentration higher than 40 wt.%, the cellulose was found to disperse heterogeneously in EMI-acetate. The gel fraction of the obtained 336 cellulose gel is illustrated in Figure 4. The formation of cellulose gel is effective in the 337 338 initial concentration range of 20-30 wt.%. On the other hand, the cellulose solutions had low gel fractions for their initial concentrations either lower than 10 wt.% or 339 340 higher than 40 wt.%.

342 Figure 4 Initial concentration dependence of the gel fraction of cellulose in EMI-acetate having 18 wt.% of water at 298 K under aerated conditions at 10 kGy. 343 344 In general, when polymers are irradiated with ionizing radiation, both the cross-linking 345 and scission reactions occur simultaneously. The scission reaction is dominant over the 346 cross-linking reaction when the concentration of polysaccharides in the organic solvent 347 is less than approximately 10 wt.% (Tabata et al., 1991; Nagasawa et al., 2004). 348 However, irradiation of the samples in the paste-like state is effective to facilitate the 349 cross-linking of other polysaccharide derivatives (Fei et al., 2000; Zhao et al., 2003; 350 Nagasawa et al., 2004). Besides, a paste-like solution of cellulose dissolved in 351 EMI-acetate can be prepared for the concentration range of 20–30 wt.%. In the present 352 study, the ratio of degradation to cross-linking density (p_0/q_0) was estimated using the 353 Charlesby–Rosiak equation (Olejniczak et al., 1991):

354
$$s + s^{1/2} = \frac{p_0}{q_0} + \left(2 - \frac{p_0}{q_0}\right) \frac{D_v - D_g}{D_v - D}$$
 (9)

355 Here, s, D, D_g , and D_v are the sol fraction, absorbed dose, gelation dose, and virtual 356 dose, respectively. For the solution of 20 wt.% of cellulose in EMI-acetate at 298 K 357 with 18 wt.% of water under air-saturated conditions, the value of p_0/q_0 was estimated 358 to be 1.86. The value implies that the scission reaction occurs more effectively than the 359 cross-linking reaction, resulting in a low cellulose gel yield of 17 %. The p_0/q_0 values 360 for 10, 30, and 40 wt.% of cellulose in EMI-acetate at 298 K having 18 wt.% of water 361 under air-saturated conditions were estimated to be 1.97, 1.74, and 1.92, respectively. 362 The respective effects of the water content on the gel fraction of cellulose in EMI-acetate were also investigated by γ -ray irradiation. The gel fraction of cellulose 363 364 increases with water content, as shown in Figure 5. As mentioned earlier, the radiation-induced cross-linking of cellulose is considered to be initiated by the 365 hydroxyl radicals. The sample solution containing 34 wt.% of water, which was 366 367 partially clouded, was irradiated with γ -rays. However, cellulose gel was not obtained 368 under this condition. The crystallization of the cellulose became more pronounced with 369 decrease in the concentration of the RTILs in the solution. The cellulose solution 370 containing 34 wt.% of water is considered to be the similar to that of the solid cellulose. 371 Hence, the scission reaction of cellulose would have been dominant.

Figure 5 Water content dependence of the gel fraction obtained by γ-ray irradiation of
20 wt.% cellulose in EMI-acetate at 298 K under aerated conditions at 10 kGy.

372

376 *3.4 Electronic conductivity of cellulose gel*

377 Recently, polymer ion gels that are swollen with RTILs have been applied as 378 electrolytes in dye-sensitized solar cells (Ueno et al., 2008), electroactive polymer 379 actuators (Imaizumi et al. 2012), and thin-film transistors (Lee et al., 2007), owing to 380 thier excellent chemical and thermal stabilities, wide potential windows, and high electrical conductivities of 10^{-2} –10 mS·cm⁻¹, which depend on the type of RTIL used 381 382 in the process (Kitazume et al., 2005; Lodge, 2008). In this study, cellulose gels were 383 swollen with water, methanol, ethanol, dichloromethane, DMAc, EMI-acetate, and 384 DEMA-formate. The swelling ratio of cellulose gel in EMI-acetate was 3.7 g swollen gel/g dried gel. The electronic conductivity of the cellulose gel containing 385

386	EMI-acetate, as estimated by the chemical impedance method at 298 K was found to
387	be 3.0 mS \cdot cm ⁻¹ . This is sufficiently higher than the required electronic conductivity
388	of 0.1 mS·cm ⁻¹ for the organic solid electrolytes (Ohno, 2006). The conductivity of
389	EMI-acetate was the same with that of the cellulose gel containing them. Therefore,
390	cellulose gel has great potential for applications in optoelectronic and medical devices
391	as a fascinating biopolymer and sustainable raw material.

393 **4. Conclusion**

394 For the first time in this study, we have demonstrated the possibility of 395 producing cellulose gels by y-ray irradiation of cellulose in RTILs under humid 396 conditions. Water was found to be essential for the formation of the cellulose gel, as 397 the hydroxyl radicals formed by the radiolysis of water play an active role in the 398 cross-linking of cellulose. RTILs having hydrophobic imidazolium/ammonium and 399 proton-accepting carboxylate groups were found to be suitable mediums for the 400 production of cellulose gels. The gel fraction could be controlled by adept regulation of 401 following conditions: initial concentration of cellulose, irradiation temperature, water 402 content, and the absorbed dose. The cellulose gel thus obtained had an electronic conductivity of 3.0 mS \cdot cm⁻¹, showing great potential for applications in optoelectronic 403

404	and	medical	devices.

406	Acknowledgements
407	This work was supported in part by the Japanese Science and Technology Agency
408	(JST) A-STEP feasibility study program (#AS242Z02411M), and JSPS KAKENHI
409	Grant Number 25871093.
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	

422	References
423	Behar, D., Gonzalez, C., Neta, P., (2001). Reaction kinetics in ionic liquids; Pulse
424	radiolysis studies of 1-butyl-3-methylimidazolium salts. Journal of Physical Chemistry
425	A, 105, 7607-7614.
426	
427	Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B. (1988). Critical review of
428	rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
429	OH/O- in Aqueous solution, Journal of Physical and Chemical Reference data, 17,
430	513.
431	
432	Charlesby, A., Davison, W. H. T., (1957). Temperature effects in the irradiation of
433	polymers. Chemistry & Industry, 232–233.
434	
435	Charlesby, A., (1995). Degradation of cellulose by ionizing radiation. Journal of
436	Polymer Science,15, 263–270.
437	
438	Driscoll, M., Stipanovic, A., Cheng, K., Manning, M., Spiese, J., Galloway, R. A.,
439	Cleland, M. R. (2009). Electron beam irradiation of cellulose. Radiation Physics and
440	Chemistry, 78, 539-542.
441	
442	Fei, B., Wach, R.A., Mitomo, H., Yoshii, F., Kume, T. (2000). Hydrogel of
443	biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC.
444	Journal of Applied Polymer Science, 78, 278–283.
445	
446	Fukaya, Y., Hayashi, K., Wada, M., Ohno, H. (2008). Cellulose dissolution with polar
447	ionic liquids under mild conditions. Green Chemistry, 10, 44-46.
448	
449	Getoff N. (1996). Radiation-induced degradation of water pollutants – state of the art.
450	Radiation Physics and Chemistry, 47, 581-593
451	
452	Gopakumar, S., Nair, M. R. G. (2005). Swelling characteristics of NR/PU block
453	copolymers and the effect of NCO/OH ratio on swelling behavior. Polymer, 46,
454	10419-10430.
455	
456	Hao, Y., Peng, J., Li, J., Zhai, M., Wei, G. (2009). An ionic liquid as reaction media for
457	radiation-induced grafting of thermosensitive poly (N-isopropylacrylamide) onto

- 458 microcrystalline cellulose. *Carbohydrate Polymers*, 77, 779-784.
- 459

Hao, Y., Peng, J., Ao, Y., Lia, J., and Zhai, M. (2012). Radiation effects on
microcrystalline cellulose in 1-butyl-3-methylimidazolium chloride ionic liquid. *Carbohydrate Polymers*, 90, 1629-1633.

- 463
- 464 Heinze, T., Schwikal, K., Barthel, S. (2005). Ionic liquids as reaction medium in
 465 cellulose functionalization. *Macromolecular Bioscience*, 5, 520-525.
- 466
- 467 Isogai, A., Kato Y. (1998). Preparation of polyuronic acid from cellulose by
 468 TEMPO-mediated oxidation. *Cellulose*, 5, 153-164.
- 469
- 470 Imaizumi, S., Kokubo, H., Watanabe, M. (2012). Polymer actuators using ion-gel
 471 electrolytes prepared by self-assembly of ABA-triblock copolymers. *Macromolecules*,
 472 45, 401-409.
- 473
- 474 Katoh, R., Takahashi, K. (2009). Photo-degradation of imidazolium ionic liquids
 475 Original Research Article. *Radiation Physics and Chemistry*, 78, 1126-1128
- 476
- Kimura, A., Taguchi, M., Kondoh, T., Yang, J., Yoshida, Y., Hirota, K., (2008). Study
 on the reaction of chlorophenols in room temperature ionic liquids with ionizing
 radiation. *Radiation Physics and Chemistry*, 77, 1253-1257.
- 480
- Kimura, A., Taguchi, M., Kondoh, T., Yang, J., Nagaishi, R., Yoshida, Y., Hirota, K.
 (2010). Decomposition of halophenols in room-temperature ionic liquids by ionizing
 radiation. *Radiation Physics and Chemistry*, 79, 1159-1164.
- 484
- 485 Kitazume, T., Fuchigami, T., Sawada, H., Itoh, T. (2005). Ionic Liquid –Unreasonable
 486 Fantastic Salt–. CORONA PUBLISHING Co. LTD.
- 487
- Kojima, T., Tachibana, H., Haruyama, Y., Tanaka, R., Okamoto, J. (1993). Recent
 progress in JAERI alanine/ESR dosimetry system. *Radiation Physics and Chemistry*,
 42, 813-816.

491

Kondoh, T., Asano, A., Yang, J., Norizawa, H., Takahashi, K., Taguchi, M., Nagaishi,
R., Katoh, R., Yoshida, Y. (2009). Pulse radiolysis of ion-species effects on the

494 405	solvated electrons in alkyl ammonium ionic liquids. <i>Radiation Physics and Chemistry</i> , 78, 1157, 1160
495	/8, 1157-1160.
490 497	Kosan, B., Michels, C., Meister, F. (2008). Dissolution and forming of cellulose with
498 400	ionic liquids. Cellulose, 15, 59-66.
499 500	Kumakura M Kaetsu I (1979) Radiation induced decomposition and enzymatic
500 501	hydrolysis of cellulose. International Journal of Applied Radiation and Isotopes, 30,
502	139–141.
503	
504 505	Kumar, M. N. V. R. (2000). A review of chitin and chitosan applications, <i>Reactive and Functional Polymers</i> , 46, 1-27
506	
507	Lee, J., Panzer, M. J., He, Y., Lodge, T. P., Frisbie, C. D. (2007). Ion gel gated polymer
508	thin-film transistor. Journal of the American Chemical Society, 129, 4532.
509	
510	Lodge, T. P. (2008). A unique platform for materials design. Science, 321, 50-51.
511	
512 513	celluloses. <i>International Journal of Applied Radiation and Isotopes</i> , 29, 631–635.
514	
515 516	MCeormick, C. L., Callais, P. A., Hutchinson, B. H. (1985). Solution studies of collulose in lithium chloride and NN dimethylacetemide. Macromolecular, 18
517	2394-2401.
518	
519	Nagasawa, N., Mitomo, H., Yoshii, F., Kume, T. (2000). Radiation-induced
520	degradation of sodium alginate, Polymer Degradation and Stability, 69, 279-285.
521	
522	Nagasawa, N., Yagi, T., Kume, T., Yoshii, F. (2004). Radiation crosslinking of
523	carboxymethyl starch. Carbohydrate Polymers, 58, 109-113.
524	
525	Ohno, H. (2006). Ionic Liquid II – Marvelous Developments and Colorful Near Future-,
526	CMC Publishing Co., LTD., pp167-169.
527	
528	Olejniczak, J., Rosiak, J., Charlesby, A. (1991). Gel/dose curves for polymers
529	undergoing simultaneous crosslinking and scission. Radiation Physics and Chemistry,

- 530 37, 499-504.
- 531
- 532 Pekel, N., Yoshii, F., Kume, T., Guven, O., (2004). Radiation crosslinking of
 533 biodegradable hydroxypropylmethylcellulose. *Carbohydrate Polymers*, 55, 139-147
- 534
- 535 Poirier, M., Charlet, G. (2002). Chitin fractionation and characterization in N,
 536 N-dimethylacetamide / lithium chloride solvent system. *Carbohydrate Polymers*, 50,
 537 363-370.
- 538
- Qi, M., Wu, G., Sha, M., Liu, Y. (2008). Radiation induced polymerization of MMA in
 imidazolium ionic liquids and their mixed solutions with organic solvents. *Radiation Physics and Chemistry*, 77, 1248-1252.
- 542
- 543 Rogers, R. D., Seddon, K. R. (2003). Ionic liquids—Solvents of the Future? *Science*,
 544 302, 792-793.
- 545
- Saiki, S., Nagasawa, N., Hiroki, A., Morishita, N., Tamada, M., Muroya, Y., Kudo, H.,
 Katsumura, Y. (2010). ESR study on carboxymethyl chitosan radicals in an aquesou
 solution. *Radiation Physics and Chemistry*, 79, 276-278.
- 549
- Saiki, S., Nagasawa, N., Hiroki, A., Morishita, N., Tamada, M., Muroya, Y., Kudo, H.,
 Katsumura, Y. (2010). ESR study on radiation-induced radicals in carboxymethyl
 cellulose aqueous solution. *Radiation Physics and Chemistry*, 80, 149-152.
- 553
- Seko, N., Tamada, M., Yoshii, F. (2005). Current status of adsorbent for metal ions
 with radiation grafting and crosslinking techniques. *Nuclear Instruments and Methods in Physics Research B*, 236, 21-29.
- 557
- 558 Smith, P., Wood, P. B. (1966). A study by electron paramagnetic resonance 559 spectroscopy of radicals formed from acetamide and formamide. *Canadian Journal of* 560 *chemistry*, 44, 3085-3088.
- 561
- Song, H., Niu, Y., Wang, Z., Zhang, J. (2011). Liquid crystalline phase and gel-sol
 transitions for concentrated microcrystalline cellulose (MCC) /
 1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. *Biomacromolecules*, 12,
 1087-1096.

- 566
- 567 Stokes, R. H., Robinson, R. A. (1949). Standard Solutions for Humidity Control at 25°
 568 C. *Industrial & Engineering Chemistry Research*, 41, 2013–2013.
- 569
- 570 Swatloski, R. P., Spear, S. K., Holbrey, J. D., Rogers, R. D. (2002). Dissolution of 571 cellulose with ionic liquids. *Journal of the American Chemical Society*, 124, 572 4974-4975.
- 573
- Tabata, Y., Ito, S., Tagawa, S. (1991). *CRC Handbook of Radiation Chemistry*. CRC
 Press, Boca Raton XIV 742, Table XIV.
- 576
- 577 Takacs, E., Wojnarobits, L., Borsa, J., Foldvary, Cs., Hargittai, P, Zold, O. (1999).
 578 Effect of γ-irradiation on cotton-cellulose. *Radiation Physics and Chemistry*, 55,
 579 663-666.
- 580
- Techawipharat, J., Suphantharika, M., BeMiller, J., N. (2008). Effect of cellulose
 derivatives and carrageenans on the pasting, past and gel properties of rice starches. *Carbohydrate Polymers*, 73, 417-426.
- 584

Ueno, K., Hata, K., Katakabe, T., Kondoh, M., Watanabe, M. (2008). Nanocomposite
ion gel based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic
properties, and microstructure. *The Journal of Physical Chemistry B*, 112, 9013-9019.

588

Wach, R. A., Mitomo, H., Yoshii, F., and Kume, T., (2001). Hydrogel of biodegradable
cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of
CMC. *Journal of Applied Polymer Science*, 81, 3030–3037.

- 592
- Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J., Nho, Y., Li, J., Wei, G., (2007). Radiation
 synthesis of PVP/CMC hydrogels as wound dressing. *Nuclear Instruments and Methods in Physics Research B*, 265, 385-389.
- 596
- Wishart, J. F., Neta, P., (2003). Spectrum and reactivity of the solvated electron in the
 ionic liquid methyltributylammonium bis(trifluorosulfonyl)imide. *The Journal of Physical Chemistry B*, 107, 7261-7267.
- 600
- Wishart, J. F., Lall-Ramnarine, S. I., Raju, R., Scumpia, A., Bellevue, S., Ragbir, R.,

602	Engel, R., (2005). Effect of functional group substitution on electron spectra and
603	salvation dynamics in a family of ionic liquids. Radiation Physics and Chemistry, 72,
604	99-104.
605	
606	Woods, R. J., Pikaev, A. K., (1994). "Applied radiation chemistry: Radiation
607	processing". John Wiley & Sons, Inc., New York.
608	
609	Yershov, B. G., Klimentov, A. S., (1977). Nature of the radicals and mechanism of the
610	low temperature radiolysis of cellulose. Polymer Science U.S.S.R, 19, 936-941.
611	
612	Zhao, L., Mitomo, H., Nagasawa, N., Yoshii, F., Kume, T. (2003). Radiation synthesis
613	and characteristic of the hydrogels based on carboxymethylated chitin derivatives.
614	Carbohydrate Polymers, 51, 169-175.
615	
616	Zhao, L., Luo, F., Zhai, M., Mitomo, H., Yoshii, F. (2008). Study on
617	CM-chitosan/activated carbon hybrid gel film formed with EB irradiation. Radiation
618	Physics and Chemistry, 77, 622-629.
619	
620	Zhou, R., Deng, B., Hao, X., Zhou, F., Wu, X., Chen, Y. (2008) Dynamic rheology
621	behavior of electron beam-irradiated cellulose pulp/NMMO solution. Radiation

622 *Physics and Chemistry*, 77, 978-982.