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Magnetization plateaus by reconstructed quasispinons in a frustrated two-leg spin
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The quantum phase transitions induced by a magnetic field are theoretically studied in a frustrated two-leg
spin ladder. Using the density-matrix renormalization-group method, we find some magnetic phase transitions
and plateaus in two different cases of strong and weak rung couplings. With the strong rung coupling, the
three magnetization plateaus are found at 1/3, 1/2, and 2/3 due to the frustration. Those can be understood
in terms of a quasispinon reconstructed from the singlet and the triplets of spins on a rung. The plateau at
1/2 corresponds to the valence bond solid of the quasispinons, while the plateaus at 1/3 and 2/3 can be
associated with the array of quasispinons such as the soliton lattice. This is different from the usual Bose-
Einstein-condensation picture of triplons. Our results will be useful in understanding magnetization curves
in BiCu2PO6.

DOI: 10.1103/PhysRevB.92.125114 PACS number(s): 75.10.Jm, 75.10.Kt, 75.60.Ej

I. INTRODUCTION

Correlated many-body systems have a rich variety of
quantum phenomena such as Mott insulator, high-temperature
superconductivity, Kondo effect, and fractional quantum Hall
effect [1,2]. Interacting boson systems also have many in-
teresting physics such as superfluidity accompanied by Bose-
Einstein condensation (BEC). A quantum spin system is useful
for studying such an interacting boson system due to a mapping
between interacting spin and boson systems [3]. In fact, the
BEC in the quantum antiferromagnet TlCuCl3 has been studied
experimentally [4,5] and theoretically [6,7]. Moreover, many
quantum magnets have been examined so far [8].

The density of bosons in quantum magnets is tuned by
an applied magnetic field, which induces the BEC corre-
sponding to the long-ranged magnetic order. It can be seen
in a magnetization curve. For example, in the dimerized
quantum antiferromagnet TlCuCl3, which has a gap in the spin
excitation, the magnetic field has a critical value Hc1 where
the gap is destroyed and the magnetization becomes finite.
Such behavior is explained by the BEC of triplons [4,6,8],
which are triplet states on a dimer and are associated with
hard-core bosons. Near H � Hc1, the density of triplons is
still dilute and will make some kind of bound state [9,10].
Increasing the magnetic field H , the magnetization will
become constant above a saturation field, Hc2. In Hc1 <

H < Hc2, strong repulsion between triplons on a lattice can
induce magnetization plateaus, which corresponds to the Mott
insulator phase of bosons [11–14].

The triplon BEC mentioned above is accepted as a good
starting point for understanding magnetization plateaus. In this
paper, we propose a concept for magnetization plateaus which
is different from the triplon picture. Such a concept works
on a frustrated two-leg spin ladder (F-2LSL). Calculating
magnetization curves of the F-2LSL by the density-matrix

*sugimoto.takanori@rs.tus.ac.jp

renormalization-group (DMRG) method, we find three frac-
tional magnetization plateaus due to frustration in the case of
strong rung coupling. We interpret the origin of the plateaus
by introducing a quasispinon constructed by a singlet and a
triplet of a spin pair on a rung. In contrast to the triplon
BEC picture, the magnetization plateaus correspond to the
valence bond solid and the solitonic lattice of the quasispinons.
As a realistic material containing the F-2LSL, BiCu2PO6

(BCPO) has been actively studied [15–21]. Casola et al.
have reported that a field-induced phase can be fit by a
solitonic excitation of spinons originating from triplons instead
of the triplon BEC picture [17], indicating a reconstruction
of the quasiparticles and field-induced second-order phase
transition. Our new concept of quasispinons will give a hint
for fully understanding the field-induced phases of BCPO
as well as other frustrated spin chains that exhibit fractional
magnetization plateaus [11–14].

The rest of the paper is organized as follows. In Sec. II,
the Hamiltonian of the frustrated two-leg spin ladder will be
defined, and a way to calculate the magnetization curves using
the DMRG method will be explained. In Sec. III, numerical
results of the magnetization curves, which depend on both
the rung couplings and the frustration, will be shown in
detail. We will formulate quasispin operators to explicitly
derive an effective Hamiltonian with the strong frustration
and the strong rung couplings in an applied magnetic field.
How to interpret the magnetization plateaus in terms of
the effective Hamiltonian is also discussed together with
schematic pictures. The relation between weak and strong
rung-coupling limits will be summarized in a table. Finally,
a summary and discussions will be given in Sec. IV.

II. MODEL AND METHOD

A model Hamiltonian of the F-2LSL with an applied
magnetic field H is given by

H = H‖ + H⊥ + HZ (1)

1098-0121/2015/92(12)/125114(6) 125114-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.125114


SUGIMOTO, MORI, TOHYAMA, AND MAEKAWA PHYSICAL REVIEW B 92, 125114 (2015)

with

H‖ =
∑
η=1,2

Jη

∑
j

∑
i=u,l

Sj,i · Sj+η,i , (2)

H⊥ = J⊥
∑

j

Sj,u · Sj,l, (3)

HZ = −H
∑

j

∑
i=u,l

Sz
j,i , (4)

where Sj,u(l) is the S = 1/2 spin operator on the j site in
the upper (lower) chain and its z component is Sz

j,u(l). There
are three types of antiferromagnetic Heisenberg interactions,
a nearest-neighbor coupling J1 and a next-nearest-neighbor
coupling J2 in the leg direction, and a nearest-neighbor
coupling on a rung bond J⊥. In the limit of weak rung coupling,
J⊥ � J1, this model describes decoupled two frustrated spin
chains, while a nonfrustrated spin ladder is obtained in the
limit of weak frustration, J2 � J1. Consequently, this model
bridges between a frustrated spin chain and a nonfrustrated
spin ladder through J⊥ and J2.

The preceding studies on this model have shown that there
are two different phases as the ground state, i.e., the columnar-
dimer and rung-singlet phases [18]. In the columnar-dimer
phase, the ground state is composed of two degenerated states
with spontaneously broken translational symmetry [22], while
no degeneracy exists in the ground state of the rung-singlet
phase. In the former case, spinon as a fermionic quasiparticle
helps us to understand the magnetic behavior, although the

hard-core bosonic particle, triplon, gives a better explanation
in the latter one. We note that this is one example of
reconstruction of quasiparticles caused by the second-order
phase transition with spontaneously broken symmetry.

We calculate the magnetization curves in both the weak
and strong rung-coupling limits by using the DMRG method
with an open boundary condition [23]. First, we calculate
the minimum energies Em with fixed magnetizations m =
0,1, . . . ,Msat without a magnetic field. Then, the energy
difference between Em and Em+1 determines a magnitude of
a magnetic field,

Hm:m+1 = Em+1 − Em, (5)

at which the magnetization of the ground state changes from
m to m + 1. Therefore, using Hm:m+1 and magnetic field H ,
the magnetization curve M(H ) is calculated by

M(H ) =
Msat−1∑
m=1

m θ (H − Hm−1:m) θ (Hm:m+1 − H ), (6)

where θ (x) is the Heaviside step function.

III. NUMERICAL RESULTS AND QUASISPIN
TRANSFORMATION

Figures 1(a)–1(c) show the magnetization curves for rung
couplings J⊥/J1 = 0.1, 1, and 10, with a fixed frustration
J2/J1 = 0.6 in a 72-rung system. In the weak rung-coupling
limit, J⊥/J1 = 0.1, as shown in Fig. 1(a), we can find a cusp
singularity and a plateau at magnetization ratio M/Msat = 1/3,

FIG. 1. (Color online) Magnetization curves in a 72-rung F-2LSL. (a)–(c) Rung-coupling (J⊥/J1) dependence with a fixed frustration
J2/J1 = 0.6. (d)–(f) Frustration (J2/J1) dependence with a fixed rung coupling J1/J⊥ = 0.1. The one-third plateau denoted by “1/3” and the
cusp singularity denoted by “Cusp” in (a) correspond to those of a frustrated spin chain. Other plateaus denoted by “1/2” and “1/3” appear at
J⊥/J1 = 1.0 (b) and J1/J⊥ = 0.1 (c). The 1/3 plateau reappears in (c) together with some cusp singularities. In (d) there are no plateau and
cusp, but in (e) two cusp singularities and 1/2 plateau appear. Strong frustration at J2/J1 = 0.7 causes three plateaus in (f).
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H
(a) weak rung-coupling limit

1/3 plateau H

(b) strong rung-coupling limit
1/3 plateau

1/2 plateau

2/3 plateau= (           ) /- √2

= (           ) /- √2

= -[              ] /√2=

(c) notations

FIG. 2. (Color online) Schematic spin configurations for the
plateau phases. (a) Weak rung-coupling limit and (b) strong rung-
coupling limit. (c) Schematic configurations used in (a) and (b). In
(a), up spins locally freeze with long-range order and total Sz in each
of the three neighboring spins in the upper (lower) chain equals 1/2.
In (b), similar quasi-up-spin freezing with long-range order occurs in
the 1/3 and 2/3 plateau phases, although quasispins play a physical
role instead of the real spins.

which are also reported in a frustrated chain [14]. With
an applied magnetic field, a three-fold degeneracy of triplet
excitation breaks and one state of them goes down to the
singlet ground state. When the lowest energy of the triplets
reaches down to that of the singlet ground state at H = Hc1,
the gap-to-gapless transition occurs and the magnetization
becomes finite. A cusp singularity appears as a result of
Lifshitz transition of Jordan-Wigner fermion [21]. The strong
frustration induces a one-third plateau originated from a
reconstructed unit cell with the size three times larger than
that of an original unit cell. Freezing spins with a magnetic
moment make a long-range order in the leg direction together
with deconfinement of spins between two legs [see Fig. 2(a)].
Increasing the rung coupling up to J⊥/J1 = 1 in Fig. 1(b), the
one-third plateau is weakened or disappears, although other
plateaus emerge at one-half magnetization M/Msat = 1/2
and two-third one M/Msat = 2/3. Moreover, with a strong
rung coupling in Fig. 1(c), we can find again the one-third
plateau with some cusp singularities. The three plateaus at
magnetization ratios M/Msat = 1/3, 1/2, and 2/3 do not
satisfy the condition proposed by Oshikawa et al. [12],
which is given by Q(S − mz) ∈ Z, with spin S, periodicity
of lattice Q (Q = 2 for our Hamiltonian), magnetization
mz = MS/Msat at plateaus, and the set of integers Z. In
accordance with the Oshikawa-Yamanaka-Affleck criteria,
these are caused by spontaneously broken symmetries of the
plateau states in the present system. Since such a plateau
state requires a confirmation with other methods like the
numerical calculation and a bosonization approach one by
one, these could be nontrivial, although potential plateaus
and a possible case of spontaneously broken symmetries have
been discussed in several quantum spin models with similar
characteristics [12,13,24,25].

The frustration dependence of the magnetization curve
with the strong rung coupling J⊥/J1 = 10 is also calculated
with J2/J1 = 0.1, 0.4, and 0.7 in Figs. 1(d), 1(e), and 1(f),
respectively. It is clear that cusp singularities and plateaus are
caused by the frustration controlled by J2/J1, even though
the number of singularities and plateaus is different from the

weak rung-coupling cases shown in Figs. 1(a)–1(c). The spin
freezing and long-ranged order with the one-third plateau state
appear at J2/J1 = 0.7. In contrast to the one-third plateau for
weak rung coupling, the periodicity of the freezing spins must
be identical between the upper and lower chains because of
the strong rung coupling [see Fig. 2(b)].

To clarify the origin of the magnetization plateaus, a
quasispin transformation [6] is applied to the original Hamil-
tonian (1) with a strong rung coupling. In this limit, the
hard-core-bosonic picture is still applicable up to H ∼ Hc1.
However, the picture becomes worse in such a large magnetic
field, because the symmetry of the triplets is no longer alive.
Instead of the symmetry of the triplets, a new SU(2) symmetry
constructed by a singlet and a triplet appears with a quasispin
transformation given by

T ±
j,p = ± i√

2

[
S±

j,ue
±i π

2 (Sz
j,l+ 1

2 ) + S±
j,le

∓i π
2 (Sz

j,u+ 1
2 )],

(7)

T z
j,p = 1

2

[(
Sz

j,u + Sz
j,l

) + S+
j,uS

−
j,l + S−

j,uS
+
j,l

]
,

and

T ±
j,m = 1√

2

[
S∓

j,ue
±i π

2 (Sz
j,l+ 1

2 ) − S∓
j,le

∓i π
2 (Sz

j,u+ 1
2 )],

(8)

T z
j,m = 1

2

[−(
Sz

j,u + Sz
j,l

) + S+
j,uS

−
j,l + S−

j,uS
+
j,l

]
.

With the transformation, T operators obey the spin SU(2)
algebra: {T +

j,α,T −
j,α} = 1 and [T +

i,α,T −
j,α] = 0 for i 	= j and

α = p,m. Therefore, the transformation makes it possible
to consider another SU(2) quasispin model of two different
energy scales discussed below. The original Hamiltonian with
no perturbations (J1 = J2 = 0) is rewritten as

H⊥ + HZ =
∑

j

μj,pnj,p +
∑

j

μj,mnj,m + const., (9)

where nj,α(=T z
j,α + 1/2) are the number operators of the

quasispins. The effective chemical potentials for the quasispins
are given by μj,p = J⊥ − H and μj,m = J⊥(1 − nj,p) + H .
With perturbations J1 ∼ J2 � J⊥, we consider magnetic fields
|J⊥ − H | ∼ J1 ∼ J2 � J⊥ (∼H ). Since the number operator
nj,p is zero or one, the chemical potential μj,m � H is much
greater than μj,p ∼ 0. Thus, the energy scales of quasispins
split off by a strong magnetic field, where the low-energy
physics is described by the quasispin of “p”. Since the
magnetization process is obtained by the expectation value
〈nj,p − nj,m〉 as a function of H and 〈nj,m〉 ∼ 0, we can
focus the discussion on the low-energy physics described by
the quasispin of “p”. To neglect the high-energy physics, we
consider the effective Hamiltonian in a Hilbert space projected
by Heff = PHP with P = ∏

j (1 − nj,m). Here, the projected
space has the expectation value of the number operator of the
“m” quasispin 〈nj,m〉 = 0. In this approximation, the up and
down states of the quasispin of “p” correspond to a triplet and
a singlet state on a bond, respectively (see also Fig. 2). In
the projected Hilbert space, we finally find a frustrated spin
chain again, where spins are substituted with the quasispins as
follows [6,26,27]:

Heff = P(H′
‖ + H′

Z)P (10)
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TABLE I. Comparison between two different limits.

Weak rung-coupling limit Strong rung-coupling limit

Effective model Decoupled frustrated spin- 1
2 chains Frustrated quasispin- 1

2 chain
Spin interaction Heisenberg XY-like
Spin operator Sj,u(l) T j,p

M/Msat for q filling of up spins 2(q − 1/2) q

Effective magnetic field H H ′ = H − J⊥ − (J1 + J2)/2
Filling of up spins at H = 0 1/2 0

with

H′
‖

=
∑

eta=1,2

∑
j

[
J z

η
′
T z

j,pT
z
j+η,p + J x

η
′

2
(T +

j,pT
−
j+η,p + T −

j,pT
+
j+η,p)

]
,

(11)

H′
Z = −H ′ ∑

j

T z
j,p, (12)

where the XY and Ising components of quasiexchange
interactions are denoted by J x

η
′ = Jη and J z

η
′ = Jη/2 with

η = 1,2, respectively. See the Appendix for more details, by
which one can find possible extensions of the theory. This
model has several differences from the original spin model in
the weak rung-coupling limit (see Table I). One is anisotropy of
the antiferromagnetic spin interactions, where every quasiex-
change interaction is XY-like, J x

η
′ = 2J z

η
′. In addition, we

should be careful of the meaning of the magnetization of up
and down quasispins, because the transformation maps the
singlet state to down and the triplet to up quasispins. Thus, the
total magnetization with q filling of up spins is not 2(q − 1/2)
but q. It must be also noted that the quasispins couple to the
quasimagnetic field given by, H ′ = H − J⊥ − (J1 + J2)/2.
This causes the zero expectation value of the number of up
spins without the real magnetic field H = 0, that is, the singlet
states pack in rung bonds in the ground state.

With the help of the quasispin model, we can approach
the natures of the magnetization process in the strong rung-
coupling limit. First, the magnetization M/Msat = 1/2 with
the strong rung coupling corresponds to M/Msat = 0 in the
weak rung-coupling limit. The gapped ground state in the weak
rung-coupling limit is understood by the Majumdar-Gosh state
with spontaneously broken translational symmetry, where the
spin singlet dimers pack over the legs. In the same manner,
the quasispin singlet dimers pack over the legs, although
the magnetic moment M = +1 is set on a singlet dimer
in Fig. 2(b). The 1/3 magnetization plateau with the weak
rung coupling is equivalent to the 2/3(=1/3 × 1/2 + 1/2)
plateau in the strong rung-coupling limit. The freezing-spin
structure and long-range order are also found in the strong
rung-coupling limit, where the real spins of the upper and
lower chains coherently freeze. Additionally, we can find a
1/3(= − 1/3 × 1/2 + 1/2) plateau and some cusps in the
strong rung-coupling limit, which correspond to the M/Msat =
−1/3 plateau and cusp singularities with low magnetic fields
in the weak rung-coupling limit, respectively.

Therefore, the plateaus in the strong rung coupling cor-
respond to M/Msat = ±1/3 and M/Msat = 0 plateaus of the
frustrated spin chain, although physical roles are played by
the quasispins [see Fig. 2(b)]. Actually, we confirm that the
spins freeze coherently between the upper and lower chains
in the 1/3- and 2/3-plateau states, and that the quasispin
correlation rapidly decays in the 1/2-plateau state. Moreover,
we can see good correspondence between Fig. 1(a) with the
weak rung coupling and the quarter area at the upper right
in Fig. 1(c) with the strong rung coupling including a cusp
singularity. Since the filling of the quasi-up-spins with the
strong rung coupling corresponds to that in the ground state
without a magnetic field in the weak rung-coupling limit, the
magnetization curve in Fig. 1(a) is folded in half in Fig. 1(c).
Thus, we conclude that the reconstruction of the quasiparticles
results in the emergence of the isostructural magnetization
curves in two different limits.

IV. SUMMARY

In summary, we have studied the magnetization curve of the
frustrated spin-ladder system using the DMRG method, and
the three magnetization plateaus are found at M/Msat = 1/3,
1/2, and 2/3 due to frustration. In the limit of strong rung
coupling, the magnetization near the field-induced phase
transition (H ∼ Hc1) can be understood by the triplons on
rungs as hard-core bosons. On the other hand, the plateaus
in Hc1 < H < Hc2 can be explained by the quasispinons,
which are reconstructed from the singlet and the triplet of spin
pairs on a rung. The plateau at M/Msat = 1/2 corresponds
to the valence bond solid of the quasispinons, while the
plateaus at 1/3 and 2/3 can be associated with the array of
quasispinons such as soliton lattice. This is different from
the usual BEC picture of triplons. The magnetization curves
around 1/3 and 2/3 look like they are folded in half withthe
same characteristics. This is also naturally explained using the
effective model of quasispinons with spontaneously broken
symmetry.

Our results will be useful for frustrated quantum spin-ladder
systems such as BCPO. Concerning BCPO, it is noted that an
anisotropic interaction, i.e., the Dzyaloshinsky-Moriya (DM)
interaction, is reported by the inelastic neutron scattering
study [28]. The DM interaction also changes the usual BEC
picture of triplons on the magnetization process in the spin-
ladder system [29]. The transition will be modified such as the
second order one due to the DM interactions, which lead to
linear terms of triplons. When the DM interaction is smaller
than the rung coupling, our picture of the quasispinons on the
magnetization curve will not be changed. Effects of such an
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interaction on the magnetic plateaus will be clarified in the
near future.
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APPENDIX: DERIVATION OF EFFECTIVE
HAMILTONIAN AND QUASISPIN OPERATORS

In this section, we present a derivation of the effective
Hamiltonian with a quasispin transformation in the strong
rung-coupling limit, J1/J⊥ � 1 and J2/J⊥ � 1. With a finite
magnetization in this limit, a quasispin transformation and a
reduced Hamiltonian are useful to understand the ground state
and the low-energy physics. In order to obtain the reduced
Hamiltonian, we start with a two-spin Hamiltonian on the j th
rung as follows:

Hrung
j = J⊥Sj,u · Sj,l − H

∑
i=u,l

Sj,i

= J⊥
2

(d†
j,udj,l + d

†
j,ldj,u) + J⊥nj,unj,l

−
(

J⊥
2

+ H

)
(nj,u + nj,l) + J⊥

4
− H, (A1)

with a Jordan-Wigner transformation of spin operators,

dj,u = S−
j,ue

−i π
2 (Sj,l+ 1

2 ), dj,l = S−
j,le

+i π
2 (Sj,u+ 1

2 ), (A2)

and the number operators nj,u(l) = d
†
j,u(l)dj,u(l) = Sz

j,u(l) + 1
2 .

It is well known that these Jordan-Wigner operators obey the
anticommutation relation {dj,i ,d

†
j,k} = δi,k and {dj,i ,dj,k} =

{d†
j,i ,d

†
j,k} = 0. To diagonalize this Hamiltonian, we can use

bonding and antibonding operators for the create and annihilate
operators of Jordan-Wigner fermions, dj,b = (dj,u + dj,l)/

√
2,

dj,a = (dj,u − dj,l)/
√

2. With the number operator of the
bonding and antibonding Jordan-Wigner fermions nj,b(a), the
rung Hamiltonian is rewritten as

Hrung
j = nj,a(nj,b − 1) − h(nj,a + nj,b − 1) + 1

4 . (A3)

We can obtain a quasispin transformation [Eqs. (7) and (8)]
with an inverse Jordan-Wigner transformation as follows:

T +
j,p = id

†
j,b, T −

j,p = −idj,b, T z
j,p = nj,b − 1

2 , (A4)

and

T −
j,m = d

†
j,ae

−iπnj,b , T +
j,m = dj,ae

iπnj,b , T z
j,m = 1

2 − nj,a.

(A5)

These operators also satisfy the spin SU(2) algebra for them-
selves, and commutate each other. The quasispin operators
rewrite the rung Hamiltonian as

Hrung
j = −J⊥

(
T z

j,p − 1

2

)(
T z

j,m − 1

2

)
− H

(
T z

j,p − T z
j,m

) + J⊥
4

= −HpT
z
j,p + Hj,mT z

j,m, (A6)

where the effective quasimagnetic fields are

Hp ≡ H − J⊥
2

, Hj,m ≡ H + J⊥
2

− T z
j,p > H. (A7)

With the quasispin operators, the leg Hamiltonian between the
j th and (j + L)th rungs is given by

Hleg
j,η = Jη

∑
i=u,l

Sj,i · Sj+L,i

= Jη

2

(
T z

j,p − T z
j,m

)(
T z

j+L,p − T z
j+L,m

) − (T +
j,pT

+
j,m − T −

j,pT
−
j,m)(T +

j+L,pT
+
j+L,m − T −

j+L,pT
−
j+L,m)

+ Jη

2

{
T +

j,pT
−
j+L,p cos

[
π

2

(
T z

j,m − T z
j+L,m

)] + T +
j,mT −

j+L,m cos

[
π

2

(
T z

j,p − T z
j+L,p

)]

− T +
j,pT

+
j+L,m cos

[
π

2

(
T z

j,m − T z
j+L,p

)] − T −
j,mT −

j+L,p cos

[
π

2

(
T z

j,p − T z
j+L,m

)] + H.c.

}
. (A8)

If we consider a small quasimagnetic field for the Tj,p spin,
namely, |Hp/J⊥| � 1, the quasimagnetic field for Tj,m spin is
much larger than |Hp|, namely, |Hj,m| � J⊥

2 � |Hp|. To deal
with low-energy physics, we can project out the high-energy
states, that is, quasi-up-spins of Tj,m operators. With the

projection operator given by P = ∏
j (T z

j,m − 1
2 ), an effective

Hamiltonian is obtained as PHP = Heff . Since the original
Hamiltonian (1) is composed of a sum over the rung and
leg Hamiltonians, Hrung

j and Hleg
j,L, the quasispin

transformation gives us the effective Hamiltonian of Eq. (10).
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We note that the quasispin operators can be written by
singlet and triplets configurations on the j th rung as follows:

T z
j,p = 1

2 (|t+〉j 〈t+|j + |t0〉j 〈t0|j − |t−〉j 〈t−|j − |s〉j 〈s|j ),

T +
j,p = |t+〉j 〈s|j + i|t0〉j 〈t−|j , and H.c., (A9)

and

T z
j,m = 1

2 (|t−〉j 〈t−|j + |t0〉j 〈t0|j − |t+〉j 〈t+|j − |s〉j 〈s|j ),

T +
j,m = |t−〉j 〈s|j + i|t0〉j 〈t+|j , and H.c., (A10)

where |tα〉j (α = ±,0) and |s〉j denote the triplets and singlet
states on the j th rung, respectively. When the quasi-up-spin
states of Tj,m operators are projected out, the quasi-up-spin and
quasi-down-spin of Tj,p operators approximately correspond
to the triplet state |t+〉j and the singlet state |s〉j , respectively
(see Fig. 3).

s jt0 j

t - j

t+ j

i
T j ,m
-

Tj ,m
-

Tj ,m
+

Tj ,m
+ Tj ,p

+

Tj ,p
+

Tj ,p
-

Tj ,p
-

FIG. 3. (Color online) Schematic relationship between the qua-
sispin operators and the configurations of the singlet and triplets
on the j th rung. When the quasi-up-spin states of Tj,m operators
are projected out, the left-down side is prohibited. Thus, the
quasi-up-spin and quasi-down-spin of Tj,p operators approximately
correspond to the triplet state |t+〉j and the singlet state |s〉j ,
respectively.
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