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ARTICLE 

An integrated approach to source term uncertainty and sensitivity analysis 

for nuclear reactor severe accidents  

 

Xiaoyu Zhenga*, Hiroto Itoha, Hitoshi Tamakia and Yu Maruyamaa 

aJapan Atomic Energy Agency, 2-4, Shirakata Shirane, Tokai-mura, Naka-gun, 

Ibaraki-ken, 319-1195, Japan 

 

Large-scale computer programs simulate severe accident phenomena and often have a 

moderate-to-large number of models and input variables. Analytical solutions to uncertainty 

distributions of interested source terms are impractical, and influential inputs on outputs are 

hard to discover. Runs of such integral codes for complex severe accidents, are generally 

time-consuming. This article presents an integrated approach to uncertainty and sensitivity 

analysis for nuclear reactor severe accident source terms, with an example which simulates an 

accident sequence similar to that occurred at Unit 2 of the Fukushima Daiichi nuclear power 

plant using an integral code, MELCOR. Monte Carlo based uncertainty analysis has been 

elaborated to investigate released fractions of representative radionuclides, Cs and CsI. In 

order to estimate sensitivity of inputs, which have a substantial influence on the core melt 

progression and the transportation process of radionuclides, a variance decomposition method 

is applied. Stochastic process, specifically a Dirichlet process, is applied to construct a 

surrogate model in sensitivity analysis as a substitute of the code. The surrogate model is 

cross-validated by comparing with corresponding results of MELCOR. The analysis with the 

simpler model avoids laborious computational cost/load so that importance measures for input 

factors are obtained successfully.  
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1. Introduction 

When fission products released from a degraded core, they are transformed, both 

physically and chemically, prior to becoming the “ingredients” of the source term. The 

definition of “source term” is provided as: the quantity, time, history, and chemical and 

physical form of radionuclides released to the environment, or present in the containment 

atmosphere, during the course of a severe accident [1]. The analysis of source term is crucial, 

both in severe accident analysis and in probabilistic risk assessment of nuclear reactors, since 

it is an essential quantity for the evaluation of environmental and health-related effects. 

Precise estimating of the source term can provide more reliable assessment of radiological 

consequences. Numerical simulation using integral codes is a general way to estimate the 

source term when large-scale experiments are hard to conduct and relevant data are scarce.  

There exist uncertainties in the numerical results, caused by undetermined inputs, model 

structures or even programming errors. To simplify the present analysis, only parametric 

uncertainty is considered. Influential input variables are required to be identified to determine 

uncertainty sources. However, when such codes are rather complex, it is practically 

impossible to obtain analytical solutions. Let us review the definition of uncertainty and 

sensitivity analysis at first, and then go on to the proposed methods. Specifically, the 

uncertainty analysis deals with assessing the uncertainty in model predictions, which may 

result from imprecisely known input variables, alternative model assumptions and unknown 

randomness. Monte Carlo based approximation is a currently feasible way to estimate the 

uncertainty range of source term during a severe accident and then to find out influential 

variables. Such approaches have been widely applied to reveal the uncertainty in the results 

originated from variations in the inputs [2]. Sensitivity analysis is to study how the 

uncertainty in the output can be apportioned to different source in the inputs. The intent of 

sensitivity analysis is to identify key variables whose uncertainty affects most the output [3].  

In order to investigate the uncertainty in severe accident source term and the sensitivity of 
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corresponding key input variables, an integrated approach has been established at Japan 

Atomic Energy Agency (JAEA). Methods of uncertainty analysis are elaborated, which 

consists of four steps: 1) factor screening to reduce the number of inputs, 2) random sampling 

of inputs using Latin Hypercube sampling (LHS) combined rank correlation, 3) numerical 

computation of a representative severe accident via integral severe accident codes, for 

example, THALES-2 developed by JAEA [4][5] and MELCOR by Sandia National 

Laboratories [6], and 4) verification of uncertainty distributions through Kullback-Leibler 

(KL) divergence. 

Generally, a great number of code runs are required to achieve a stable result of global 

sensitivity analysis using indices such as Sobol’ sensitivity index (a variance decomposition 

method) [7][8]. The required number of code runs is unacceptable for complex severe 

accident codes. In order to solve this problem, the sensitivity analysis of the proposed 

approach consists of three steps: 1) the construction of a surrogate model to execute the 

function of an integral code, 2) the cross-validation of the surrogate model, and 3) global 

sensitivity analysis using the surrogate model.  

The simpler surrogate model is constructed using Bayesian nonparametric methods. 

Specifically, Dirichlet processes, one widely-known type of Bayesian nonparametric models, 

are used to construct the stochastic surrogate model. Since such models are not parametric, we 

do not have to worry about the fitness of the model to the data (e.g. a linear model is fitted to 

strongly non-linear data) or poor predictability as a result of overfitting (a deterministic 

high-order model can fit data well but shows poor predictive ability) [9][10]. Compared with 

traditional Bayesian models, Dirichlet process is an infinite mixture of probability functions 

so that complex and multimodal data can be well modelled. The model is rather flexible and 

the degrees of freedom can be optimized while data are analyzed. The degrees of freedom 

here refer to the number of parameters in a numerical or statistical model. Moreover, the 

complexity of one Dirichlet process model, the same as other Bayesian nonparametric models, 
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will grow as more data are observed [11]. The predictability of the surrogate model is 

cross-validated by comparing with the results of actual codes. As a result, first order effect 

and total effect of Sobol’ sensitivity indices are calculated and relative importance ranking of 

all inputs are obtained accordingly. This proposed approach for source term uncertainty and 

sensitivity analysis shows great advantage and reliability by using probabilistic methods. The 

prototype of severe accident scenario analyzed is the accident similar to that occurred at Unit 

2 of the Fukushima Daiichi Nuclear Power Plant (NPP), which is used as an example for the 

demonstration of the present approach to source term uncertainty and sensitivity analysis. 

 

2. Framework of source term uncertainty and sensitivity analysis 

Uncertainty and sensitivity analyses are always run in tandem. Preceding uncertainty 

analysis quantitatively reveals the variation in the estimation of source terms during a severe 

accident in this article. Following sensitivity analysis focuses on what are the uncertainty 

sources. The detailed design of the presented integrated approach is shown in Figure 1. This 

process of uncertainty and sensitivity analysis is established for the evaluation of severe 

accident source term. Corresponding methods are summarized in this section and the detailed 

implementation and analysis with an example are illustrated in the next section. 

After the selection of a number of potentially influential uncertain inputs, the uncertainty 

analysis in Figure 1 consists of four steps. 

(1) Step 1: factor screening using the elementary effect (EE) method [12][13]. A 

computational model can be viewed as a function ( )y f= X  of inputs 

( )1 2, , , T
Nx x x=X L  that produces an output y . “Factor screening” or “preliminary 

sensitivity analysis” is to determine which inputs have important effects on an output, 

by means of low computational cost/load. The efficiency is important since severe 

accident codes have thousands of input variables and runs of such codes are 

time-consuming, for example, one simulation via MELCOR would take around 
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several hours so that the distribution of computational resources is rather important. 

The elementary effect method, which follows a randomized one-factor-at-a-time 

design, is efficient with limited number of code runs which is a linear function of the 

number N  of input variables. Important inputs are selected from a large number of 

candidates. 

(2) Step 2: random sampling using a combined method of LHS and rank correlation. 

Monte Carlo approaches have been widely applied to severe accident uncertainty 

analysis recently. By chance, using an original Monte Carlo method may end up with 

some points clustered closely, resulting in an over-representation of certain regions 

and under-representation of others. LHS forces the samples to spread out across all 

portions of the sample space [14]. In a simulation study, a desired correlation matrix 

is expected to be induced to the sampling scheme, either independence or 

dependence. One distribution-free approach is to combine the Latin Hypercube 

sampling strategy with rank correlation [15]. The introduction of correlation will not 

destroy the structure of LHS and ensure that all marginal distributions of inputs 

remain intact. Sampling strategies are also applied and evaluated in the risk 

assessment of other nuclear facilities [16][17].  

(3) Step 3: numerical computation via integral severe accident codes. Integral computer 

codes model the progression of severe accidents in light water reactor NPP, including 

a broad spectrum of severe accident phenomena. In this article, representative source 

terms (cesium and cesium iodide) are estimated based on the setting of accident 

sequences similar to that occurred at Unit 2 of the Fukushima Daiichi NPP as well as 

corresponding physical models. Multiple code runs are performed with random 

samples generated from Step 2. 

(4) Step 4: stability verification of the uncertainty distributions using KL divergence. KL 

divergence is a non-symmetric measure of the difference between two probability 
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distributions [18]. The KL divergence is zero when two distributions are identical. 

The aim of this step is to figure out how many cases of simulation are required to 

achieve stable uncertainty distributions for source terms. Wilk’s formula are used in 

previous publications to determine tolerance limits, smallest and largest items of 

sampled outputs in an uncertainty analysis [19][20] whereas shapes of uncertainty 

distributions are still not clear. We introduce an alternative index of KL divergence to 

prove that the generated probability distributions can represent uncertainties in 

source term estimates. 

In order to reveal how the uncertainty of outputs can be apportioned according to 

uncertain input variables, the variance decomposition method (Sobol’ sensitivity indices) is 

used as a measure of importance. However, in order to obtain a converged result of Sobol’ 

importance ranking, a large sample size is required, which is narrated as one main drawback 

of the method [3]. The simulation with integral severe accident codes is rather 

time-consuming so that the problem of computational cost gets worse. We propose to 

construct a stochastic model to replace the code. If the stochastic model can predict outputs as 

well as the actual code with limited computational cost, the sensitivity analysis can be 

implemented using the surrogate model. To solve these problems, the sensitivity analysis in 

Figure 1 consists of three steps. 

(1) Step 1’: the construction of a surrogate model through Dirichlet process, a Bayesian 

nonparametric model. This technique of stochastic modeling is flexible about how to 

choose a model at an appropriate level of complexity. The structure of model, the 

number of clusters in mixture models, grows and adapts to data in a Bayesian way 

[11]. When more observations of numerical simulation are gained, the predictability 

of the stochastic model will be strengthened and the model can be used as a 

substitute executor. The sensitive variables to output uncertainties for integral codes 

are also sensitive for the surrogate model. A brief review of Dirichlet process mixture 
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and weight dependent Dirichlet process is provided in Appendices A and B, 

respectively. 

(2) Step 2’: cross-validation. To estimate how accurately the stochastic model will 

perform in prediction, we use an independent data set to test. The output dataset, 

results from severe accident codes, is partitioned into two complementary subsets, 

one is used for the construction of the surrogate model and the other is used for 

cross-validation. If the prediction of the model is similar to that by actual code, the 

predictability of the model is cross-validated.  

(3) Step 3’: sensitivity analysis via the variance decomposition method (Sobol’ 

sensitivity indices). When the “simpler” model is validated as reliable, all datasets 

are used to construct a complete surrogate model, by which the global sensitivity 

analysis is performed and important input factors can be identified. 

Based on this integrated approach, let us analyze the source term uncertainties of a 

postulated accident sequence similar to that occurred at Unit 2 of the Fukushima Daiichi NPP, 

and then quantitatively identify importance of inputs. 

 

3. An example of uncertainty analysis  

The example is provided for easy-understanding of the present approach and a more 

detailed uncertainty analysis refers to previous studies by authors [13][21], including the 

setting of severe accident scenarios and plant conditions. 

 

3.1. Severe accident scenarios and analysis conditions 

The accident sequence is similar to the accident at Unit 2 of the Fukushima Daiichi NPP. 

As a demonstration of the integrated approach, MELCOR 1.8.5 is used as the simulation tool. 

Other important supplementary materials can be found in reference [22]. The release fraction 

of initial inventories of radionuclides in core, calculated based on core inventory data for the 
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Peach Bottom Unit 2 [23] using ORIGEN 2 code, is used to survey the source term.  

 

3.2. Factor screening 

At the first step of uncertainty analysis, twenty seven uncertainty input variables are 

selected based on engineering judgment and then screened via preliminary sensitivity analysis 

using the elementary effect method. Nine inputs are from MELCOR COR package which 

affects the in-vessel melt progression and the other nineteen inputs are from RN package 

which affects the transportation of radioactive materials. The mathematical definition of the 

elementary effect method can be written as follows.  

 ( ) ( ) ( )1 1 1 27 1 1 1 27, , , , , , , , , , , ,i i i i i i i
i

i

f x x x x x f x x x x x
EE − + − ++ ∆ −

=
∆

X
L L L L

  (1) 

Here, f  can be viewed as a representation of a code execution to produce a unique 

output based on specified values of inputs. ( )1 27, , Tx x=X L  is the vector of input variables 

and specified values of X  for each evaluation are selected from several discretized 

candidates, respectively. Every time one input is selected to change with a i∆  so that the 

influence of the input on output can be represented by the iEE . Since the values of other 

inputs will affect the iEE , several rounds of calculations in a randomized manner are 

performed. Two measures can be used to evaluate the importance of each input: mean ( *
iµ ) of 

absolute values of all iEE  and the standard deviation ( iσ ) of all iEE .  Two measures 

explain 1) whether the influence of an input on the output is great, or; 2) whether the 

influence of an input on the output is highly dependent on the values of other inputs or not. 

Since MELCOR is a deterministic code, the consideration of noise in outputs is not required. 

Each round of preliminary sensitivity analysis includes 28 (27 for each input and one 

base case) code runs. Totally, six rounds are performed. i∆  is the discretized value as 20% or 

-20% of the corresponding default value. Inputs of the base case are selected from the 

discretized spaces: { }2 , , , , 2d d d d d− ∆ −∆ + ∆ + ∆ , where d  is the default value. The 
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interested source terms are the release fraction of Cs and CsI. 

The result of factor screening analysis is shown in Figure 2 and totally ten input variables 

are identified as important ones for the uncertainty analysis. Larger mean values of 

elementary effects indicate inputs with an important “overall” influence on the output. Larger 

standard deviations indicate influence of inputs is non-linear and highly dependent on the 

values of others, involved in interaction effects. The definition and assigned distributions for 

all ten important inputs are listed in Table 1. The preliminary rankings of inputs for Cs and 

CsI show a slight difference, which is possibly caused by the transportation and 

chemisorption processes of iodine, so some radionuclide transportation related inputs affect 

more significantly the release of CsI. Among top ten input factors, six are related to the 

in-vessel melt progression modeling and the other four are related to the radionuclide 

transportation modeling. 

 

3.3. Random sampling and numerical computations 

The coupled method of LHS and rank correlation, also called Iman-Conover restricted 

pairing technique [17], is applied in the random sampling process. A desired rank correlation 

matrix among all inputs is determined beforehand and rank correlation coefficient between 

two correlated inputs is shown in Table 1. The method can be simply described that the 

independently sampled input data via LHS is re-arranged according to the desired matrix. The 

sampling with correlation brings the joint distribution of inputs closer to the true desired joint 

distribution. The specified samples would be fundamentally biased when attained under the 

assumption of independence. 

Multiple evaluations using MELCOR are executed. Sixty LHS intervals are partitioned 

for the first round of uncertainty analysis and then 20 LHS partitions for each round in the 

further analysis till the obtained uncertainty distribution is stable enough to represent the 

interested source terms. Totally, two hundred code runs are performed and the stability 
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analysis of uncertainty distributions will be introduced in the following sub-section. 

 

3.4. Verification of uncertainty distributions 

Wilks formula is generally used to determine how many code runs are required to obtain 

limit values, e.g. the 95th percentile value with a confidence level of 95% is obtained by 

selecting number of code runs as 59 for the consideration of the one-sided tolerance limit. The 

upper limit can be decided with a relatively few number of code runs whereas it is still 

unknown whether the corresponding uncertainty distribution is stable. In order to find an 

appropriate number of code runs, we introduce the Kullback-Leibler divergence as an 

alternative index for the number of evaluations. The KL divergence is a measure of the 

difference between two distributions P  and Q . When the KL divergence is small enough, 

the uncertainty distribution of more code runs can be considered as acceptably reasonable. 

The continuous and discretized forms of KL divergence can be written as follows. 

 ( ) ( ) ( )
( ) ( ) ( )

( )
ln ln

discretized

KL
i

p x P i
D P Q p x dx P i

q x Q i
+∞

−∞
= = ∑∫   (2) 

Here, p  and q  denote the probability density functions of P  and Q . It can be 

observed from Equation (2) that the KL divergence is a non-asymmetric measure. Typically, 

P  represents the “true distribution” and Q  an approximate of the “true distribution”. 

Because there is no “true distribution” available in the severe accident analysis, we use the 

density function of more code runs as P  and that of less code runs as Q . The method of 

Dirichlet process mixtures is applied to obtain probability density functions of representative 

source terms based on multiple outputs. The detailed mathematical modeling process is 

provided in Appendix A. Probability density functions of different number of code runs are 

shown in Figure 3, where the release fraction of CsI corresponding to the initial inventory is 

taken as an example. When the number of cases increases, two adjacent curves become more 

similar in shape. It also shows an obvious difference in the interval between 3% and 4% 
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where the probability densities of less code runs are overestimated. The change of KL 

divergence for both Cs and CsI is shown in Figure 4. The change of KL divergence between 

to neighbored probability density functions become less when more code runs are performed 

so that the stability of uncertainty distributions can be confirmed. When 200 runs are executed, 

the KL divergences between two neighbored distributions reduce to 0.4 and 0.27, for Cs and 

CsI, respectively. The determination of an acceptable threshold of KL divergence is subjective 

and when both reduce to be less than 1, we think that the uncertainty distributions converge. 

Probability density functions of representative source terms (Cs and CsI) are provided in 

Figure 5. Two curves describe the probability density of Cs and CsI. Two set of points 

describe the actual MELCOR results and points are jittered to avoid overlapping. The 

probability density functions show multiple modes so that mixture models are required to fit 

the data, as introduced in Appendix A. Overall release fraction of Cs is less than that of CsI. 

Credible intervals that cover 95% highest probability density region are: Cs [9.77E-05, 

1.58E-02] and CsI [3.37E-04, 4.09E-02]. The failure status of pressure vessel is a key factor 

that results in the overall shape of source terms distributions shown as two-modal.  

Meaning of representative indices in uncertainty analysis are summarized as: by using EE 

method, mean values show the importance of input factors and standard deviations show 

interaction among inputs; the change of KL divergence with the increase of code runs 

represents the convergence speed of uncertainty distributions; the probability density 

functions of source terms quantitatively show the uncertainty range of estimates. 

 

4. An example of sensitivity analysis 

A more detailed demonstration of the sensitivity analysis, with a simpler example of three 

input variables, can be found in a previous study by authors [24]. The example in the article is 

to prove the practicability of the method for a higher-dimensional problem, ten-dimensional 

surrogate model presently.  
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4.1. A review of Sobol’ sensitivity indices 

As we already know uncertainty distributions of source terms (Cs and CsI), it is of further 

interest to know which factor is the main source of the output uncertainty. Sensitivity analysis 

is a method to solve the problem. Let us review the calculation procedure of Sobol’ sensitivity 

indices, which is based on the decomposition of output uncertainty. The output variance 

( )V y , one moment of a distribution which represents how far numbers spread out, can be 

decomposed by conditioning with respect to input variables.  

 ( ) ( )( ) ( )( )i iV y V E y x E V y x= +   (3) 

Here, ix  is an arbitrary input variable. The definition of first order effect of the element 

ix  can be written as 

 
( )( )
( )

i
i

V E y x
S

V y
=   (4) 

Here, V  and E  represent variance and expectation, respectively. iS  is the first order 

effect of input ix  on output y .  The total effect of the element ix  can be written as 

follows, which include all terms of any order that include ix . 

 ( ) ( )( ) ( )( )~ ~i iV y V E y E V y= +X X  (5) 

 
( ) ( )( )

( )
( )( )
( )

~ ~
1 12 13 123

i i
Ti

V y V E y E V y
S S S S S

V y V y

−
= = = + + + +

X X
L   (6) 

Here, ( )~ 1 1 1, , , , T
i i i Nx x x x− +=X L L  is the vector of inputs with the exclusion of ix . 

Higher order indices can be written as 

 
( )( )
( ) ( )

,
1

i j
ij i j ij

V E y x x
S S S S i j N

V y
= = + + ≤ < ≤    (7) 

Based on these sensitivity indices, the importance of all input variables can be 

quantitatively evaluated and ranked. However, in order to obtain converged results of Sobol’ 

sensitivity analysis, thousands of code-runs are required. Thus, we propose an approach to 
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construct a surrogate model for the sensitivity analysis, so the model should generate 

approximate outputs compared with the original simulation tool. 

 

4.2. The construction of a surrogate model 

The estimation of source term can be abstractly represented as a function. 

 ( ) ( );y f g= =X X θ   (8) 

Here, f  is the computational tool that produces an output y  based on inputs X . 

( );g X θ  is an approximate model that is built using statistical methods, so ( );g X θ  plays 

the same role that the actual tool plays, but with far cheaper computational cost. 

( )1 2, , Tθ θθ = L  is the vector of parameters used to build the mathematical model, e.g. all 

coefficients ( )0 1, , , , T
Nβ β β ε=θ L  in a linear model 0 1 1 N Ny x xβ β β ε= + + + +L , or 

( )2,
T

µ σ=θ  in a standard Gaussian model ( )2,y N µ σ: , etc. 

Based on Bayesian inference, the posterior distribution of parameters ( θ ) in the 

stochastic model can be written in an integrated Bayesian form. 

 ( ) ( )
( )

( ) ( )
( ) ( )

,, ,
,

,

p p yp y
p y

p y p p y d d
= =

∫Χ,Θ
θ X θθ X

θ X
θ X θ θ X

 (9) 

The predictive posterior distribution of new interested output ( y%) given corresponding 

input set ( X%) can be written accordingly. 

 

( ) ( )
( ) ( )
( ) ( )

, , , , ,

                      , , ,

                      ,

p y p y d

p y p d

p y p d

=

=

=

∫
∫
∫

Θ

Θ

Θ

X y X θ X y X θ

X y X,θ θ X y θ

X,θ θ X y θ

% %% %

%%

%%

  (10) 

As the source term uncertainty results shown in Figure 5, outputs show nonlinear 

properties and cannot be represented by any standard stochastic model, e.g. normal 

distribution, etc. Models of higher-order polynomials are available but too deterministic in the 

form and show properties of overfitting and poor predictability, for example, the predictions 

and real value are entirely distinct. We introduce a method using a mixture of some standard 
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distributions but without the determination of freedom of degree beforehand. The mixture 

model is one of Bayesian nonparametric model and is called Dirichlet process mixture, which 

is introduced in Appendix A and applied to density estimation of MELCOR results. More 

introduction can be found in references [10][11], classic reference on Dirichlet process 

[25][26], Dirichlet process mixtures [27], and dependent Dirichlet model [28]. A doctoral 

dissertation also provides easy-understanding introduction of Dirichlet process related 

methods [29]. 

When outputs are predicted for new inputs, a weight dependent Dirichlet process model 

is applied, as introduced in Appendix B. A package of R language, DPpackage, is used in the 

prediction process in the present research [30] and corresponding introduction of weight 

dependent Dirichlet process can be found in references [31][32]. The degree of freedom (the 

number of mixture components: K ) and corresponding parameters of mixture components 

(e.g. the mean vector and covariance matrix, for a mixture of normal) are optimized in a 

Bayesian way, as introduced in Equations (9) and (10). Using the weight dependent Dirichlet 

process model, we constructed a flexible and well-fitted surrogate model with reliable 

predictability. 

 

4.3. Cross-validation of the surrogate model 

In order to prove the predictability of the surrogate model, a cross-validation is performed. 

Based on the randomly-selected 190 cases from data during the uncertainty analysis, a 

stochastic model has been built. Inputs of the other ten cases are used to compare. If the 

predicted output of the ten cases shows agreement with the actual code outputs, the model can 

be proved as acceptably accurate. The results of cross-validation are shown in Figure 6. Black 

curves are predicted released fraction of CsI based on certain inputs via the surrogate model 

and black dots are the MELCOR results based on the same inputs. The code outputs appear 

nearly around the mode of predicted distributions. It proved that the stochastic model is 
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reliable to be used as an alternative tool for source term analysis. It should be mentioned that 

the prediction of low-dimensional inputs (with fewer variables) is of less uncertainty and 

higher accuracy than that of high-dimensional problems (with more variables). 

 

4.4. Global sensitivity analysis using Sobol’ sensitivity indices 

According to the introduction of Sobol’ sensitivity analysis, variance of outputs and 

variance of conditional expectations are used to estimate the importance of all input variable. 

Based on results of MELCOR, the variance of CsI can be calculated: ( ) 1.577 4V y E= − . 

Based on Equation (10), a continuous posterior predictive distribution ( ), ,p y X y X%%  

with one specified input X% can be obtained. In order to apply the prediction into sensitivity 

analysis, a point estimate of the unobserved quantity is required. In Bayesian statistics, a 

maximum a posterior (MAP) estimate is to use the mode of the predictive posterior 

distribution as the point estimate of the most probable result. It can be written in a 

mathematical form.  

 ( )ˆ arg max , ,MAP y
y p y= X y X

%
%%   (11) 

Thousands of input-output evaluations are performed to obtain Sobol’ sensitivity 

measures for input variables, and the computational cost is rather lower than that of MELCOR 

computations. The results are provided in Table 2. The global sensitivity analysis of all ten 

inputs provides a reference importance measure. Estimation error exists for two reasons. The 

first is the prediction error existed with the use of a surrogate stochastic model. The surrogate 

model provides a practically available way to the sensitivity analysis but introduce the 

approximated error. The second is the point estimate of the posterior predictive distribution. 

The MAP estimation is a simplification of the results and innate uncertainties exist for all 

probability distributions. The sensitivity analysis provides a reference ranking from the 

perspective of substantial influence of inputs on outputs. The most important input variable is 
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the TZXMX that is one key parameter to influence the failure mechanism of fuel rod 

claddings. The second and third are DELDIF and TRDFAI, related to the aerosol dynamic 

process and the fuel failure models, respectively. Without the aid of stochastic tools, 

importance measure with global sensitivity analysis of complex code would be a difficult 

task. 

 

5. Conclusions 

An integrated approach to source term uncertainty and sensitivity analysis has been 

developed at JAEA for the risk assessment of nuclear reactor severe accidents. The full-scope 

approach improves the previous method for source term uncertainty analysis. The 

introduction of a surrogate model solves the impracticality of global sensitivity analysis for 

source term.  

This integrated approach consists of two main procedures: uncertainty analysis and 

sensitivity analysis. There are four steps of actions in uncertainty analysis: factor screening 

using an individually randomized one-factor-at-one-time method; random sampling using 

Latin Hypercube sampling with the consideration of correlation among inputs; numerical 

computation via integral severe accident codes; stability analysis using Kullback-Leibler 

divergences between uncertainty distributions to attain the required number of code runs. 

Three steps of actions are involved into the global sensitivity analysis: the construction of a 

surrogate model based on weight dependent Dirichlet process, a nonparametric Bayesian 

methodology; cross-validation of the model with new inputs; sensitivity analysis using 

variance decomposition method (Sobol’ sensitivity indices).  

As a demonstration, 200 MELCOR code runs are executed for an accident sequence 

similar to that occurred at Unit 2 of the Fukushima Daiichi NPP. Stable uncertainty 

distributions of representative source terms are obtained, in non-standard and multi-modal 

shapes. Highest probability density regions of source terms can provide boundary conditions 
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for the evaluation of off-site radiological consequences. The relative importance measures of 

ten inputs are ranked. Important physical models, related to models of fuel and fuel cladding 

failure and aerosol dynamic process, are identified as of substantial influences on the source 

term. This integrated approach shows advantages in solving some previously neglected 

problems in uncertainty and sensitivity analysis of complex severe accident codes. 
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Appendix A. A finite mixture model and Dirichlet process mixture 

A brief introduction of Dirichlet process and weight dependent Dirichlet process is 

provided for a quick review. In nonparametric Bayesian statistics, Ditichlet processes are 

commonly used to learn mixture models whose number of components is no fixed, but instead 

from data. The Dirichlet process is the infinite form of a finite mixture model, which can be 

written as 

 ( ) ( )
1

K

k k
k

p y p yp φ
=

=∑   (12) 

Here, the finite number K  is the number of all components, which are also notated as 

clusters in data analysis. Data from the same cluster share one unique set of parameters kφ . 

Accordingly, the vector of parameters (θ ) in Equations (9) and (10) can be written as 

{ }1 1, , ; , ,K Kp p φ φ=θ K K . Each data point is generated by independently selecting one of K  

clusters according to a multinomial distribution and then sampling from the chosen cluster’s 

data distributions. 

 
( ) }{ }{
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c Multi c K
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  (13) 

 With the using of mixture models, the stochastic model of any dataset can be a 

composite of a number of standard distributions, by which complex and multimodal datasets 

can be modeled. Figure 7 illustrates the finite mixture model. The multinomial distribution of 

}{ 1, , Kp p=π L  have a conjugate Dirichlet prior with a precision parameter α  so the 

posterior distribution of π  is still a Dirichlet. 

  , ,Dir
K K
α α 

 
 

π : K   (14) 

Parameters of each cluster are sampled from a hyper-prior distribution with 

hyper-parameters λ . 

 ( )H k λ:φ   (15) 
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As shown in Figure 8, mixture models can equivalently be expressed in terms of a 

discrete distribution (G ) one the space (Φ ) of cluster parameters.  
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 (16)   

The base function of parameters of each cluster is denoted as 0G  instead of ( )H λ . In 

nonparametric Bayesian setting, K and kφ  are not determined beforehand but by data itself. 

The partitions of data are optimized by Bayesian inference so that the complexity and 

accuracy of the inferred model will grow as more data is observed. Dirichlet process mixture 

can be written in an infinite form as 
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The discrete distribution drawn from a Dirichlet process can be denoted in a simpler way. 

 ( )0,G DP Gα:   (18) 

The weight }{ 1 2, ,p p L  can be expressed as the stick-breaking construction. 
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Appendix B. Weight dependent Dirichlet process 

Wight dependent Dirichlet process is used to predict outputs based on inputs. The mixture 

model can be expressed in the form that weights and cluster parameters are dependent on 

inputs or covariates. The influence of covariates on the output can be reflected via linear mean 
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functions and a set of covariate dependent weights. 

 ( ) ( ) ( )2
0

1
,T

k k k
k

g y N yp g σ
∞

=

= +∑ kx x γ   (20) 

It can be written in an integral form with multivariate normal distributions. 
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∫ Σ Σi ix x μ μ:
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  (21) 

Here, D  is the dimension of the vector of complete dataset ( ), T
iy ix  and in the present 

research 11D = . 0G  is the baseline distribution which is assumed as a 

Normal-Inverted-Whisart (IW) distribution. 

 ( ) ( )1
0 0 1, ,D DG N IWκ ν−≡ 1Ψ1μ m Σ Σ  (22) 

Here, prior parameters are assumed: 1 12ν =  and α  is a gamma distribution with 

hyper-prior parameters: 0 10a =  and 0 5b = . 

 ( )0 0,a bα Γ:   (23) 

The assumptions of other hyper-parameters are listed as 
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In the present article, 1m  is the mean vector: ( ),
T

iy=1 im x , 2 12ν = , 1 6.01τ =  and 

2 2.01τ = . 2S  is the covariance matrix of ( ), T
iy ix  and Ψ2  is the inverse matrix of 2S . 

The covariate dependent weights and parameters in mean functions are defined as 
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Here, kp  follows the stick-breaking construction as introduced in Equation (19). The 

standard mean and covariance matrix in Equation (20) for each cluster k  can be written as 

1kµ 
=  
 

k
2k

μ
μ

 and 
2
11 12

21 22

k k
k

k k

σ 
=  
 Σ

Σ
Σ

Σ
. Based on observations y  and inputs Tx , the solving 

of the Dirichlet process model can be realized by using Markov Chain Monte Carlo (MCMC) 

Gibbs sampling algorithm. 
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Figure captions 

 

Figure 1. The proposed approach to severe accident source term uncertainty and sensitivity 

analysis (gray symbols are essential steps) 

Figure 2. Estimated elementary effects of 27 input variables for Cs and CsI with the 

elementary effect method 

Figure 3. Probability density functions based on different numbers of code runs by using 

Bayesian nonparametric density estimation (Dirichlet process mixture of normals) 

Figure 4. Kullback-Leibler divergences between two adjacent probability density functions 

Figure 5. Probability distributions of representative source terms 

Figure 6. Cross-validation of simulated posterior predictive distributions (solid curves) with 

actual MELCOR results (single black dots) 

Figure 7. A finite mixture model 

Figure 8. A Gaussian process mixture model 
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Table 1. Uncertain input variables selected according to the elementary effect method 

 Inputs Package Description Distribution 
1 TRDFAI COR Temperature at which oxidized fuel rods 

can stand when unoxidized Zr is absent 
from the cladding (default = 2500.0 K). 

Normal distribution (μ = 
2500.0, σ = 250.0); 
Range = [2100, 2990 ] 
Rank correlation: 
0.5 with TZXMX 

2 TSPCB COR Time constant for the channel-bypass 
relocation of debris after the failure of 
canisters (default = 1.0 s). 

Uniform distribution; 
Range = [0.5, 1.5] 
Rank correlation: 
-0.25 with TZXMX 

3 SC7155 
(1) 

RN It is used to determine the 
decontamination factor for small Stocks 
number of the impaction process which 
is modeled by SPARC-90 particle 
impaction model (default = 1.79182). 

Normal distribution (μ, = 
1.79182, σ = 1.53755) 
Range = (0, +∞) 

4 TZXMX COR Maximum ZrO2 temperature permitted 
to hold up molten Zr (default = 2400.0 
K). 

Normal distribution (μ = 
2400.0, σ = 240.0) 
Range = [2100, 2990] 
Rank correlation: 
0.5 with TRDFAI; 
-0.25 with TSPCB; 
-0.25 with HFRZZR 

5 SC7160 
(1, 1) 

RN Chemisorption rate coefficient for CsOH 
on the surface of stainless steel (default 
= 0.139 m/s). 

Normal distribution (μ = 
0.139, σ = 0.0417) 
Range = (0, +∞) 

6 STICK RN Particle sticking coefficient which is one 
of miscellaneous coefficients used for 
the aerosol dynamic process (default = 
1.0). 

Uniform distribution 
Range = [0.5, 1.0] 

7 DELDIF RN Diffusion boundary layer thickness 
which is one of miscellaneous 
coefficients used for the aerosol 
dynamic process (default = 1.0 × 10-5) 

Uniform distribution 
Range = [5.0 × 10-6, 1.5 × 
10-5] 

8 TPFAIL COR Failure temperature of the penetration or 
the lower head. It is used as one of 
parameters to model the failure of the 
vessel lower head and its penetrations 
(default = 1273.15 K). 

Normal distribution (μ = 
1273.15, σ = 127.315) 
Range = [1000, 1700] 

9 TNSMAX COR Temperature above which nonsupporting 
structure (control blades or rods) will 
collapse, independent of remaining 
metal thickness (default = the melting 
point of steel which is the cladding of 
control blades or rods, 1700.0 K) 

Normal distribution (μ = 
1700.0, σ = 170.0) 
Range = [1000, 1870] 

10 HFRZZR COR Refreezing heat transfer coefficient for 
Zircaloy which is used in the candling 
model for the molten Zircaloy. (default = 
1000.0 W/m2∙K) 

Normal distribution (μ = 
100.0, σ = 300.0) 
Range = (0, +∞) 
Rank correlation: 
-0.25 with TZXMX 
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Table 2. Results of global sensitivity analysis and importance ranking 

 

 Inputs 
1,2, ,10j =

jV
L

 
1, 2, ,10j =

~ jV
L

 

First order 

Effect 

(MAP) 

Total 

Effect 

(MAP) 

Importance 

ranking 

(Total) 

1x  TRDFAI 5.396E-06 4.333E-05 0.034 0.725 3 

2x  TSPCB 5.337E-06 8.409E-05 0.034 0.467 9 

3x  SC7155(1) 4.930E-06 6.999E-05 0.031 0.556 4 

4x  TZXMX 5.403E-05 3.126E-05 0.343 0.802 1 

5x  SC7160(1,1) 5.705E-06 7.595E-05 0.036 0.518 5 

6x  STICK 1.806E-06 8.112E-05 0.011 0.486 8 

7x  DELDIF 9.533E-06 4.160E-05 0.060 0.736 2 

8x  TPFAIL 5.282E-06 9.429E-05 0.033 0.402 10 

9x  TNSMAX 5.313E-06 7.708E-05 0.034 0.511 6 

10x  HFRZZR 1.088E-05 7.803E-05 0.069 0.505 7 
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Figure 1. The proposed approach to severe accident source term uncertainty and sensitivity 

analysis (gray symbols are essential steps) 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents  

  



 30 

 

 

 

 

 

 

Figure 2. Estimated elementary effects of 27 input variables for Cs and CsI with the 

elementary effect method 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents 
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Figure 3. Probability density functions based on different numbers of code runs by using 

Bayesian nonparametric density estimation (Dirichlet process mixture of normals) 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents 
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Figure 4. Kullback-Leibler divergences between two adjacent probability density functions 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents 

 

  

8.84  

5.19  
4.67  

1.98  
2.22  

1.02  0.40  

2.70  
1.90  

0.71  0.50  0.54  

0.27  
0.27  0

2

4

6

8

10

50 100 150 200 250

K
ul

lb
ac

k-
Le

ib
le

r D
iv

er
ge

nc
e 

Number of code runs 

Cs

CsI



 33 

 

 

 

 

 

Figure 5. Probability distributions of representative source terms 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents 
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Figure 6. Cross-validation of simulated posterior predictive distributions (solid curves) with 

actual MELCOR results (single black dots) 

X. Zheng 

An integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor 

severe accidents 
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Figure 7. A finite mixture model 
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severe accidents 
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Figure 8. A Gaussian process mixture model 

X. Zheng 
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severe accidents 
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