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We report the first observation of the decays B0 → pΛ̄Dð�Þ−. The data sample of 711 fb−1 used in this
analysis corresponds to 772 × 106 BB̄ pairs, collected at the ϒð4SÞ resonance by the Belle detector at the
KEKB asymmetric-energy eþe− collider. We observe 19.8σ and 10.8σ excesses of events for the two decay
modes and measure the branching fractions of B0 → pΛ̄D− and B0 → pΛ̄D�− to be ð25.1� 2.6� 3.5Þ ×
10−6 and ð33.6� 6.3� 4.4Þ × 10−6, respectively, where the first uncertainties are statistical and the second
are systematic. These results are not compatible with the predictions based on the generalized factorization
approach. In addition, a threshold enhancement in the dibaryon (pΛ̄) system is observed, consistent with
that observed in similar B decays.
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In the years since the ARGUS and CLEO Collaboration
first observed baryonic B decays [1,2], many three-body
baryonic B decays (B → BB0M) have been found [3–7],
where BB0 denotes a baryon-antibaryon system and M
stands for a meson. Although the general pattern of these
decays can be understood as the interplay between the
short-distance weak interaction and the long-distance
strong interaction [8], theories still have difficulties adjust-
ing for various details such as the angular correlation
between the energetic outgoing meson and one specific
baryon (B) in the dibaryon system [7,9–11].
A popular theoretical approach used to investigate the

three-body baryonic decays is generalized factorization.
This method smears the correlation between theweak decay
and the fragmentation and allows B → BB0Mc decays
(with Mc denoting a charmed meson) to be categorized
into three types: current type, where the BB̄0 pair is formed
by an external W with other quarks; transition type, where
the W is internal and forms BMc; and hybrid (current
+transition) type [12]. The B0 → pΛ̄Dð�Þ− [13] decay
belongs to the first type whereas its corresponding charged
mode, Bþ → pΛ̄D̄ð�Þ0, is of the last type. Using this
approach, Ref. [12] predicts the branching fractions

BðB0 → pΛ̄D−Þ ¼ ð3.4� 0.2Þ × 10−6;

BðB0 → pΛ̄D�−Þ ¼ ð11.9� 0.5Þ × 10−6;

BðBþ → pΛ̄D̄0Þ ¼ ð11.4� 2.6Þ × 10−6;

BðBþ → pΛ̄D̄�0Þ ¼ ð32.3� 3.2Þ × 10−6: ð1Þ

There are two salient features of the predicted results.
First, the ratios of the branching fractions of the decays into
D� to the analogous decays into D are ≈3∶1. Secondly, the
branching fraction of the hybrid-type decay is also ≈ 3
times larger than the corresponding current-type decay. The
measured branching fraction for Bþ → pΛ̄D̄0 is consistent
with the theoretical calculation based on the factorization
approach [12,14].
In most B → BB0M decay studies, the final-state

dibaryon system is observed to favor a mass near threshold
[3,15–17]. While this “threshold enhancement effect”
is intuitively understood in terms of the factorization
approach, such enhancements are not seen in Bþ →
pΛ̄J=ψ nor in Bþ → Λþ

c Λ−
c Kþ [18,19]. More intriguingly,

the factorization approach fails to provide a satisfactory
explanation for the M-p angular correlations in
B− → pp̄K−, B0 → pΛ̄π−, and B− → pp̄D− [7,9–11]. A
striking difference between the nonzero angular asymme-
tries of B− → pp̄D�− and B− → pp̄D− was also reported
in Refs. [5,12], for which a theoretical explanation was
attempted in Ref. [20]. A study of pure current-type decays
like B0 → pΛ̄Dð�Þ− is useful to shed more light on the
aforementioned phenomena. In this Letter, we report the

first observation of B0 → pΛ̄Dð�Þ− decays using data from
the Belle experiment.
The data sample used in this study corresponds to an

integrated luminosity of 711 fb−1 or 772 × 106 BB̄ pairs
produced at the ϒð4SÞ resonance. The Belle detector is
located at the interaction point (IP) of the KEKB asym-
metric-energy eþ (3.5 GeV) e− (8 GeV) collider [21,22].
It is a large-solid-angle spectrometer comprising six spe-
cialized subdetectors: the silicon vertex detector (SVD),
the 50-layer central drift chamber (CDC), the aerogel
Cherenkov counter (ACC), the time-of-flight scintillation
counter (TOF), the electromagnetic calorimeter, and the KL
and muon detector (KLM). A superconducting solenoid
surrounding all but the KLM produces a 1.5 T magnetic
field [23,24].
The final-state charged particles, π�, K�, and p

ð−Þ
, are

selected using the likelihood information from the combined
tracking (SVD, CDC) and charged-hadron identification
(CDC, ACC, TOF) systems [25]. The B0 → pΛ̄Dð�Þ−
signals are reconstructed through the subdecays
D− → Kþπ−π−, D�− → D̄0π−, D̄0 → Kþπ−, and
Λ̄ → p̄πþ. The distance of closest approach to the IP by
each charged track is required to be less than 3.0 cm
along the positron beam (z axis) and 0.3 cm in the trans-
verse plane.The pion and kaon identification efficiencies are
in the range of 85%–95% while the probability of mis-
identifying one as the other is 10%–20%, both depending on
the momentum. The proton identification efficiency is
90%–95% for the typical momenta in this study, and
the probability of misidentifying a proton as a pion (kaon)
is less than 5% (10%). The candidate Λ̄ is required to have
a displaced vertex that is consistent with a long-lived
particle originating from the IP and an invariant mass
between 1.102 and 1.130 GeV=c2. The particle-identifica-
tion criterion is omitted for the daughter pion in the Λ̄
reconstruction due to the low background rate. For a D̄0, we
require the reconstructed invariant mass to lie between 1.72
and 2.02 GeV=c2. For D− and D�−, we require jMD−−
1870 MeV=c2j < 10MeV=c2, jMD�− −2010MeV=c2j<
150MeV=c2, and jMD�− −MD̄0−145MeV=c2j<9MeV=c2,
where MDð�Þ− and MD̄0 are the reconstructed masses
of Dð�Þ− and D̄0, respectively.
We identify the signals using two kinematic variables:

the energy difference (ΔE) and the beam-energy-
constrained mass (Mbc),

ΔE ¼ EB − Ebeam;

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − p2

Bc
2

q
=c2; ð2Þ

where EB and pB are the energy and momentum of the B
meson and Ebeam is the beam energy, all measured in the
ϒð4SÞ center-of-mass (c.m.) frame.
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We optimize all selection criteria using Monte Carlo
(MC) event samples before examining the data. These
samples, both for signal and background, are generated
using EvtGen [26] and later processed with a GEANT3-
based detector simulation program that provides the detec-
tor-level information [27].
Using the generated MC samples, the fit region is

defined as −0.1 < ΔE < 0.3 GeV and 5.22 < Mbc <
5.30 GeV=c2, while the signal region is given by jΔEj <
0.05 GeV and 5.27 < Mbc < 5.29 GeV=c2.
Two major sources contribute as background: eþe− →

qq̄ðq ¼ u; d; s; cÞ production, also known as the continuum
background, and other b → c dominated B meson decays,
labeled generically as B decays in this Letter.
To suppress the continuum background, we use the

difference between its jetlike topology and the spherical
B-decay topology. We calculate the distributions of 23
modified Fox-Wolfram moments from the final-state par-
ticle momenta given by the signal and background MC
samples [28,29]. A Fisher discriminant that enhances the
signal and background separation with a weighted linear
combination of the moments is then calculated [30]. We
augment the obtained probability density functions (PDFs)
of the Fisher discriminant for the signal and background
with two more variables to form the signal (background)
likelihood LSðBÞ: the axial distance (Δz) between the
vertices of the candidate B and the remaining final-state
particles—presumably from the other B—and the cosine of
the polar angle of the B momentum (cos θB) in the c.m.
frame. The PDFs used for the modified Fox-Wolfram
moments, Δz, and cos θB are bifurcated Gaussian func-
tions, the sums of three Gaussian functions, and second-
order polynomials, respectively.
To suppress the background, we optimize the selection

criteria for ½LS=ðLS þ LBÞ�DðD�Þ < αDðD�Þ, jMD−−
1870 MeV=c2j < βDMeV=c2, and jMD�− −MD̄0 −
145 MeV=c2j < βD� MeV=c2 simultaneously and obtain
αD ¼ 0.53, αD� ¼ 0.40, βD ¼ 10, and βD� ¼ 9. The β
selections correspond to �2.4σ and �12.4σ selections
around the nominalMD�− andMD�− −MD̄0 . This procedure
maximizes the figure of merit, NS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS þ NB

p
, where NS

and NB are the expected yields of signal and background,
respectively, in the signal region. We use the theoretical
expectations in Eq. (1) to obtain NS and normalize the qq̄
and generic B MC samples to the integrated luminosity to
obtain NB. After applying all the selection criteria, the
fractions of events with multiple signal candidates are
found to be 3.5% and 5.6% in the D and D� modes,
respectively. To ensure that no event has multiple entries in
the fit region, we retain the B candidate with the smallest
vertex fit χ2 in each event, where the vertex fit is performed
using all charged tracks from the B candidate except those
from Λ̄.
We model the signal ΔE distribution with the sum of

three Gaussian functions, and the Mbc distribution with the

sum of two Gaussian functions. We model the background
ΔE shape with a second-order polynomial, and the Mbc
shape with an ARGUS function [31]. We determine the
PDF shapes with MC samples and calibrate the means and
widths of the signal PDFs using a large control sample of
B0 → πþK0

SD
ð�Þ− decays from the data. The signal yields

are extracted separately from eight dibaryon (pΛ̄) invariant
mass bins, in the ranges of 2.05–3.41GeV=c2 for the D
mode and 2.05–3.30 GeV=c2 for the D� mode. We obtain
the signal using a two-dimensional extended unbinned
maximum likelihood fit in ΔE and Mbc.

FIG. 1 (color online). Projections of typical ΔE-Mbc fits to data
for events in the signal region of the orthogonal variable. The
peaking and flat red dotted lines represent the signal and
background components; the blue solid lines with the dotted
areas represent the combined PDFs with their 1σ uncertainty
bands. The top (bottom) four panels from top to bottom show the
fits in the lowest and highest MpΛ̄ bin in the D (D�) mode.
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Figure 1 illustrates the fit results of the lowest and
highest pΛ̄ mass bins for the D and D� modes. We observe
clear signal peaks with very low background in the lowest
MpΛ̄ bin, indicating an enhancement near threshold. As the
efficiency is dependent onMpΛ̄, Table I lists the efficiencies
and fitted yields in all mass bins for the two modes. Note
that the efficiencies shown do not include the subdecay
branching fractions.
Assuming that the branching fractions of ϒð4SÞ

decaying to the charged and neutral BB̄ pairs are equal,
we use the efficiency and fitted yield in each mass bin to
calculate the differential branching fraction and integrate
over the entire mass range to obtain the branching fraction
B ¼ ðPiNi=ϵiÞ=ð

Q
Bsubdecay × NBB̄ × CPIDÞ, where i is

the mass bin number, Ni and ϵi are the bin-dependent
fitted yield and selection efficiency, respectively, Bsubdecay

and NBB̄ are the subdecay branching fraction and the
number of BB̄ pairs, respectively, and CPID is the
charged-particle identification efficiency correction
between the MC sample and data (0.92 for the D mode
and 0.85 for the D� mode). Figure 2 shows the results,
where both modes have visible peaks near threshold.
The data are fit with an empirical threshold yield,
ma × eðbmþcm2þdm3Þ, versus the mass excess m ¼ MpΛ̄ −
MΛ̄ −Mp by varying a, b, c, and d. The obtained
branching fractions are

BðB0 → pΛ̄D−Þ ¼ ð25.1� 2.6� 3.5Þ× 10−6; 19.8σ;

BðB0 → pΛ̄D�−Þ ¼ ð33.6� 6.3� 4.4Þ× 10−6; 10.8σ;

ð3Þ

where the quoted uncertainties are statistical and systematic
(described later), respectively, and the significance is
estimated by the Z score of the p value for χ2 ¼
2
P

i lnðLmax;i=L0;iÞ with 8 or 6 degrees of freedom
representing the number of bins. Lmax and L0 are the
likelihood values with and without the signal component in

the fit, respectively, and i is again the mass bin index. The
measured branching fractions are clearly incompatible with
the theoretical predictions for both the D and D� modes
[12]. This indicates that the model parameters used in the
calculation need to be revised and, perhaps, some modi-
fication of the theoretical framework is required.
To extract the decay angular distributions, we divide

cos θpDð�Þ into eight bins, where θpDð�Þ is defined as the

angle between the proton and meson directions in the pΛ̄
rest frame. We follow the same procedure to determine the
differential branching fractions in cos θpDð�Þ as in determin-
ing those in MpΛ̄. Table II lists the fitted signal yields and
efficiencies in the cos θpDð�Þ bins; Fig. 3 shows the differ-
ential branching fractions. The efficiency is determined
with the MC sample, including the threshold enhancement
effect as observed in the data. We define the angular
asymmetry Aθ ¼ ðBþ − B−=Bþ þ B−Þ, where Bþð−Þ rep-
resents the branching fraction of positive (negative) cosine
value. The results are

AθðB0 → pΛ̄D−Þ ¼ −0.08� 0.10;

AθðB0 → pΛ̄D�−Þ ¼ þ0.55� 0.17; ð4Þ

TABLE I. The fitted signal yield and efficiency in each MpΛ̄ bin. To obtain a stable fit, we combine the last three
bins in the D� mode into the sixth bin.

D mode D� mode

MpΛ̄ (GeV=c2) Yield Efficiency (%) MpΛ̄ (GeV=c2) Yield Efficiency (%)

2.05–2.22 57� 8 12.2� 0.0 2.05–2.21 19� 5 12.2� 0.0
2.22–2.39 24� 5 10.5� 0.0 2.21–2.36 9� 3 10.2� 0.0
2.39–2.56 14� 4 9.5� 0.1 2.36–2.52 5� 3 8.7� 0.0
2.56–2.73 8� 3 9.8� 0.1 2.52–2.68 2� 1 8.4� 0.1
2.73–2.90 3� 2 10.4� 0.1 2.68–2.83 3� 2 7.6� 0.1
2.90–3.07 7� 3 10.9� 0.2 2.83–3.30 1� 1 6.3� 0.1
3.07–3.24 1� 2 10.8� 0.3
3.24–3.41 2� 2 11.4� 0.7

Total 117� 12 39� 7

FIG. 2 (color online). Differential branching fractions of the D
(left) and D� (right) modes in MpΛ̄. Fit curves are based on an
empirical threshold function (see text).
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where the uncertainty is purely statistical since the corre-
lated systematic uncertainties cancel in the Aθ calculation.
The angular distributions of the D and D� modes appear to
have distinct trends, even though they are both categorized
as current-type decays. More data are needed to make the
result conclusive.
Three major categories of systematic uncertainties are

considered: in the signal yield determination, in the
efficiency estimation, and in translating the signal yields
and efficiencies into the branching fractions. Table III lists
all the systematic uncertainties.
We observe a mild peaking background in the Mbc fit

region due to Bþ → pΛ̄D̄�0, plausibly by the replacement
of the low-momentum π0 in D̄�0 → D̄0π0 with an unaffili-
ated π− or K− to reconstruct a D�−. To study its contri-
bution to the uncertainty in the D� mode, a dedicated MC
sample of this background mode is generated. Based on its
current branching fraction upper limit [14], we subtract 0.5
events from the extracted signal yield and assign �0.5
events as the systematic uncertainty. We have verified that
our signal extraction method is robust and see negligible
systematic bias in the signal yield when assuming 0.1–10
times the theoretical branching fractions (about 1.6–160
events) in a MC ensemble test.
For the reconstruction efficiency, we consider the follo-

wing systematic uncertainties: the signal MC modeling

for the threshold enhancement effect using the bound-state
assumption, charged track reconstruction, charged-hadron
identification, Λ̄ reconstruction, background discrimi-
nation selections, and the PDF shapes. The modeling
uncertainty is estimated by comparing the efficiency
calculation based on two different MC samples, one
generated assuming p − Λ̄ bound states and the other
with three-body phase-space decays, in each MpΛ̄ bin.
As the result is highly threshold enhanced, we use the
efficiency given by the bound-state model to calculate
the branching fractions and take the differences as the
systematic uncertainties between the two models. The
uncertainty is about 3% (2%) in the DðD�Þ mode,
depending on the bins. For each charged track except
the low-momentum pion in D�− → D̄0π−, a 0.35% uncer-
tainty is assigned to take into account the data-MC
difference in the charged track reconstruction. For the
low-momentum pion, a 2.5% uncertainty is assigned. We
use the Λ → pπ− and D�þ → D0πþ, D0 → K−πþ samples

to calibrate the MC p
ð−Þ

, K�, π� identification efficiencies
and assign uncertainties. For the Λ̄ reconstruction, we
estimate the uncertainty by considering the data-MC
difference of tracks displaced from the IP, the Λ̄ proper
time, and Λ̄ mass distributions. The uncertainties due
to the αDð�Þ selections are estimated separately with the
control sample mode, B0 → πþK0

SD
ð�Þ−. We compare

the data-MC efficiency differences with or without the
α selections, where the non-negligible statistical uncer-
tainties are also included. In both cases, the obtained
BðB0 → πþK0

SD
ð�Þ−Þ is found to be consistent with the

world average, indicating overall reliability of our meth-
odology. For the βD and βD� selections, we compare
the widths of the peaking components in MD− and
MD�− −MD̄0 in the MC sample and data and quote the
differences as the uncertainties. We also relax the shape

TABLE II. The fitted signal yield and efficiency in each
cos θpDð�Þ bin.

D mode D� mode

cos θpDð�Þ Yield Efficiency (%) Yield Efficiency (%)

−1.00– − 0.75 10� 4 9.0 3� 2 8.6
−0.75– − 0.50 17� 5 10.5 1� 1 10.2
−0.50– − 0.25 16� 4 11.5 1� 1 11.3
−0.25– − 0.00 15� 4 12.2 2� 2 12.2
þ0.00–þ 0.25 19� 5 12.8 7� 3 12.7
þ0.25–þ 0.50 15� 4 13.0 7� 3 13.0
þ0.50–þ 0.75 16� 5 12.6 9� 3 12.8
þ0.75–þ 1.00 7� 3 11.5 8� 3 11.5

FIG. 3 (color online). Differential branching fractions of the
D (left) and D� (right) modes in cos θpDð�Þ . The fit curves are
second-order polynomials, as suggested by Ref. [20].

TABLE III. The systematic uncertainties in the D and D�
modes. The ≈ signs indicate the MpΛ̄ dependence of the
uncertainty.

Systematic uncertainty (%)

Item D mode D� mode

Yield bias Negligible 1.3 (0.5 event)
Modeling ≈3 ≈2
Charged track 2.1 4.3
Charged-hadron identification 1.3 1.8
Λ̄ identification 4.0 4.4
MD− , MD�− −MD̄0 window 2.0 Negligible
LS=ðLS þ LBÞ requirement 11.5 11.0
PDF shape Negligible Negligible
NBB̄ 1.4 1.4
Subdecay B 2.2 1.7

Overall 13.9 13.1
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variables of the signal PDF when fitting the control
sample and compare the difference to MC-determined
PDF. The resulting difference in the calculated
BðB0 → πþK0

SD
ð�Þ−Þ is negligible.

In the translation from signal yields to branching
fractions, we consider the uncertainties of Bsubdecay and
NBB̄. The uncertainties of Bsubdecay are obtained from
Ref. [3]. For NBB̄, on- and off-resonance dilepton events,
eþe− → qq̄MC sample and data difference, primary vertex
sideband data, and statistical uncertainty are combined to
estimate the uncertainty.
In this Letter, we have reported the first observation of

the B0 → pΛ̄D− and B0 → pΛ̄D�− decays with branching
fractions ð25.1� 2.6� 3.5Þ × 10−6ð19.8σÞ and ð33.6�
6.3� 4.4Þ × 10−6ð10.8σÞ. The threshold enhancement
effect observed in MpΛ̄ is found to be consistent with
many other three-body baryonic B decays. The obtained
branching fractions disagree with predictions based on the
factorization approach, as do the measured ratios of
branching fractions, both for the D and D� modes and
for the charged and neutral Bmodes. We also find potential
angular asymmetry in the D� mode but not in the D mode.
Theoretical explanations, as well as confirmation from
experiments with sizable data sets, such as LHCb and Belle
II, will be needed in the future.
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