

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

	Year-round variations in the fluvial transport load of particulate		
Title	¹³⁷ Cs in a forested catchment affected by the Fukushima Daiichi		
	Nuclear Power Plant accident		
	Matsunaga Takeshi, Nakanishi Takahiro, Atarashi-Andoh Mariko,		
A	Takeuchi Erina, Muto Kotomi, Tsuzuki Katsunori, Nishimura		
Author(s)	Shusaku, Koarashi Jun, Otosaka Shigeyoshi, Sato Tsutomu,		
	Miyata Yoshiki, Nagao Seiya		
	Journal of Radioanalytical and Nuclear Chemistry, 310(2),		
Citation	p.679-693		
Text Version	Author's Post-print		
TIDI			
UKL <u>https://jopss.jaea.go.jp/search/servlet/search?5054679</u>			
DOI	https://doi.org/10.1007/s10967-016-4840-3		
	This is a post-peer-review, pre-copyedit version of an article		
D: 1 /	published in Journal of Radioanalytical and Nuclear Chemistry.		
Kight	The final authenticated version is available online at:		
	http://dx.doi.org/10.1007/s10967-016-4840-3.		

1	Year-round variations in the fluvial transport load of
2	particulate ¹³⁷ Cs in a forested catchment affected by
3	the Fukushima Daiichi Nuclear Power Plant accident
4	
5	
6	Takeshi Matsunaga ¹ , Takahiro Nakanishi ¹ , Mariko Atarashi-Andoh ¹ , Erina Takeuchi ¹ ,
7	Kotomi Muto ¹ , Katsunori Tsuduki ¹ , Syusaku Nishimura ¹ , Jun Koarashi ¹ , Shigeyoshi
8	Otosaka ¹ , Tsutomu Sato ² , Yoshiki Miyata ³ , Seiya Nagao ³
9	
10	¹ Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki
11	319-1195, Japan
12	² Division of Sustainable Resources Engineering, Graduate School of Engineering,
13	Hokkaido University, Sapporo 060-8628, Japan
14	³ Low Level Radioactivity Laboratory, Institute of Nature and Environmental
15	Technology, Kanazawa University, Kanazawa, Ishikawa 923-1224, Japan
16	
17	
18	Correspondent: Takeshi Matsunaga
19	Tel.: +81 29 282 6860; Fax: +81 29 282 6760
20	E-mail address: matsunaga@istc.int
21	

22 Abstract

Particulate ¹³⁷Cs was collected from stream water for 2 years to assess the long-term 23trend of ¹³⁷Cs discharge from a forest after the Fukushima Nuclear Power Plant 2425accident. A seasonal increase in the fluvial transport load of particulate ¹³⁷Cs in 26suspended solids (SS) was observed in July-October when rainfall was abundant. The ¹³⁷Cs load was controlled by the SS load. This control was attributed to cesium affinity 27for phyllosilicate clay minerals as verified by the low extractability of particulate ¹³⁷Cs. 28These findings indicate the fluvial particulate ¹³⁷Cs load is significantly related to the 2930 climate and geomorphological features of Japan.

31

32 Keywords

- 33 Fukushima Daiichi Nuclear Power Plant accident, forest, radiocesium, suspended
- 34 solids, fluvial transport load, seasonal variation

35 Introduction

A large amount of radionuclides was released into the atmosphere following the 37 38 Fukushima Daiichi Nuclear Power Plant (NPP) accident [1-3] triggered by the Great 39 East Japan Earthquake (March 11, 2011). Among the various radionuclides released [4, 5], the ¹³⁴Cs (a half-life of 2.065 y) and ¹³⁷Cs (a half-life of 30.04 y) isotopes caused 40 41 long-lasting environmental contamination [6-7]. 42A major part of the affected area is located in hilly, forested catchments because of 43the regional geography [8]. Moreover, some forests are located near residential areas 44 and offer economic opportunities. Therefore, the fate of the radioactive fallout in the 45 forest has been a central issue in radioecology following the Fukushima Daiichi NPP 46 accident [*e.g.*, 9]. We previously investigated the vertical migration of ¹³⁷Cs with water seepage 47through the forest floor [10], and the redistribution of ¹³⁷Cs on a forested hill slope via 4849biological processes [11], and the spatial variation in air dose rates due to the 50radiocesium deposited on the forest floor [12]. In addition to these ¹³⁷Cs dynamics in the vegetation-soil system, the discharge of 5152¹³⁷Cs into streams through forested catchments is important [*e.g.*, 13]. This is typically 53a unique outflux of the fallout radionuclides from the forest ecosystem and should be 54considered in the radionuclide balance of the forest ecosystem. In addition, running 55water from the catchments is used by industries, and for irrigation and drinking water 56[*e.g.*, 14].

57Various studies have been conducted regarding how river systems have been affected by this accident. Sakaguchi et al. [15] provided an early investigation of water 5859body contamination in the Abukuma River Basin near the NPP. The peculiar importance of the particulate form of ¹³⁷Cs in fluvial transport under high flow 60 61 conditions was assessed during the first 6 months after the accident [16]. Studies concerning the migration of ¹³⁷Cs in small catchments during storm events were also 62 performed [17-19]. The solid-phase transport of ¹³⁷Cs from upstream to midstream 63 64 was investigated through a bed sediment analysis in the Abukuma River Basin [20, 21]. Research by Sakaguchi et al. [22] enhanced our understanding of this subject by 65 66 addressing the characteristics of suspended solid (SS) along tributaries and the main 67 stream of the Abukuma River Basin. Yoshimura et al. [23] presented a dataset with partitioning between the particulate and dissolved forms of ¹³⁷Cs at 30 locations in the 68 69 Abukuma and other river basins. Tsuji et al. [24] discussed the relationship between the ground deposition density and the occurrence of ¹³⁷Cs in adjacent rivers. 70

These studies are all important for understanding the behavior of the ¹³⁷Cs derived from the Fukushima Daiichi NPP accident in the river system. However, the period of the consecutive field observations of these studies was limited, spanning up to 6 months [16, 18], although a recent report on dissolved ¹³⁷Cs concentration variations studied a three year period [25]. In addition, the sampling frequencies in these studies were generally limited to once or twice per month.

According to reports of ¹³⁷Cs derived from weapons testing [*e.g.*, 26-28] and the case of the Chernobyl accident [*e.g.*, 29], the discharge of atmospherically derived radionuclides into rivers from catchments lasts more than several decades. Therefore, it is important to conduct long-term observations to accurately understand and describe the effects of this contaminant over time. Here, we report long-term observations of the fluvial ¹³⁷Cs transport following the Fukushima Daiichi NPP accident in a pristine river located in a mountain catchment. In our observations, we conducted a continuous and unmanned collection of suspended solids.

The difficulties encountered when conducting long-term observations include the sample collection workload during stochastic rainfall events. We developed a passive, integrated collection system for SS and dissolved components to conduct long-term observations [30]. The technological details of the system, the performance of SS collection over 1.5 y, and the ¹³⁷Cs results of four collection periods were described in our previous paper [30].

This study involves an additional 6 months of data to the dataset of the previous paper on SS collection [30]. This expansion enables us to do comprehensive discussions on seasonal and annual variations in the fluvial ¹³⁷Cs flux for the continuous 2 y dataset from December 2011 to December 2013, including ¹³⁷Cs extractability from SS and SS mineralogy.

- 96
- 97
- 98 Materials and methods
- 99 Study site
- 100

101 The study site is a 0.6 km² forested catchment located in the northern region of the 102 Abukuma Mountains (Fig. 1) approximately 70 km southwest from the Fukushima 103 Daiichi NPP (N 36° 55′ 30″ (36.925 in decimal degrees)–N 36° 55′ 50″ (36.931), E 104 $140^{\circ} 35' 00″ (140.583)$ –E $140^{\circ} 35' 40″ (140.594)$). The site was affected by radioactive 105 fallout from the Fukushima Daiichi NPP accident and received 10–60 kBq m⁻² of 106 137 Cs deposition according to an aerial survey [6].

107 The study site is hilly with an elevation range of 588–724 m [31]. Several small 108 steep faces and lowlands collectively form a single valley with a stream. This stream is 109 a pristine source for the Shitoki River, which meets the main stream of the Same River 110 20 km downstream before flowing into the Pacific Ocean.

111 The annual mean precipitation at the site is 1,910 mm, and the annual mean 112temperature is 10.7°C [32]. More than half of the annual precipitation occurs from 113 May to October. Seasonal storm events (i.e., typhoon) with heavy rainfall occasionally 114 hit the area during July–October [18]. Seasonally dense precipitation and typhoons are 115common along the Pacific seaboard of Japan. At the study site, snow is present at a 116 depth of up to 20 cm from the end of January to the beginning of March. The surface 117 soil is brown forest soil and supports a developed deciduous forest. Included in the forest canopy are Fagus crenata, F. japonica, Quercus serrata, Kalopanax pictus, and 118 Acer mono f. marmoratum [33]. At the time of the accident, the trees had shed their 119 leaves and the ground was covered with snow. 120

121

122 Sample collection

124 The SS sampling point was the downstream portion of 90% of the catchment area (Fig. 1251). A small-scale filtration system was used during a preliminary sampling period 126 from September to November 2011. It comprised three sequentially connected short 127(250 mm long), polypropylene-wound cartridge filters with pore sizes of 100 µm, 10 128 µm and 0.5 µm. After December 2011, a large-scale, passive, integrated collection 129system that we developed was employed [30]. In this system, a portion of the river 130 water was led to a filtration system on a bank by using the natural decline in the 131 riverbed level. The study site is a shallow stream with a rocky riverbed. The natural 132configuration of rocks on the riverbed creates relatively deep points where stream 133 water flows even during low-flow periods. The intake was set at one of these points, 134 where water was not stagnant. The intake had an aluminum funnel (7.5 cm in 135diameter) at the top of a vinyl hose. The section of the funnel was placed in the middle 136 of the stream against the flow. The inlet was covered with a net of approximately 3 137 mm mesh to stop the entry of large obstacles such as dead leaves.

The filtration system comprised two types of cartridge filters with nominal pore sizes of 100 μ m and 0.5 μ m. An important feature of the filter material (polypropylene) was that SS were easily detachable by washing the yarn with water after dismantling the filters. The water flow rate through the system was approximately 1.5–2.5 L min⁻¹. The flow rate and the cumulative amount of water that passed through were monitored using an inline flow meter (LW10-TTN, Horiba STEC, Kyoto, Japan). An integration period of 20–40 d was chosen considering the 145 cumulative amount of precipitation during the period. The SS from the river were 146 recovered in the laboratory from the cartridge filters and the bottoms of the filter 147 vessels (muddy deposit). The SS samples were size fractionated into the following 148 four fractions: 2000 μ m (2 mm) – approximately 3 mm (termed F1), 500–2000 μ m 149 (F2), 75–500 μ m (F3), and <75 μ m (F4).

To evaluate the collection efficiency of the system for SS, the river water discharged from the system was further passed through four short cartridge filters (250 mm length) with a pore size of $0.5 \,\mu$ m (backup filters), which were set in parallel. This evaluation was conducted during three selected collection periods in late 2013.

154

155 Monitoring of hydrological conditions and turbidity

157The stream water flow rate was evaluated by monitoring the water depth using a 158rectangular weir (Fig. 1) originally installed by Abe et al. [31] for a forest ecology 159study. The water depth at the weir was recorded every 20 min (until 8-May-2013) or 160 every 15 min (after 8-May-2013) using a pressure gauge (SS-202-10M-30, KENEK, 161 Tokyo, Japan). The validity of the weir formula was confirmed by manually measuring 162the water flow at the weir using an electromagnetic flow meter (VP-1000, KENEK, 163 Tokyo, Japan) and scaling the water depth at the weir. The weir was occasionally 164 cleaned for sand deposition. Precipitation was recorded hourly by rain gauges installed 165in an open plot adjacent to the catchment. A throughfall gauge set nearby the stream

water collection point was used when an open rain gauge developed a technical
problem. Turbidity (NTU) was recorded every 15 min with a water quality monitor
(U-20XD, Horiba, Kyoto, Japan) set adjacent to the depth monitor.

169

170 Laboratory analysis

171

172 Radioactivity analysis of suspended solids

173The ¹³⁷Cs concentrations in the size-fractioned SS samples were measured using 174gamma-ray spectrometry with germanium semiconductor detectors (GEM20P4-70, 175GEM25P4-70, GEM20, GWL-120230 and LO-AX-51370/20P, ORTEC, Oak Ridge, 176 USA). Certified volumetric sources of multi-nuclides (EG-ML, Eckert & Ziegler 177Isotope Products, Valencia, CA, USA; MX033U8PP, Japan Radioisotope Association, 178 Tokyo, Japan) were used to calibrate the germanium detectors. A quality control was 179completed by participation in an intercomparison test organized by International 180 Atomic Energy Agency amnd the Tsukuba University (IAEA-TEL-2011-8), which employed reference materials of soil samples including ¹³⁷Cs; water, aerosol filters and 181 grass samples including ¹³⁷Cs and ¹³⁴Cs. The test showed that our laboratory ranked as 182183 the one of the best two laboratories among 19 ones.

184

185 Mineralogy of suspended solids

186 The finer size fractions of the SS (F3 and F4) were analyzed to characterize the 187 ¹³⁷Cs-bearing materials. Mineralogical analyses were performed for selected sampling

188 runs representing the various seasons throughout the year. A traditional powder X-ray 189 diffraction (XRD) method (random orientation) was used for a bulk material analysis 190 on an X-ray diffractometer (RINT 1200, Rigaku, Tokyo, Japan). The spectrum 191 analysis was based on the Hanawalt method [34], and clay minerals were identified for 192the oriented samples and prepared as follows (powder orientation) [35]: 193 Approximately 10 mg of ground sample was mixed with 20 μ L of water. The sample 194 was dispersed by ultrasonic treatment. An aliquot of the slurry was transferred with a 195 pipette and spread on a glass plate. The glass plate was allowed to stand for more than 196 24 h until it dried. Next, the samples were subjected to the same instrumental analysis 197 used for the powder diffraction experiments.

198

199 Extraction of 137 Cs from suspended solids

To estimate the exchangeability of the particulate ¹³⁷Cs, an extraction experiment was 200 201conducted on the F3 and F4 fractions. Extraction with ammonium acetate was used 202 because this method has been frequently reported in the literature [e.g., 36-37], and it 203 has also been applied to the case of the Fukushima NPP accident [38]. This wide use 204 of the same method allows for a meaningful comparison among different studies. One 205gram of freeze-dried SS sample was mixed with 10 mL of ammonium acetate 206 (CH₃COONH₄, pH 7) in a centrifuge tube and shaken for 2 h at 25°C. Next, the 207 sample was centrifuged at 3,000 rpm (centrifuge model H-103N, Kokusan, Tokyo, 208Japan), and the supernatant was recovered. The remaining solid was washed by adding 209an additional 5 mL of purified water and centrifuging. The supernatants from the

ammonium acetate and single water-wash treatment were combined as an ammonium
acetate-extractable fraction for the radiocesium measurements. The radioactivity of the
samples in the centrifuge tubes before extraction accounted for 100% of the
radioactivity in the original sample. All radioactivity analyses were conducted by
gamma-ray spectrometry at Kanazawa University (KU) with EGPC 90-220-R, EGM
3800-30-R, EGMP 60-30-R detectors (CANBERRA, Meriden, USA).

216

217 Evaluation of transport load of suspended solids and ¹³⁷Cs

The transport load of the SS and that of ¹³⁷Cs contained in the SS were evaluated for each large-scale filtration sampling period (R9–R26). The SS mass transport load was defined as the weight of SS (kg) transported with the cumulative river water discharged at the study site. For the purpose of comparison, the cumulative SS load was normalized to a mean daily value over the sampling period. The ¹³⁷Cs load was defined as a product of the SS mass load and the ¹³⁷Cs concentration in each size fraction. Detailed derivations of the two loads are provided in Appendices 1 and 2.

225

226

227 **Results**

228

229 Suspended solids mass load

230

Table 1 lists the results of the SS collection at the study site from December 2011 to

232December 2013 (an approximately 2 y hydrological period). Although the collection 233system was inoperative several times because of obstructions at the river water inlet or 234freezing in midwinter (February), the system operation rate was 88%. The daily base 235SS mass transport load had a large range of variation $(0.8-96.5 \text{ kg d}^{-1})$ with a mean of 13.7 kg d⁻¹. The finest fraction, F4 ($<75 \mu m$) accounted for 90–95% of the total SS 236237 (Table 1). The mean contributions by different size fractions over 2 y (R9-R26, 238 December 2011–December 2013) were $0.4 \pm 0.4\%$ (within a range from 0.1% to 2391.4%) (F1), $1.5 \pm 3.5\%$ (within a range from 0.4% to 5.8%) (F2), $8 \pm 4\%$ (within a 240range from 4.5% to 19.0%) (F3), and $90 \pm 4\%$ (within a range from 76.9% to 94.7%) 241(F4).

As a general feature, larger values were observed from July to October in both 243 2012 and 2013. By contrast, a low load was observed from December to February (R9, 244 R10, R17, R18, and R26). This seasonal variation was similar to that of the 245 precipitation. The relationship of the SS mass load with the amount of precipitation is 246 shown in Fig. 2. The SS mass load (the whole amount including all size fractions) was 247 positively correlated (r=0.70, p=0.01) with the integrated amount of precipitation.

Particularly large loads were evaluated for R12 and R24 (Table 1). These two runs included extreme rainfall events with the total precipitation of 224 mm on June 20, 2012 (Flood 1, Figs. 3a and 3b) and 220 mm on September 15, 2013 (Flood 3), with a maximum intensity of 48.5 and 66.0 mm h⁻¹, respectively. The calculation using turbidity (Appendix 1) suggested that the SS flux during the 12 h around the peaks of the two extreme flood events contributed 43% and 52% of the sum of Runs 9–17

254	(mainly in 2012) and Runs 18–26 (mainly in 2013), respectively. On the other hand,
255	one large flood event, the flood-2 (Figs. 3a and 3b) caused by a heavy shower of 90
256	mm in two hours of July-6-2012, was not observed in our sampling because we
257	stopped the collection system for maintenance during a period that included the event,
258	without anticipation.

260 Cesium-137 concentration associated with suspended solids

261

Figure 3c shows the ¹³⁷Cs concentrations included in SS, which were corrected for 262263radioactive decay at the end of each sampling event (Table 1). Measured concentrations of two cesium radioisotopes (¹³⁴Cs and ¹³⁷Cs) are numerically given in 264265Tables S1 and S2 of Supplementary Information, respectively. The results of the collection efficiency evaluation indicated that the ¹³⁷Cs radioactivity that passed 266267through the main SS collection system (uncollected portion) was only 0.6–1.6% of the 268sum of the main collection system and the backup filters (see Table S4 of 269Supplementary information), indicating that almost all SS were collected.

The temporal variation in the ¹³⁷Cs concentration was characterized by a rapid decrease at the beginning of 2012 (~300 d after the nuclear accident), and it was followed by a gradual decrease until the end of 2013 (Fig. 3c). The ¹³⁷Cs concentration in the finest fraction (F4) occasionally reached 10 Bq g⁻¹ in R1–R9. In addition, the ¹³⁷Cs concentrations remained lower than 5 Bq g⁻¹ and decreased to ~3 Bq g⁻¹ within 660 days (R10–R26: February 29, 2012–December 17, 2013). Regarding the dependency of the 137 Cs concentration on the size fractions, the finest fraction (F4) possessed the highest 137 Cs concentration. In a few cases, the second finest fraction (F3) was comparable with that of F4 based on our earlier observation period (e.g., R1 and R7). Notably, the coarse fraction (F1), which consisted of fine litter fragments, occasionally exhibited a 137 Cs concentration equivalent to or greater than that measured in F4 (i.e., R11, R18, and R23).

282

283 Mineralogical result of suspended solid constituents

284

285Quartz, plagioclase, and amphibole were components of the primary minerals in the 286 SS (Fig. 4a). The distinct presence of plagioclase and amphibole, which are relatively 287 sensitive to weathering, suggests that the SS contained comparatively "young" materials. More quartz and plagioclase were found in F3 than F4 (Figs. 4a, 4b). The 288 289F4 XRD profiles of the selected samples from various seasons are shown in Fig. 4c. 290The clay minerals vermiculite, mica and kaolinite were also commonly found in the 291 SS. Background XRD signals at ~20° were observed in F4 and slightly in F3 (data not 292 shown). These background signals may correspond to amorphous or organic materials. 293 In the F4 size fraction, plagioclase was relatively outstanding in low water conditions 294 (R16, R17, and R19) compared to a period of abundant rain season (R21 and R24). Except this feature, the mineralogical composition of SS exhibited no appreciable 295296 seasonal variations. This mineralogical homogeneity might be relevant to the 297 uniformity of the particle size distribution of SS (Table 1).

299

317

Results of ¹³⁷Cs extraction

300	
301	The proportions of ¹³⁷ Cs extracted with 1 M ammonium acetate (pH 7.0) for selected
302	samples (i.e., R18, R19, R20, and R21) are shown in Fig. 5a. The extracted proportion
303	was low (range, 0.5–1.7%) except for one case (i.e., 5.1% for the R18 F3 sample). The
304	5.1% value is still a minor fraction of the entire amount of 137 Cs in the tested SS
305	samples. Fig. 5b shows the original ¹³⁷ Cs concentration in the tested SS samples. The
306	extracted proportion was low and independent of the size fraction and original ¹³⁷ Cs
307	concentrations.
308	
309	Discussion
310	
311	Considerations on methodology of suspended sediment collection
312	
313	Correction for SS transport load
314	The SS transport load is a product of SS concentrations and flow rate. The load
315	dynamically changes with river flow conditions in terms of those two values. Ideally,
316	an amount of SS collected at every instance shall be proportional to the dynamically

318 proportionally to a river water flow rate (a flow-weighted collection method). If this

changing load. This might be realized by increasing a collection rate of river water

319 collection method was realized, the integration of the collected SS would be a some

down-sized value of an actual SS load during a collection period. However, this typeof collection method cannot be realized practically [30].

In the present study, the river water collection rate was kept at an almost constant rate through out the collection period (a time-integrated collection method). The rate was determined by a geographical condition (the drop head from the inlet of the collection hose to the filter vessel), not by dynamic hydrographical conditions.

326 If a SS load is calculated by using a ratio of the accumulated water passed through 327 the SS collection system to the total river water flux during a collection period, the 328 load would be underestimated. This is because the collection rate in this method was 329 not proportional to an instantaneous, actual river water flow rate. A fraction of 330 collected water mass become relatively smaller during high water flow periods 331 compared to low water periods. The SS concentration generally increases during high 332 water flow periods. Therefore, the aforementioned smallness in the fraction of 333 collected water mass leads to underestimation of the SS load which cannot be simply 334 compensated by the ratio of water mass.

We evaluated the degree of this underestimation by simulating the time-integrated load and the flow-weighted load by using the turbidity record and flow rate record of every 15 minutes. The degree was expressed in a form of correction factors for the load in a time-integrated collection. Here, we considered the turbidity well approximates the SS concentration [39]. Although a complex relationship between the turbidity and the SS concentration has been reported for extreme flooding events [40, 41], the linear assumption has been proven in various Japanese rivers [39, 42, 43]. The

equations used in the correction are given in Appendix 1, along with the correctionfactors for each run (Table A1 in the Appendix).

- 344
- 345 Representativeness of collected SS samples

The present method is not a flow-weighted SS collection as described above. If the nature of SS is largely different depending on hydrological conditions, the nature of the collected SS could be biased.

349 A possible alteration in the SS may be lowering of ¹³⁷Cs concentration under high flow 350 conditions due to the increased inclusion of bank and riverbed materials, which could 351 be less contaminated with the radioactive fallout compared with the top surface soil in a forest. However, a plot of the ¹³⁷Cs concentration (averaged over different size 352353 fractions) versus the daily average precipitation does not indicate a clear trend with the 354daily averaged precipitation (p>0.38) (Fig. 6a) or with the daily averaged water 355 discharge (p>0.23) (Fig. 6b), nor the SS mass load (p>0.32) (Fig. 6c). This implies a lack of dependence of ¹³⁷Cs concentration on hydrological conditions at the study site. 356

Kinouchi and Onda [44] addressed the dependence at a tributary of the Abukuma River, the catchment of which was also affected by the Fukushima NPP accident. They reported that the ¹³⁷Cs concentrations varied from approximately 5 to 30 (Bq g⁻¹), and the variation was independent of the SS concentration up to 250 mg L⁻¹. Ueda et al. [17] also reported that no systematic variations in ¹³⁷Cs concentration were observed for SS concentrations in two small streams to the north of the Fukushima Nuclear Power Plant. These results suggest that the SS samples collected in this study represent the average ¹³⁷Cs concentration of transported SS over each sampling period as a first approximation.

367

369

As indicated in Result section, the ¹³⁷Cs concentration decreased rapidly from 370 September 2011 (0.5 y after the accident) until the beginning of 2012, and then 371 decreased gradually until the end of 2013 (Fig. 3c). This rate of decrease was 372considerably faster than that due to radioactive disintegration (-2.3% y⁻¹ for ¹³⁷Cs), 373 374and it diminished with time. The relevant processes that contribute to a decreasing particulate ¹³⁷Cs concentration over time may include (a) vertical migration into 375 deeper soil strata, (b) physicochemical fixation to soil constituents over time, and (c) 376 377 changes in soil erosion processes due to heavy rainfall events. Nakanishi et al. [10] reported that the vertical migration of ¹³⁷Cs into deeper soil layers was limited in our 378 catchment. In a different forested plot, we found a strong fixation of ¹³⁷Cs to surface 379 380 soil within the first 3 months after the Fukushima Daiichi NPP accident [45]. These results suggest that ¹³⁷Cs remained in surface litter and surface soil and that fixation to 381 soil had already been established before September 2011. Therefore, the former two 382 processes could not sufficiently explain the temporal changes in the ¹³⁷Cs 383 384concentration in the SS. The last hypothesis (c) is probable because heavy 385precipitation related to typhoons or along active fronts likely redistributes easily

erodible, polluted soil surfaces in ephemeral streams. In particular, Typhoon Roke in
September 2011 discharged significant quantities of radiocesium into rivers in
Fukushima Prefecture [16, 18]. This may have contributed to the rapid decrease in the
¹³⁷Cs concentration in the stream SS until the beginning of 2012.

390

391 Fluvial transport load of particulate ¹³⁷Cs

392

The particulate ¹³⁷Cs load is illustrated in Fig. 7. Numerically, in Table S5 of Supplementary information. One remarkable feature is that the seasonal variation in the ¹³⁷Cs load is reproducible over the 2 y period (2012 and 2013). The particulate load exhibited a characteristic seasonal change: it was low during the collection periods from November to March (R9–R11, R18–R20, and R26), while higher values were observed from July to October (R13–R16, and R22–R25).

399 A comparison of Fig. 7 with the SS mass load (the column mass load, Table 1) indicates that the ¹³⁷Cs load that was nearly exclusively controlled by the SS mass load. 400 The variation in the ¹³⁷Cs load was tightly correlated with the rainfall events, which 401 402 typically increased the SS mass load. This macroscopic feature is considered to have a 403 link to microscopic characteristics. The present extraction experiment indicated a low proportion of ¹³⁷Cs extracted by 1 M ammonium acetate in the fine SS fractions (Fig. 404 405 5). The mineralogical analysis revealed that several types of silicate clay minerals 406 were always present in the SS (Fig. 4c). These phyllosilicate clay minerals strongly

407 adsorb Cs ions [34, 46]. Accordingly, most of the ¹³⁷Cs was strongly associated with 408 the fine SS fractions.

409 The finest fraction (F4) surpassed the other fractions in terms of SS (Table 1, Fig. 410 2). The mean contribution of F4 to the particle size distribution was 90%, with a 411 standard deviation of 4% (Table 1). This result is consistent with the suggestion by 412 Tanaka et al. [21], who studied the midstream area of the Abukuma River. These authors suggested that particulate ¹³⁷Cs was selectively transported from upstream by 413 414 fine particles. The present results from a pristine stream further imply that size 415selection had already occurred, at least in part, during the transport of the eroded 416 surface soil particles from the ground to the stream, as suggested by He and Walling 417 [47].

The particulate ¹³⁷Cs load had a distinctly large value in R12 and R24 (Fig. 7). This extent corresponds to the large SS load related to extreme rainfall events (Fig. 3b). In our collection, one large flood event (flood-2, Fig. 3b) was not included. Therefore, the real annual load of 2012 must be larger than the present calculation, presumably by 1.5–2-fold (see the description in the Results section for suspended solid mass load related to Fig. 3b).

424

425 Consideration of possible inter-annual variation in particulate ¹³⁷Cs loads

426

Inter-annual variations in precipitation would cause a yearly difference in the SS mass
load. Abe et al. [31] reported a multi-year record of monthly precipitation at the study

429	site during 2001–2006. In their record, the inter-annual variations reached 1.5 times
430	the annual precipitation, with a mean of 1,832 mm (range, 1,604–2,328 mm). In this
431	study, the annual precipitation of 2,139 mm in 2012 decreased to 1,697 mm in the
432	following year (2013). Such inter-annual variations could be expected to occur
433	repeatedly hereafter. Accordingly, the SS mass load could be largely influenced by the
434	inter-annual variation in precipitation. In addition, if an extreme rainfall event occurs,
435	the single event could significantly contribute to the annual load, e.g., more than half
436	of the total.
437	
438	Implications of this study
439	
440	Significance of long-term observation
441	In the present study, the meaning of low- and high-flow periods in terms of the annual

particulate ¹³⁷Cs load was evaluated. This quantitative analysis would not have been
possible without actual observations spanning one hydrological year. Furthermore, our
2 y observation period confirmed a seasonal reproducibility of increases/decreases in
the particulate ¹³⁷Cs load. One year of observation cannot verify the reproducibility of
the variation.

447

448 Significance of the local hydrology and geomorphology

449 The Chernobyl accident of 1986 caused radioactive contamination of the surface water

450 bodies of rivers and reservoirs [e.g., 48]. Radionuclide concentrations along with the

flow rate were monitored in the Pripyat River system in the vicinity the Chernobyl
NPP by frequent manual sampling (2–8 times per month) [49]. This monitoring
continued for more than 15 years.

In contrast with Japanese rivers [16-18, this study], the fluvial ¹³⁷Cs transport load 454 455did not exhibit a sensitive increasing response to the flooding events caused by snow 456melts in spring or by several large precipitation events [e.g., 48]. This contrast must be 457due to the difference in the geomorphology. The Pripyat River catchment consists primarily of flat ground developed in low land. Therefore, water (precipitation on the 458 459ground or river water inundating a plain along the river) does not flow with sufficient force to cause surface soil erosion. Instead, it promotes the dissolution of 460 radionuclides with high solubility (e.g., ⁹⁰Sr) in the natural environment [29, 48, 50]. 461 462 Thus, the high sensitivity of the particulate ¹³⁷Cs load to rainfall events in the present 463 study environment is related to the local hydrology and geomorphology in Japan.

464

465

466 Conclusions

467

This long-term study revealed a clear seasonal change in the fluvial load of ¹³⁷Cs associated with SS. This seasonal change was reproducible in 2012 and 2013. A closer examination of this change suggests that the fluvial load of particulate ¹³⁷Cs was tightly connected to the input load of eroded surface soil as a major source of SS to the stream during rainfall events. This relationship occurs because of the strong adsorption 473 of ¹³⁷Cs to the SS constituents at the site, which comprises layered clay minerals of
474 kaolinite, vermiculite, and weathered mica, and also due to the comparatively uniform
475 ¹³⁷Cs concentration in SS as a function of sampling periods.

These hydrological and radiochemical causes are considered to determine the 476 fluvial load of the particulate ¹³⁷Cs in the forested, hilly catchment affected by the 477 Fukushima Daiichi NPP accident. The particulate ¹³⁷Cs load was subject to 478 479inter-annual variations in rainfall and decreased gradually over a long period of time 480 due to a decrease in the ¹³⁷Cs concentration in SS. The present findings and discussions in this study indicate that the particulate ¹³⁷Cs load was sensitive to the 481 482 inter-annual variations in rainfall, which is related to the local hydrology and 483 geomorphology in Japan.

A progressive decrease in the ¹³⁷Cs concentration in SS over 2 y indicates that the forest environment remains dynamic in terms of its ability to redistribute radioactive fallout. Such long-term seasonal and temporal variations should be considered in the fate of ¹³⁷Cs fallout in mountainous regions.

488

489 Acknowledgments

The authors express their sincere thanks to Masahiro Hirasawa, Makiko Ishihara, and Kazumi Matsumura for their assistance with extensive laboratory work. The permission to use the preserved forest from the forestry management authorities in Ibaraki Prefecture and the Forestry Agency of Japan is gratefully acknowledged. The use of the weir was kindly permitted by the Forestry and Forest Products Research Institute. We are also grateful to a landowner for their permission to use an open plot
for a precipitation gauge. Aya Sakaguchi inspired T.M. to interpret regional features of
the Japanese environmental conditions.

498 Appendix 1. Equations for the mass transport load of suspended solids

In the reality in the field condition, a continuous monitoring of SS concentration is not possible. In this study, the ratio was estimated using a value for turbidity as, a surrogate for the SS concentration with an assumption of a linear relation between the turbidity and SS concentration.

The SS load was evaluated in the following manner for each sampling period. In the following, the notation i (1, 2, 3, or 4) denotes the size fraction of F1, F2, F3 or F4. First, a nominal SS load from a time-integral collection was evaluated (Step 1). Next, a correction factor for the underestimation associated with the time-integrated method was elucidated using the turbidity record (Step 2). Finally, the probable load expected from flow-weighted collection was evaluated (Step 3). Values of the correction factor are listed in Table A1.

510Irregular turbidity records such as very high values under normal flow conditions 511were replaced with calculated values by a relationship between the flow rate and the 512turbidity (Fig. A1): T = 1941 Q - 25, where T is the turbidity, Q is the flow rate (m³) s^{-1}), and r = 0.60. For instances of extremely low flow rates, this calculation yields 513514negative values because the regression line has a negative y-intercept. Because a 515negative turbidity value is not logical, these negative values were artificially converted 516to 1 (turbidity) as the minimum probable value. The influence of this adjustment is 517limited because this occurred only at a low flow rate. When the calculation produced a 518T value larger than 990, which is the upper limit of the used turbidity sensor, T was

artificially converted to 990 because the regression line is valid within the dynamicrange of the sensor.

521

(1) Step	1
	(1) Step

$523 W = w_1 + w_2 + w_3 + w_4 ($	(A1)	
--------------------------------------	-----	---	--

524
$$f_i = (w_i / W) \times 100$$
 (A2)

525
$$ml_{SS, i} = W \times 0.001 \times (Q/q) \times f_i \times 0.01/D$$
 (A3)

526
$$NML_{SS} = ml_{SS, 1} + ml_{SS, 2} + ml_{SS, 3} + ml_{SS, 4}$$
 (A4)

527

528 where

529	W	total weight of collected SS in the period	(g)
530	wi	weight of collected SS of size fraction i in the period	(g)
531	fi	fractional percent of w_i by size fraction	(%)
532	<i>ml</i> _{SS, i}	mass transport load of SS for size i	(kg d^{-1})
533	q	cumulative volume of water passing through	
534		the filtration system in the period	(m ³)
535	Q	cumulative river water discharge over the period	(m ³)
536	D	duration of the period	(d)
537	NML _{SS}	nominal total mass transport load of SS	$(\text{kg } \text{d}^{-1})$
538			

538

539 (2) Step 2

540	$CF = \sum_{1}^{N} Q_i T_i / \sum_{1}^{N} Q_i \sum_{1}^{N} T_i$	(A5)
541	where,	

542	CF	correction factor	(-)
543	Q_i	stream water flow rate at time i	$(m^3 s^{-1})$
544	T_i	turbidity at time i	(NTU)
545	i	recording time of water flow and turbidity at every 15 min,	
546		i = 1, N	
547	Ν	the end point of the recording of the run	
548			
549	(2) Step 3		
550	MLss	$= NML_{\rm SS} / CF$	(A6)
551	where		
552	ML _{SS}	total mass transport load of SS expected in flow-weight	ed collection
553			(kg d^{-1})
554			
555	Appendix 2.	Equations for radioactivity transport load of ¹³⁷ Cs	
556	Similarly	y, the radioactivity transport load was evaluated based on t	he following

557 calculation. In the present context, the radioactivity refers to that of 137 Cs.

$$559 a_i = c_i w_i (A5)$$

$$560 A = a_1 + a_2 + a_3 + a_4 (A6)$$

561	$af_{i} = (a_{i} / A) 100$	(A7)
-----	----------------------------	------

562
$$al_{\text{SS, i}} = A \times (Q/q) \times af_{\text{i}} \times 0.01/D$$
 (A8)

563
$$AL_{SS} = al_{SS, 1} + al_{SS, 2} + al_{SS, 3} + al_{SS, 4}$$
 (A9)

565 where

566	ai amou	int of radioactivity in SS of size fraction i	(Bq)
567	c _i radio	activity concentration in SS of size fraction i	$(Bq g^{-1})$
568	A total	amount of radioactivity in SS	(Bq)
569	$a f_i$	fractional percent of a_i by size fraction	(%)
570	<i>al</i> ss, i	radioactivity transport load with SS for size i	$(Bq d^{-1})$
571	ALss	total radioactivity transport load with SS	$(Bq d^{-1})$
572			

573 Appendix 3. Comparison of radioactivity concentrations of ¹³⁷Cs and ¹³⁴Cs

When the two radiocesium concentrations isotopes were decay corrected to the 574575date of the Great East Japan Earthquake (March 11, 2011, a day close to the nuclear accident) (see Table S3 of Supplementary information for used decay correction 576factors), the ¹³⁴Cs to ¹³⁷Cs ratios were all approximately 1.0 (Supplementary 577578Information, Fig. S1). This value matches the reported value of 0.91 as of June 11, 5792011, found in a large-scale soil sampling study [7]. Thus, the isotopic composition confirmed that the ¹³⁷Cs measured in this study originated from the Fukushima Daiichi 580NPP accident. 581

582 **References**

- 583 [1] Katata G, Ota M, Terada H, Chino M, Nagai H (2012) Atmospheric discharge and
- dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant
 accident. Part 1: Source term estimation and local-scale atmospheric dispersion
- 586 in early phase of the accident. J. Environ Radioact.109:103–113
- 587 [2] Terada H, Katata G, Chino M, Nagai H (2012) Atmospheric discharge and
 588 dispersion of radionuclides during the Fukushima Daiichi Nuclear Power Plant
 589 accident. Part II: verification of the source term and analysis of regional-scale
 590 atmospheric dispersion. J Environ Radioact. 112:141–154
- [3] Kobayashi T, Nagai H, Chino M, Kawamura H (2013) Source term estimation of
 atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident
 by atmospheric and oceanic dispersion simulations. J Nucl Sci Technol. 50:255–
 264
- [4] United Nations (2014) In: United Nations Scientific Committee on the Effects of
 Atomic Radiation (ed), Sources, effects and risks of ionizing radiation,
 UNSCEAR 2013 Report, Report to General Assembly with Scientific Annexes,
 Annex A: Levels and effects of radiation exposure due to the nuclear accident
 after the 2011 great east-Japan earthquake and tsunami, United Nations, New
 York, pp.110–119

[5] Yamamoto M (2015) Overview of the Fukushima Dai-ichi Nuclear Power Plant
(FDNPP) accident, with amounts and isotopic compositions of the released
radionuclides. J Radioanal Nucl Chem. 303:1227–1231

- 604 [6] MEXT (Ministry of Education, Culture, Sports, Science, and Technology, Japan),
- 605 (2011) Database and maps on results of the research on distribution of606 radioactive substances discharged by the accident at TEPCO's Fukushima Daiichi
- 607 NPP, first upload on 18-10-2011, last updated on 13-10-2014 at the time of
- access. http://ramap.jaea.go.jp/map/. Accessed on 7 Dec 2014. (in Japanese)
- 609 [7] Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi
- 610 M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata
- 611 T (2015) Detailed deposition density maps constructed by large-scale soil
 612 sampling for gamma-ray emitting radioactive nuclides from the Fukushima
- 613 Daiichi Nuclear Power Plant accident. J Environ Radioact. 139:308–319
- 614 [8] GSI (Geospatial Information Authority of Japan), 2013. The national atlas of615 Japan.
- 616 http://portal.cyberjapan.jp/site/mapuse4/index.html#zoom=4&lat=35.99989&lon
 617 =138.75&layers=BTTT. Accessed on 4 Jan 2015. (in Japanese)
- [9] FFPRI (Forestry and Forest Products Research Institute), 2014. Shin-rin to
 Houshanou (Potal site for Forests and radionuclides).
 http://www.ffpri.affrc.go.jp/rad/index.html. Accessed on 2 Jan 2015. (in
 Japanese)

- [10] Nakanishi T, Matsunaga T, Koarashi J, Atarashi-Andoh M (2014) ¹³⁷Cs vertical
 migration in a deciduous forest soil following the Fukushima Daiichi Nuclear
 Power Plant accident. J Environ Radioact. 128:9–14
- [11] Koarashi J, Atarashi-Andoh M, Takeuchi E, Nishimura S (2014) Topographic
 heterogeneity effect on the accumulation of Fukushima-derived radiocesium on
 forest floor driven by biologically mediated processes. Sci Rep. doi:10.1038/
 srep06853.
- 629 [12] Atarashi-Andoh M, Koarashi J, Takeuchi E, Tsuduki K, Nishimura S, Matsunaga
 630 T (2015) Catchment-scale distribution of radiocesium air dose rate in a
 631 mountainous deciduous forest and its relation to topography. J Environ Radioact.
 632 147:1–7.
- [13] Ministry of the Environment (2015) Heisei 23 nendo Kohkyo-yoh-sui-iki
 Houshasei Busshitsu Monitoring Chousa Kekka (Matome) (FY2011 summary
 result of radiological monitoring on water bodies for public use).
 http://www.env.go.jp/jishin/monitoring/results_r-pw-h23.html. Accessed on 2 Jan
 2015. (in Japanese)
- 638 [14] Fukushima Prefecture (2012) Nikyu Kasen Sama Gawa Suikei Kasen Seibi
 639 Kihon Houshin (The basic policy to utilize the Same-gawa river system).
 640 http://www.pref.fukushima.lg.jp/uploaded/attachment/10215.pdf. Accessed on 28
- 641 Dec 2014. (in Japanese)
- 642 [15] Sakaguchi A, Kadokura A, Steier P, Tanaka K, Takahashi Y, Chiga H, Matsushima

- A, Nakashima S, Onda Y (2012) Isotopic determination of U, Pu and Cs in
 environmental waters following the Fukushima Daiichi Nuclear Power Plant
 accident. Geochem J. 46:355–360
- 646 [16] Nagao S, Kanamori M, Ochiai S, Inoue M, Yamamoto M (2015) Migration
- 647 behavior of ¹³⁴Cs and ¹³⁷Cs in the Niida River water in Fukushima Prefecture,

648 Japan during 2011–2012. J Radioanal Nucl Chem. 303:1617–1621

- 649 [17] Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013)
- Fluvial discharges of radiocesium from watersheds contaminated by the
 Fukushima Daiichi Nuclear Power Plant accident, Japan. J Environ Radioact.
 118:96–104.
- 653 [18] Nagao S, Kanamori M, Ochiai S, Tomihara S, Fukushi K, Yamamoto M (2013)
- Export of ¹³⁴Cs and ¹³⁷Cs in the Fukushima river systems at heavy rains by
 Typhoon Roke in September 2011. Biogeosci. 10:6215–6223
- 656 [19] Shinomiya Y, Tamai K, Kobayashi M, Ohnuki Y, Shimizu T, Iida S, Nobuhiro T,
- 657 Sawano S, Tsuboyama Y, Hiruta T (2014) Radioactive cesium discharge in
 658 stream water from a small watershed in forested headwaters during a typhoon
 659 flood event. Soil Sci Plant Nutr. 60:765–771
- 660 [20] Tanaka K, Iwatani H, Sakaguchi A, Takahshi Y, Onda Y (2014) Relationship
- between particle size and radiocesium in fluvial suspended sediment related to
- the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Chem.
- 663 301:607-613

664 [21] Tanaka K, Iwatani H, Sakaguchi A, Qiaohui, F., Takahashi Y., 2015.
665 Size-dependent distribution of radiocesium in riverbed sediments and its
666 relevance to the migration of radiocesium in river systems after the Fukushima
667 Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 139, 390–397.

- 668 [22] Sakaguchi A, Tanaka K, Iwatani H, Chiga H, Fan Q, Onda Y, Takahashi Y (2015)
- 669 Size distribution studies of ¹³⁷Cs in river water in the Abukuma Riverine system
 670 following the Fukushima Daiichi Nuclear Power Plant accident. J Environ
 671 Radioact. 139:379–389
- [23] Yoshimura K, Onda Y, Sakaguchi A, Yamamoto M, Matsuura Y (2015) An
 extensive study of the concentrations of particulate/dissolved radiocaesium
 derived from the Fukushima Daiichi Nuclear Power Plant accident in various river
 systems and their relationship with catchment inventory. J Environ Radioact.
 139:370–378
- [24] Tsuji H, Yasutaka T, Kawabe Y, Onishi T, Komai T (2014) Distribution of
 dissolved and particulate radiocesium concentrations along rivers and the
 relations between radiocesium concentration and deposition after the nuclear
 power plant accident in Fukushima. Water Res. 60:15–27
- 681 [25] Ochiai S, Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S
- (2015) Spatial and temporal changes of ¹³⁷Cs concentrations derived from
 nuclear power plant accident in river waters in eastern Fukushima, Japan during
 2012–2014. J Radioanal Nucl Chem:First online: 09 September 2015.

- 685 [26] Matsunaga T, Amano H, Yanase N (1991) Discharge of dissolved and suspended
- 686 ¹³⁷Cs in the Kuji River, Japan. Appl Geochem. 6:159–167
- 687 [27] Matsunaga T, Ueno T, Chandradjith RLR, Amano H, Okumura M, Hashitani H,
- 688 (1999) A study on ¹³⁷Cs and mercury contamination in lake sediments.
 689 Chemosphere. 39:269–283
- 690 [28] Matsunaga T (2000) The fate of several radionuclides derived from atmospheric
- fallout in a river watershed, In: Markert B, Friese K (eds) Trace elements: their
- distribution and effects in the environment. Elsevier, Amsterdam, pp.549–564
- 693 [29] Freed R, Smith, L, Bugai D (2004) The effective source area of ⁹⁰Sr for a stream
 694 near Chernobyl, Ukraine. J Contam Hydrol. 71:1–26
- [30] Matsunaga T, Nakanishi T, Atarashi-Andoh M, Takeuchi E, Tsuduki K, Nishimura
- 696 S, Koarashi J, Otosaka S, Sato T, Nagao S (2014) A passive collection system for
- 697 whole size fractions in river suspended solids. J Radioanal Nucl Chem.
 698 303:1291–1295
- 699 [31] Abe T, Fujieda M, Kabeya N, Kubota T, Noguchi H, Shimizu A, Tsuboyama Y,
- Noguchi S (2011) Report of hydrological observations at the Ogawa Forest
 Reserve (August 2000 to September 2007). Bulletin of FFPRI. 10:291–317 (in
 Japanese with English Abstract)
- [32] Mizoguchi Y, Morisawa T, Ohtani Y (2002) Climate in Ogawa Forest Reserve, In:
- 704 Nakashizuka T, Matsumoto Y (eds), Diversity and Interaction in a Temperate
- Forest Community: Ogawa Forest Reserve of Japan. Ecological Studies. 158:

706 Springer-Verlag, Tokyo, pp.11–18.

707	[33] FFPRI (Forestry and Forest Products Research Institute) (2003) Forest Dynamics
708	Database. http://fddb.ffpri-108.affrc.go.jp/. Accessed on 28 Dec 2014. (in
709	Japanese)
710	[34] Moore DM, Reynolds Jr RC (1989) X-ray diffraction and the Identification and
711	analysis of clay minerals. Oxford Univ Press, New York, pp. 202–271
712	[35] Juge S (1962) Studies on clay minerals in oil-bearing Neogene Tertiary
713	sedimentary rocks of Northwest Honshu, Japan, with a proposal of criteria for
714	analysis of clay minerals in sedimentary rocks. J Japanese Association of
715	Petroleum Technologists. 27:17–54 (in Japanese with English abstract)
716	[36] Andersson KG, Roed J (1994) The behavior of Chernobyl ¹³⁷ Cs, ¹³⁴ Cs and ¹⁰⁶ Ru
717	in undisturbed soil: Implications for external radiation. J Environ Radioact.
718	22:183–196
719	[37] Rigol A, Roig M, Vidal M, Rauret G (1999) Sequential extractions for the study
720	of radiocesium and radiostrontium dynamics in mineral and organic soils from
721	Western Europe and Chernobyl areas. Environ Sci Technol. 33:887-895
722	[38] Hirose M, Kikawada Y, Tsukamoto A, Oi T, Honda T, Hirose K, Takahashi H
723	(2015) Chemical forms of radioactive Cs in soils originated from Fukushima
724	Dai-ichi nuclear power plant accident studied by extraction experiments. J
725	Radioanal Nucl. Chem. 303:1357–1359

727 [39] NILIM (National Institute for Land and Infrastructure Management) (2015) 728 Relation between suspended solids and turbidity in river water. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0594pdf/ks059410.pdf. 729 Accessed 730 on 15 Aug 2015. (in Japanese) 731 [40] Gomi T, Dan Moore R, Hassan MA (2005) Suspended sediment dynamics in 732 small forest streams of the Pacific Northwest. J Am Water Resource As. 41:877-733 898 734 [41] Mizugaki S, Abe T, Maruyama M (2011) Estimation of high level suspended 735 solids concentration during flood events by means of a turbidity meter. 736 http://thesis.ceri.go.jp/db/giken/h23giken/JiyuRonbun/KK-34.pdf. Accessed on 1 737 Dec 2015. (in Japanese) 738 [42] Hanashiro K, Omija T, Higa E, Mitsumoto H, Futenma T, Furugen K, Shimoji Y, 739 Tashiro Y (1994) Study on muddy water resulting from soil run off. Bulletin of 740 Okinawa Prefectural Institute of Health and Environment. 28:67-71 (in 741Japanese) 742[43] HAMC (Hokkaido Agricultural M Center) (2015) Relationships between turbidity

- and suspended solids concentration in stream water for irrigation.
 http://www.hamc.or.jp/TOPTEST/02_kangaiyousui.pdf. Accessed on 1 Dec
 2015. (in Japanese)
- [44] Kinouchi G, Onda Y (2013) Understanding of practical situation of migration of
 radioactive cesium to rivers and its mathematical analysis using a

748	distributed-parameters model. In: Report to Nuclear Regulatory Authority
749	Council, "Establishment of methodology to grasp long-term effects caused by
750	radioactive materials due to the Tokyo Electric Power Co. Fukushima Daiichi
751	Nuclear Power Plant accident - Fiscal year 25- ", Japan Atomic Energy Agency,
752	Tokyo, Japan. http://fukushima.jaea.go.jp/initiatives/cat03/entry06.html;
753	http://fukushima.jaea.go.jp/initiatives/cat03/pdf06/2-7.pdf. Accessed on 14 Aug
754	2015. (in Japanese)
755	[45] Matsunaga T, Koarashi J, Atarashi-Andoh M, Nagao S, Sato T, Nagai H (2013)
756	Comparison of the vertical distributions of Fukushima nuclear accident
757	radiocesium in soil before and after the first rainy season, with physicochemical
758	and mineralogical interpretations. Sci Total Environ. 447: 301-314
759	[46] Wauters J, Sweeck L, Valcke E, Elsen A, Cremers A (1994) Availability of
760	radiocaesium in soils. Sci Total Environ. 157:239–248
761	[47] He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of
762	¹³⁷ Cs and unsupported ²¹⁰ Pb by mineral soils and sediments. J Environ Radioact.
763	30:117–137
764	[48] Sansone U, Belli M, Voitsekovitch OV, Kanivets VV (1996) ¹³⁷ Cs and ⁹⁰ Sr in
765	water and suspended particulate matter of the Dnieper River-Reservoirs System
766	(Ukraine). Sci Total Environ.186:257-271
767	[49] Ueno T, Matsunaga T, Amano H, Tkachenko Y, Kovalyov A, Sukhoruchkin A,
768	Derevets V (2002) Environmental monitoring data around the Chernobyl Nuclear

- Power Plant used in the cooperative research project between JAERI and
 CHESCIR (Ukraine) (Cooperative research), JAERI-Data/Code 2002-024, Japan
 Atomic Energy Research Institute (present: Japan Atomic Energy Agency),
 Tokai-mura, Japan, pp.355–388.
- [50] Matsunaga T, Ueno T, Amano H, Tkatchenko Y, Kovalyov A, Watanabe M,
- 774 Onuma, Y (1998) Characteristics of Chernobyl-derived radionuclides in
- particulate form in surface waters in the exclusion zone around the Chernobyl
- 776 Nuclear Power Plant. J Contam Hydrol. 35:101–113

777	Figure	titles	and	captions
	0			1

- 779 Fig. 1 Location of the study site.
- 780

781	Left panel (a), Study location. Middle panel (b), enlarged local area. N, Fukushima
782	Daiichi Nuclear Power Plant (NPP); S, study site. Right panel (c), enlarged study
783	area. H, intake point of river water by hose; W, weir; F, filtration system of river
784	suspended system; R1, open plot rain gauge; R2, rain gauge for throughfall.
785	Numbers of 500, 600, and 700 indicate contours in m (A.S.L.)
786	
787	
788	Fig. 2 Relationship between the suspended solids load and precipitation.
789	
790	Plot of the suspended solids per day of the size fraction in the sampling periods. Data
791	are taken from Table 1. Legend: Whole, suspended solids including all size
792	fractions; F1, 2000 µm (2 mm) – approx. 3 mm; F2, 500–2000 µm; F3, 75–500
793	μm; F4, <75 μm
794	
795	
796	Fig. 3 Hydrological records and ¹³⁷ Cs concentration associated with suspended
797	solids for the entire sampling periods.

798	Subplot (a): hourly precipitation record for the entire collection periods; (b): river
799	water discharge; (c): ¹³⁷ Cs concentration associated with suspended solids. Legend
800	for subplot (c): F1, 2000 µm (2 mm) – approx. 3 mm; F2, 500–2000 µm; F3, 75–
801	500 μ m; F4, <75 μ m. Numerical data are provided in the Supplementary
802	Information (Tables S1 and S2). In subplot (c), horizontal bars indicate the length
803	of the sampling period. The letter EQ indicates the time of the Great East Japan
804	Earthquake (March-11-2011). In this subplot, the result of the preliminary study
805	period (R1-R8) is also included. In all subplots, no lines or no marks
806	indicate observation data do not exist.

809 Fig. 4 X-ray diffraction spectra of selected suspended solid samples

Symbols to peaks: V, vermiculite; M. mica; A, amphibole; K, kaolinite; Q: quartz; P,
plagioclase. Subplot (a): a sample spectrum of the random orientation for major
minerals analysis (sample R17, sampling period from November 26, 2012 to
December 21, 2012; the size fraction F3, 75–500 µm). Subplot (b): a sample
spectrum of the powder orientation for clay minerals identification for size
fraction F4 (<75 µm) of the identical sampling occasion (R17). Subplot (c):
spectra of the all analyzed size fractions F4 by powder orientation.

819	Fig. 5 Results of the chemical extraction of 137 Cs associated with suspended solids
820	Black bars: the proportion of extracted ¹³⁷ Cs to that of the original suspended solids
821	tested. Gray bars: ¹³⁷ Cs concentration of the original suspended solids tested.
822	Extraction conditions: extractant, 1 M ammonium acetate (pH 7.0); operation, 2 h
823	at 25°C; solid solution ratio, 1 (g) vs. 10 (mL), according to Andersson and Roed
824	(1994). The F4 size fraction of R19 and F3 of R20 were not tested because an
825	insufficient sample amount was available.
826	
827	
828	Fig. 6 Relationship of ¹³⁷ Cs concentration associated with suspended solids to
829	environmental conditions.
830	Subplot (a), relationship to daily-normalized precipitation;; to river water discharge (d).
831	(c), to SS mass load (c). Legend given in subplot (b) is common for subplots (a)
832	and (b).
833	
834	
835	Fig. 7 Fluvial transport load of ¹³⁷ Cs associated with suspended solids
836	
837	Legend: F1, 2000 µm (2 mm) – approx. 3 mm; F2, 500–2000 µm; F3, 75–500 µm; F4,
838	$<75 \ \mu m$. The values of the load are the daily-normalized values of the sampling
839	occasion. For each sampling period, see Table 1.

- 842 Fig. A1 Regression of turbidity for the stream water flow rate during selected rainfall
- events.
- 844
- 845 The selected rainfall events are listed in Table A2.

all 's the Matsunaga et al. 2 (a) ۴Ĵ 0 20 km (b) 6 0 C Shioya Q 700 trail Ş 500-m Þ 600 RR (c) 500

6

Fig. 1

Click here to download Figure Fig 1.pdf 🛓

Matsunaga et al.

Color on the Web, and in print.

Matsunaga et al.

(a) R17-F3

Intensity

⊅

Figure

Intensity

 \leq

ㅈ

0

10

(b) R17-F4

0

10

<

ㅈ

 \leq

Fig. 4

Click here to download Figure Fig 4.pdf

Figure

Fig. 5

Matsunaga et al.

Figure

Color on the Web, and in print.

Fig. 6

Matsunaga et al.

Figure

Transport load of ¹³⁷Cs (kBq d⁻¹)

Fig. 7

Fig. A1

Matsunaga et al.

Figure

Sampli	ng period and co	llection data				Hydrological re	cord			Mass transpor	t load	of susp	pended	
Sampli	gu		Duration	Passed	Collected	Precipitation			Discharge	solid (SS)				
			(days)	water (m [°])	total SS (g)	Daily average (mm days ⁻¹)	Total in the period (mm)	Maximun intensity $(mm h^{-1})$	Daily average (m ³ days ⁻¹)	Mass load (kg days ⁻¹)	Size	fractio	n ^a (%)	
Run #	Start	End								Total	F1	F2	F3	F4
R9	01-Dec-2011	19-Jan-2012	48.8	106.6	45.2	1.1	52.5	6.0	1.3E + 02	0.8	1.4	5.8	4.7	88.1
R10	29-Feb-2012	23-Mar-2012	23.0	67.4	69.3	6.7	154.5	6.5	1.3E + 03	1.6	0.5	9.5 ^b		90.0
R11	23-Mar-2012	08-May-2012	45.8	113.9	176.8	9.5	437.0	15.0	1.5E + 03	5.2	0.2	5.0^{b}		94.7
R12	08-May-2012	21-Jun-2012	44.0	127.1	437.0	10.6	466.0	48.5	2.4E + 03	44.6	1.0	3.1	19.0	76.9
R13	09-Jul-2012	23-Aug-2012	44.8	84.3	400.2	4.8	216.0	36.5	2.1E + 03	10.8	0.6	1.5	7.5	90.0
R14	23-Aug-2012	05-Sep-2012	12.8	38.8	336.8	7.0	89.5	20.5	1.8E + 03	27.1	0.1	1.2	12.1	86.7
R15	05-Sep-2012	04-Oct-2012	29.0	78.3	484.5	6.5	188.0	27.0	1.7E + 03	11.5	0.3	1.5	7.8	90.4
R16	04-Oct-2012	14-Nov-2012	41.0	131.6	499.4	3.9	161.0	12.0	2.1E + 03	7.8	0.1	1.0	7.5	91.4
R17	26-Nov-2012	21-Dec-2012	25.0	69.6	46.4	1.5	36.5	5.0	1.3E + 03	0.9	0.3	0.8	7.8	91.1
R18	21-Dec-2012	16-Feb-2013	57.4	158.3	143.7	2.3	134.0	13.5	1.5E + 03	1.5	0.3	0.8	9.1	89.9
R19	09-Mar-2013	24-Apr-2013	46.0	80.9	86.2	6.0	276.5	23.0	1.7E + 03	3.7	0.2	0.7	5.9	93.3
R20	24-Apr-2013	23-May-2013	28.8	65.7	111.0	3.2	93.0	10.0	1.1E + 03	2.0	0.3	1.5	7.4	90.7
R21	23-May-2013	04-Jul-2013	41.8	66.4	305.6	5.5	230.0	27.5	1.0E + 03	5.1	0.1	0.7	7.9	91.3
R22	04-Jul-2013	08-Aug-2013	35.0	66.3	576.0	6.4	225.5	26.0	1.1E + 03	12.4	0.1	0.4	8.5	91.0
R23	08-Aug-2013	10-Sep-2013	33.1	57.6	498.6	3.1	101.5	20.5	8.2E + 02	7.1	0.3	0.9	6.0	92.8
R24	10-Sep-2013	07-Oct-2013	26.9	58.3	529.3	11.4	307.0	66.0	1.3E + 03	96.5	1.2	2.8	6.0	89.0
R25	07-Oct-2013	22-Nov-2013	46.0	111.2	327.0	6.7	311.5	22.0	1.6E + 03	6.9	0.2	0.8	4.5	94.5
R26	22-Nov-2013	17-Dec-2013	25.0	66.3	124.7	1.1	28.5	26.5	9.9E + 02	1.8	0.1	0.5	5.2	94.2
										Mean	0.4	1.5	8.0	90.4
To kee	p consistency wi	th other majority	of cases, the	two fractions v	vere combined 75_500 um: F4	in Table 1								
(F])	-(mm /2 mm) 00	<u>–annroximatelv</u> 3	mm·F2 500-	-2000 iim. E3 (75-500 um: F4	. < 75m								

Table 1 Daily averaged transport load of suspended solid and corresponding hydrologcal record

 $^{\rm b}$ In R10 and R11, different size fracnation limits were employed: F2 800–2000 $\mu m;$ F3 75–800 $\mu m,$ for trial 7) md 0007 1.1 J -uppro ULY U 8 יייין אווויע אווויע אווויע אווויע / .c huu

Click here
đ
download
Table
Table
P
÷
pdf
14

			0.74			Average
1.8	1.8	1.0	1.01	26.5	1.1	26
6.9	4.6	1.5	0.67	22.0	6.7	25
96.5	11.8	8.2	0.12	66.0	11.4	24
7.1	7.1	1.0	0.97	20.5	3.1	23
12.4	9.5	1.3	0.77	26.0	6.4	22
5.1	4.6	1.1	0.92	27.5	5.5	21
2.0	1.8	1.1	0.90	10.0	3.2	20
3.7	1.8	2.1	0.48	23.0	6.0	19
1.5	1.4	1.1	0.94	13.5	2.3	18
0.9	0.9	1.0	1.00	5.0	1.5	17
7.8	7.8	1.0	0.98	12.0	3.9	16
11.5	10.4	1.1	0.94	27.0	6.5	15
27.1	15.9	1.7	0.59	20.5	7.0	14
10.8	9.8	1.1	0.88	36.5	4.8	13
44.6	8.1	5.5	0.18	48.5	10.6	12
5.2	2.4	2.2	0.47	15.0	9.5	11
1.6	1.3	1.2	0.81	6.5	6.7	10
0.8	0.6	1.4	0.73	6.0	1.1	9
(kg d ⁻¹)	(kg d ⁻¹)			(mm h ⁻¹)	(mm d ⁻¹)	
flow-weighted	time-integral	Correction factors for under-estimation	Ratio of two integral methods	Maximum intensity	Daily avarage	Run number
mass load	Modified	r sampling method	Correction for	itation	precip	Sampling

Table A1. Correction factors for the estimated SS load by a time-integral SS collection

Events		Event p	period		Precipitation
number	Start		End		(mm)
1	31-Mar-2012	12:00	01-Apr-2012	7:00	34.0
2	17-May-2012	17:00	18-May-2012	18:00	48.0
3	28-May-2012	13:00	28-May-2012	22:00	15.0
4	29-May-2012	13:00	01-Jun-2012	23:00	55.5
5	18-Jul-2012	16:00	19-Jul-2012	1:00	19.5
6	28-Jul-2012	15:00	29-Jul-2012	3:00	45.0
7	16-Aug-2012	14:00	16-Aug-2012	23:00	7.0
8	17-Aug-2012	1:00	19-Aug-2012	23:00	57.5
9	02-Sep-2012	9:00	03-Sep-2012	6:00	58.0
10	04-Sep-2012	16:00	05-Sep-2012	12:00	31.5
11	18-Sep-2012	14:00	19-Sep-2012	17:00	24.0
12	23-Sep-2012	7:00	23-Sep-2012	16:15	44.5
13	17-Oct-2012	15:00	18-Oct-2012	10:00	45.0
14	28-Oct-2012	21:00	29-Oct-2012	11:00	12.0
15	06-Nov-2012	6:00	07-Nov-2012	10:00	21.0
16	17-Nov-2012	16:00	18-Nov-2012	4:00	26.0
17	29-Dec-2012	22:00	31-Dec-2012	8:00	53.5
18	02-Apr-2013	21:00	04-Apr-2013	0:00	92.0
19	06-Apr-2013	17:00	07-Apr-2013	23:00	94.0
20	27-Jul-2013	17:00	31-Jul-2013	11:00	41.0
21	01-Aug-2013	1:00	01-Aug-2013	12:00	11.0
22	19-Dec-2013	7:00	22-Dec-2013	1:00	40.5

Table A2 Selected rainfall events for elucidation of a turbidity-flow rate relationship

3, and 4) denotes size fractions. Dashed line shows a linear regression (y=1.00 x + corrected for the day of the Great East Japan Earthquake (11-Mar-2011). Fi (i=1, 2, suspended solids in the studied stream water. Radioactive concentrations are decay 0.04, $R^2 = 0.998$). Fig. S1 Relationship between concentrations of ¹³⁷Cs and ¹³⁴Cs associated with

Click
here
Q
downlo
bad
atta
achi
mer
Ħ
ö
man
uscrip
Ť
able
Š
.pdf
I+

attachment to manuscript

Table S1 Radioactive concentration of ¹³⁷Cs associated with suspended solid

)			1 137		5	
	sampling period		Cono		Issociated with S	Ŭ	
. run	2	1		<u>б ba)</u>			
number	Start	End		SIZE IFAC	tion		
			F1	F2	F3	F4	Average ^b
R1 ^a	14-Sep-2011	26-Sep-2011	3.79 ± 0.03	7.84 ± 0.10	9.77 ± 0.12	10.8 ± 0.2	9.8 ± 0.1
R2 ^a	26-Sep-2011	29-Sep-2011	7.62 ± 0.14	3.92 ± 0.07	0.28 ± 0.01	7.96 ± 0.07	3.29 ± 0.02
R3ª	29-Sep-2011	12-Oct-2011	1.33 ± 0.06	4.17 ± 0.06	2.65 ± 0.06	11.11 ± 0.14	6.34 ± 0.07
R4 ^a	12-Oct-2011	14-Oct-2011	1.93 ± 0.19	2.02 ± 0.05	0.41 ± 0.03	11.24 ± 0.12	9.9 ± 0.1
R5 ^a	16-Oct-2011	19-Oct-2011	7.31 ± 0.22	7.86 ± 0.18	1.84 ± 0.04	5.30 ± 0.05	5.30 ± 0.05
R6 ^a	28-Oct-2011	07-Nov-2011	4.29 ± 0.13	4.29 ± 0.13	0.83 ± 0.05	10.69 ± 0.10	9.64 ± 0.09
R7 ^a	07-Nov-2011	17-Nov-2011	0.25 ± 0.03	0.22 ± 0.01	6.26 ± 0.03	7.18 ± 0.12	5.82 ± 0.01
R8 ^a	17-Nov-2011	01-Dec-2011	0.76 ± 0.16	3.55 ± 0.11	4.17 ± 0.19	10.12 ± 0.10	9.39 ± 0.09
R9	01-Dec-2011	19-Jan-2012	5.25 ± 0.06	4.76 ± 0.02	1.91 ± 0.02	10.67 ± 0.10	9.84 ± 0.09
R10	29-Feb-2012	23-Mar-2012	2.42 ± 0.04	0.40 ± 0.1	01	5.53 ± 0.06	5.12 ± 0.05
R11	23-Mar-2012	08-May-2012	5.24 ± 0.07	1.90 ± 0.	02	6.80 ± 0.03	6.44 ± 0.03
R12	08-May-2012	21-Jun-2012	1.06 ± 0.03	1.06 ± 0.01	0.44 ± 0.01	5.12 ±0.04	4.07 ± 0.03
R13	09-Jul-2012	23-Aug-2012	0.84 ± 0.02	0.60 ± 0.02	0.74 ± 0.02	4.42 ± 0.03	4.06 ± 0.03
R14	23-Aug-2012	05-Sep-2012	0.37 ± 0.02	0.73 ± 0.01	1.78 ± 0.01	4.75 ± 0.05	4.34 ± 0.05
R15	05-Sep-2012	04-Oct-2012	0.87 ± 0.03	1.15 ± 0.02	1.10 ± 0.02	2.74 ± 0.04	2.58 ± 0.03
R16	04-Oct-2012	14-Nov-2012	0.34 ± 0.09	0.61 ± 0.02	0.89 ± 0.01	4.98 ± 0.12	4.6 ± 0.1
R17	26-Nov-2012	21-Dec-2012	0.34 ± 0.04	0.28 ± 0.02	0.94 ± 0.02	3.75 ± 0.10	3.49 ± 0.09
R18	21-Dec-2012	16-Feb-2013	3.00 ± 0.03	0.32 ± 0.02	0.61 ± 0.07	3.50 ± 0.07	3.21 ± 0.06
R19	09-Mar-2013	24-Apr-2013	0.29 ± 0.06	0.50 ± 0.02	0.76 ± 0.02	3.59 ± 0.17	3.40 ± 0.07
R20	24-Apr-2013	23-May-2013	0.78 ± 0.02	1.67 ± 0.02	0.49 ± 0.01	2.93 ± 0.03	2.72 ± 0.03
R21	23-May-2013	04-Jul-2013	1.87 ± 0.05	0.61 ± 0.02	1.28 ± 0.02	3.22 ± 0.04	3.05 ± 0.04
R22	04-Jul-2013	08-Aug-2013	0.22 ± 0.07	0.20 ± 0.01	0.66 ± 0.01	2.83 ± 0.03	2.63 ± 0.03
R23	08-Aug-2013	10-Sep-2013	2.87 ± 0.05	1.27 ± 0.02	1.30 ± 0.04	2.83 ± 0.03	2.73 ± 0.03
R24	10-Sep-2013	07-Oct-2013	0.23 ± 0.01	0.46 ± 0.01	0.84 ± 0.01	3.83 ± 0.03	3.48 ± 0.02
R25	07-Oct-2013	22-Nov-2013	1.18 ± 0.06	0.72 ± 0.02	0.35 ± 0.02	3.33 ± 0.03	3.17 ± 0.03
R26	22-Nov-2013	17-Dec-2013	0.49 ± 0.06	0.32 ± 0.02	0.73 ± 0.01	3.00 ± 0.02	2.86 ± 0.02
^a Preliminary san	npling periods with a sr	nall scale filtration	n system. Sample	collection stoppe	d in several day:	s due to cloggin	g of the

Decay corrected for the end date of sample collection

^a Pre filters. Sampling duration was not identified.

^b Averaged concentration over different size fractions weighed by mass contribution of each fraction (see Table 1). Starting days of collection of R1-R8 are as follows:

Table S2 Radioactive concentration of ¹³⁴Cs associated with suspended solid

						a
1.22 ± 0.02	0.31± 0.01	0.14 ± 0.02	0.30 ± 0.06	17-Dec-2013	22-Nov-2013	R26
1.49 ± 0.03	0.16 ± 0.02	0.32 ± 0.01	0.50 ± 0.09	22-Nov-2013	07-Oct-2013	R25
1.68 ± 0.02	0.39 ± 0.01	0.20 ± 0.01	0.12 ± 0.01	07-Oct-2013	10-Sep-2013	R24
1.28 ± 0.05	0.63 ± 0.04	0.65 ± 0.02	1.31 ± 0.04	10-Sep-2013	08-Aug-2013	R23
1.33 ± 0.03	0.31 ± 0.01	I	I	08-Aug-2013	04-Jul-2013	R22
1.56 ± 0.03	0.64 ± 0.02	0.32 ± 0.02	I	04-Jul-2013	23-May-2013	R21
1.50 ± 0.03	0.25 ± 0.01	0.85 ± 0.02	I	23-May-2013	24-Apr-2013	R20
1.87 ± 0.08	0.38 ± 0.02	I	I	24-Apr-2013	09-Mar-2013	R19
1.92 ± 0.07	0.30 ± 0.02	I	I	16-Feb-2013	21-Dec-2012	R18
2.16 ± 0.06	0.54 ± 0.01	I	I	21-Dec-2012	26-Nov-2012	R17
2.97 ± 0.09	0.55 ± 0.01	I	I	14-Nov-2012	04-Oct-2012	R16
1.64 ± 0.04	0.68 ± 0.02	0.75 ± 0.02	0.58 ± 0.04	04-Oct-2012	05-Sep-2012	R15
3.04 ± 0.06	1.13 ± 0.01	0.47 ± 0.01	0.37 ± 0.02	05-Sep-2012	23-Aug-2012	R14
2.81 ± 0.03	0.50 ± 0.02	0.42 ± 0.02	I	23-Aug-2012	09-Jul-2012	R13
4.42 ± 0.04	0.38 ± 0.01	0.76 ± 0.02	0.77 ± 0.04	21-Jun-2012	08-May-2012	R12
5.99 ± 0.07	1.94 ± 0.06	3.91 ± 0.05	3.65 ± 0.08	08-May-2012	23-Mar-2012	R11
3.92 ± 0.08	0.01	0.30 ± 0	1.82 ± 0.05	23-Mar-2012	29-Feb-2012	R10
8.1 ± 0.1	1.48 ± 0.04	3.81 ± 0.03	4.17 ± 0.08	19-Jan-2012	01-Dec-2011	R9
8.5 ± 0.2	I	I	I		17-Nov-2011	$R8^{a}$
6.02 ± 0.03	5.28 ± 0.04	I	I		07-Nov-2011	R7 ^a
8.7 ± 0.2	I	I	I		28-Oct-2011	R6 ^a
4.8 ± 0.1	I	I	I		16-Oct-2011	R5 ^a
9.4 ± 0.2	I	I	I		12-Oct-2011	$R4^{a}$
I	I	I	I		29-Sep-2011	R3 ^a
6.8 ± 0.1	0.25 ± 0.01	3.4 ± 0.1			26-Sep-2011	R2 ^a
I	I	I	I		14-Sep-2011	R1 ^a
F4	F3	F2	FI			
	action	Size fra		End	Start	number
	g ⁻¹)	(Bq į		I		run
SS	associated with	centraion of ¹³⁴ Cs	Conc		Sampling period	
ollection	ate of sample co	d for the end da	Decay correcte			

^a Preliminary sampling periods with a small scale filtration system. Sample collection stopped in several days after the start day due to clogging of the filters. End of sampling date was not identified.

Table S3	Decay correction factors for the stardard day of 11-Mar-2011
(the day	the Great East Japan Earthquake)

		Decay co	orection for 11-N	lar-2011
S	ampling	Day numbers since 11-Mar-2011	Decay con	rection factors
run number	End date		¹³⁷ Cs	¹³⁴ Cs
R1	26-Sep-2011	187	0.988	0.842
R2	29-Sep-2011	199	0.988	0.833
R3	12-Oct-2011	202	0.987	0.831
R4	14-Oct-2011	215	0.987	0.821
R5	19-Oct-2011	219	0.986	0.818
R6	07-Nov-2011	231	0.986	0.809
R7	17-Nov-2011	241	0.985	0.801
R8	01-Dec-2011	251	0.984	0.794
R9	19-Jan-2012	315	0.980	0.749
R10	23-Mar-2012	378	0.976	0.707
R11	08-May-2012	424	0.974	0.677
R12	21-Jun-2012	468	0.971	0.650
R13	23-Aug-2012	531	0.967	0.614
R14	05-Sep-2012	544	0.966	0.607
R15	04-Oct-2012	573	0.964	0.591
R16	14-Nov-2012	614	0.962	0.569
R17	21-Dec-2012	651	0.960	0.550
R18	16-Feb-2013	708	0.956	0.522
R19	24-Apr-2013	775	0.952	0.491
R20	23-May-2013	804	0.950	0.478
R21	04-Jul-2013	846	0.948	0.460
R22	08-Aug-2013	881	0.946	0.445
R23	10-Sep-2013	914	0.944	0.432
R24	07-Oct-2013	941	0.942	0.421
R25	22-Nov-2013	987	0.940	0.404
R26	17-Dec-2013	1012	0.938	0.395
Ś	Saito et al., 2011			
	14-Jun-2011 ^a	95	0.994	0.916

^a The standard day for decay correction to deduce a radioactivity ratio of

¹³⁴Cs to ¹³⁷Cs. The ratio is given 0.91 as of the date 14-Jun-2011 in the literature (Saito et al., 2015). This ratio is equvalent to 0.99 as of the date 11-Mar-2011.

Table S4 Result of collection efficiency evaluation

	nn system	ain collectio	after the m	nm lenath) ;	filters (250 n	cartridge :	. a set of short	^a hackiin filters	
1.6	5.8	357	352	4.73	0.21	0.06	17-Dec-2013	22-Nov-2013	R26
0.6	7.7	1190	1182	5.11	1.93	0.70	22-Nov-2013	07-Oct-2013	R25
1.0	14.4	1410	1370	31.1	6.79	1.46	07-Oct-2013	10-Sep-2013	R24
		Sum	F4	F3	F2	F1	End	Start	number
				action	Size fr		I		run
(%)	(Bq)			(Bq)					
Uncollected proportion** B/(A+B)	Collected radioacitivity of Cs-137 with SS by the backup filters* (B)	S	s-137 with r system	icitivity of C in collectior (A)	ected radioa by the ma	Coll		Sampling period	
	on	e collectic	e of sampl	he end date	rected for t	Decay cor	_		

÷ ź t + h Ę

backup inters : a set of short cartinge inters (200 mini tength) after the main conection system:

^b the sum of A and B was taken as 100%.

Tabl
ው ሪ
ΰi —
ΞU
lial
trar
gsr
P T
loac
ç
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
³⁷ Cs
³⁷ Cs ass
³⁷ Cs associa
³⁷ Cs associated
³⁷ Cs associated wit
³⁷ Cs associated with s
³⁷ Cs associated with susp
³⁷ Cs associated with suspend
³⁷ Cs associated with suspended
³⁷ Cs associated with suspended sol

	Sampling period			Trans	sport load of ¹³⁷	Cs	
run					(Bq d ⁻¹ )		
number	Start	End		Size frac	ction		
			F1	F2	F3	F4	whole SS
R9	01-Dec-2011	19-Jan-2012	5.9E+01	2.1E+02	7.0E+01	5.2E+03	7.3E+03
R10	29-Feb-2012	23-Mar-2012	1.9E+01	5.5E+C	01	6.6E+03	7.9E+03
R11	23-Mar-2012	08-May-2012	6.1E+01	5.0E+C	)2	1.5E+04	3.4E+04
R12	08-May-2012	21-Jun-2012	4.9E+02	1.4E+03	3.7E+03	3.2E+04	1.8E+05
R13	09-Jul-2012	23-Aug-2012	5.0E+01	9.8E+01	6.0E+02	3.9E+04	4.3E+04
R14	23-Aug-2012	05-Sep-2012	1.0E+01	2.3E+02	5.8E+03	6.6E+04	1.1E+05
R15	05-Sep-2012	04-Oct-2012	3.0E+01	2.0E+02	9.9E+02	2.6E+04	2.8E+04
R16	04-Oct-2012	14-Nov-2012	2.1E+00	4.9E+01	5.2E+02	3.6E+04	3.6E+04
R17	26-Nov-2012	21-Dec-2012	7.8E-01	2.0E+00	6.4E+01	3.0E+03	3.0E+03
R18	21-Dec-2012	16-Feb-2013	1.5E+01	3.7E+00	8.4E+01	4.3E+03	4.8E+03
R19	09-Mar-2013	24-Apr-2013	1.9E+00	1.2E+01	1.7E+02	6.0E+03	1.3E+04
R20	24-Apr-2013	23-May-2013	5.2E+00	5.1E+01	7.3E+01	4.9E+03	5.4E+03
R21	23-May-2013	04-Jul-2013	1.2E+01	2.1E+01	5.2E+02	1.4E+04	1.5E+04
R22	04-Jul-2013	08-Aug-2013	1.6E+00	1.0E+01	7.0E+02	2.5E+04	3.2E+04
R23	08-Aug-2013	10-Sep-2013	6.9E+01	7.9E+01	5.6E+02	1.9E+04	1.9E+04
R24	10-Sep-2013	07-Oct-2013	2.7E+02	1.2E+03	5.7E+03	4.0E+04	3.3E+05
R25	07-Oct-2013	22-Nov-2013	1.5E+01	4.1E+01	1.1E+02	1.4E+04	2.2E+04
R26	22-Nov-2013	17-Dec-2013	8.8E-01	3.1E+00	7.0E+01	5.2E+03	5.2E+03