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We formulate a theory of spin-transfer torques in textured antiferromagnets, which covers the small to large
limits of the exchange coupling energy relative to the kinetic energy of the intersublattice electron dynamics. Our
theory suggests a natural definition of the efficiency of spin-transfer torques in antiferromagnets in terms of well-
defined material parameters, revealing that the charge current couples predominantly to the antiferromagnetic or-
der parameter and the sublattice-canting moment in, respectively, the limits of large and small exchange coupling.
The effects can be quantified by analyzing the antiferromagnetic spin-wave dispersions in the presence of charge
current: in the limit of large exchange coupling the spin-wave Doppler shift always occurs, whereas, in the opposite
limit, the only spin-wave modes to react to the charge current are ones that carry a pronounced sublattice-canting
moment. The findings offer a framework for understanding and designing spin-transfer torques in antiferromag-
nets belonging to different classes of sublattice structures such as, e.g., bipartite and layered antiferromagnets.

DOI: 10.1103/PhysRevB.94.054409

I. INTRODUCTION

The conservation of angular momenta between itinerant
electrons and localized magnetizations in magnetic materi-
als leads to the fascinating concept of spin-transfer torque
(STT) [1]; the spin angular momentum of the electrons
can be transferred to the magnetization via their mutual
exchange coupling, which enables us to drive the dynamics
of magnetization by charge current. The STT in ferromagnets
(FMs), providing a vital information-writing technology, has
been driving the explosive growth of the field of spintronics
up until now [2]. In textured FMs, the efficiency of the STT
(in the unit of velocity) can be defined by

u = gμBP

2eMS
j c, (1)

with g the g factor, μB the Bohr magneton, e the elementary
charge, MS the saturation magnetization, j c the charge current
density, and P the net spin polarization carried by the charge
current.

Recently, antiferromagnets (AFMs) are generating more
attention due to their potential to become a key player in
technological applications where AFMs play active roles [3].
If Eq. (1) is directly applied to AFMs, one would conclude
that there can be no STT in AFMs where P becomes zero or
vanishingly small; recent research has been confirming that
this is of course not the case. The study of STTs involving
AMF materials was started by investigation of current-driven
effects in spin valves or multilayer systems where each AFM
layer carries a single domain [4–10]. Theoretical studies
have unveiled an important role of the STT also in textured
AFMs as in textured FMs [10–15]; Xu et al. [10] examined
the current-driven dynamics of a domain wall (DW) in a
two-sublattice AFM metal by ab initio calculations. Swaving
and Duine [11] formulated a STT in a one-dimensional
bipartite AFM, based on the Landau-Lifshitz (LL) equations
for the sublattice magnetizations in the continuous limit. Hals
et al. [12] derived the possible forms of STTs that are allowed

by symmetry argument. The dynamics of AFM textures driven
by spin-polarized current has also been studied [6,13].

Thus far, however, it still remains an open question how
the STT efficiency, the counterpart of Eq. (1), can be defined
for general AFM magnetic textures [11,15]. Finding the STT
efficiency would guide us to how to control the STTs in AFMs
for designing more prominent STT effects.

In this paper, we develop a formalism of current-driven
dynamics of two-sublattice AFM textures, where the STT
efficiency is provided in terms of unambiguous material
parameters. A challenge in deriving the STT in the AFMs
comes from the fact that the electron spin dynamics is not
as obvious as in FMs at all, because in the AFM there
are two exchange fields corresponding to the two sublattice
magnetizations that the electron spin can respect. We formulate
the STT in two regimes where the analytical expressions
for the electron spin are available: when the intersublattice
electron dynamics is dominant over the electron-magnetization
exchange coupling and the opposite. We find that the STT
mechanism that governs its efficiency can differ greatly in
those two regimes. In the limit of large exchange coupling,
the STT can be generated due to spatial variation of the
antiferromagnetic order. In the opposite limit, on the other
hand, the STT requires a sufficiently large canting between the
sublattice magnetizations. These predictions can be quantified
by studying the response of AFM spin waves to the charge
current. In the limit of large exchange coupling, the charge
current inevitably causes the spin-wave Doppler shift, whereas,
in the opposite limit, it can modify the spin-wave spectrum
only when there exists a pronounced sublattice canting. Our
results demonstrate quantitatively that the STT effects in an
AFM highly depend on which class of AFM we consider.

II. FORMALISM

A. Model

We consider an itinerant AFM composed of two sublattices
(1 and 2) with equal saturation magnetization MS. In order
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to treat the magnetization classically, the coarse graining for
the magnetic channel is performed [16]. The classical vector
m1(r,t) (|m1(r,t)| = 1) is a continuous function in space that
represents the local magnetization direction in the sublattice 1,
with a similar definition for m2(r,t); here the lattice structure
is smeared out and the magnetizations of both sublattices
are defined at every point in space. This classical treatment
is allowed when the spatial variation of each magnetization
is sufficiently slow compared to the atomistic length scale.
The dynamics of the magnetizations are assumed to obey
the coupled LL equations with the Gilbert-type damping
term [17];

∂t mi = −γ mi × H i + αmi × ∂t mi + T i , (i = 1,2), (2)

where γ is the gyromagnetic ratio and α is the damping
constant, which are assumed for simplicity to be sublattice
independent. H i = −(1/μ0MS)δw/δmi are the effective mag-
netic fields with w being the magnetic energy density, and T i

are the STTs to be determined.
For the conduction electron channel we employ the follow-

ing four-band Hamiltonian density [18];

H =
(

t11( p) t12( p)

t21( p) t22( p)

)
+

(
Jσ · m1(r,t) 0

0 Jσ · m2(r,t)

)

= γ0Jσ · n + (t11 + Jσ · m) + γ5t12, (3)

a derivation of which starting from an atomistic tight-binding
model is discussed in Appendix A. The upper-left (bottom-
right) bands correspond to the sublattice 1 (2). In the first
equality of Eq. (3), the first matrix is the kinetic energy tensor
where the diagonal and off-diagonal components describe the
intra- and intersublattice electron dynamics, respectively, with
p being the momentum operator of the electron, whereas
the second matrix represents the exchange interaction with J

being the exchange coupling energy and σ the Pauli matrices
indicating the electron spin operator. In the second equality, we
set t11 = t22 and t12 = t21 reflecting the sublattice symmetry,
use the tensor product representation of the sublattice and spin
spaces with the Dirac matrices

γ0 = σz ⊗ I, γ5 = σx ⊗ I, (4)

and define the net moment and the Néel-order vector by

m = m1 + m2

2
, n = m1 − m2

2
. (5)

The AFM coupling between m1 and m2 is the leading energy
scale so that |m| � 1 and |n| � 1.

We regard J and 〈t12〉 as parameters, where 〈. . .〉 denotes
the expectation value at the Fermi surface. The expressions for
T i are to be derived in the two limiting cases; the parameter
regimes where 〈t12〉/J � 1 (the exchange-dominant regime
hereafter) and where 〈t12〉/J � 1 (the mixing-dominant
regime hereafter). The explicit forms of t11 and t12 can be
determined based on an atomistic tight-binding model, as
discussed in Appendix A.

B. Exchange-dominant regime

The condition 〈t12〉/J � 1 can be met in AFMs where
the intersublattice electron dynamics is relatively unfavorable,
e.g., layered AFMs with the c axis being longer than the other
axes [Fig. 2(b) in Appendix A]. Here we perform a unitary
transformation on H by [18]

HJ ≡ eSJ (H + i�∂t )e
−SJ , (6)

with

SJ = t12σ · n
2J

γ0γ5. (7)

This procedure allows a systematic expansion of the Hamilto-
nian in powers of J−1 (see Appendix B for details). Because
the kinetic energy operators, t11 and t12, in general do not
commute with m and n, there appear in Eq. (6) terms that
contain their commutators. These terms and the last term in
Eq. (6) can be ignored when the spatiotemporal variations of
the magnetizations are sufficiently slow (see Appendix B for
quantitatively more accurate discussion). With this condition
the expression for HJ can be reduced to

HJ =
(

t11 + Jσ · m1 0

0 t11 + Jσ · m2

)
+ O(J−2). (8)

Equation (8) proves that the intersublattice band mixing can
be neglected up to the order of J−1 in the certain condition.
In this rotated frame, the conduction electrons only couple to
either m1 or m2, whereas it is important to note that these
sublattice moments are mutually coupled. Therefore, the spin
gauge fields for the itinerant electrons that reside in the ith
sublattice are determined by mi and the STTs T i in Eq. (2)
are derived as

T i = (uJ · ∇)mi − βJ mi × (uJ · ∇)mi , (9)

where βJ is a dimensionless parameter [19] and the STT
efficiency uJ is given by

uJ = gμBPsub

2eMS
j c, (10)

with Psub representing the spin polarization of each sublattice,
where the majority and minority bands are split by ∼2J . We
remark here that Eqs. (8) and (9) cannot be obtained just
by assuming the condition 〈t12〉/J � 1; if the magnetizations
change their directions in time and space fast enough, it can
cause considerable intersublattice band mixing even in the
exchange-dominant regime (see Appendix B). But still, one
should point out that this formal result does justify ignoring
the interband hopping and translating things as the STT in each
sublattice to be fairly independent.

C. Mixing-dominant regime

The intersublattice electron dynamics may be predom-
inant as 〈t12〉/J � 1 in, e.g., bipartite AFMs where the
nearest-neighbor atomic sites connect the different sublattices
[Fig. 2(a) in Appendix A]. We show here that the expressions
for STTs in this parameter regime quite differ from Eq. (9).
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Let us first perform the following unitary transformation on
the sublattice space of Eq. (3):

Ht ≡ UHU = γ0t12 + (t11 + Jσ · m) + γ5Jσ · n, (11)

with

U = (σx ⊗ I + σz ⊗ I )/
√

2. (12)

In the new framework t12 comes in the diagonal components,
while Jσ · n is in the off-diagonal components. The upper-
left (bottom-right) part of Ht corresponds to the antibonding
(bonding) electron states formed by the two sublattice states.

Then we perform another unitary transformation to expand
Ht in powers of the operator t−1

12 ;

H′
t ≡ eSt (Ht + i�∂t )e

−St , (13)

with

St = t−1
12 J (σ · n)

2
γ0γ5. (14)

Assuming the sufficiently slow and smooth variation in the
directions of magnetizations, we can express H′

t as (see
Appendix C for quantitatively more accurate discussion)

H′
t = γ0t12 + (t11 + Jσ · m) + O

(
t−2
12

)
. (15)

Here we have succeeded in block diagonalizing Ht up to
the order of t−1

12 . In the mixing-dominant regime with the
Hamiltonian (15), the conduction electron spins only see
the net moment m regardless of the sublattice degree of
freedom. In AFMs, m can emerge due to several origins
such as external magnetic fields, the Dzyaloshinsky-Moriya
interaction (DMI), and the spatiotemporal variations in the
magnetizations [20,21].

The magnitude of the net moment |m| (� 1) generally
varies in both time and space. This fact makes it difficult
to obtain analytical expressions for the STTs for general
cases. In the perfect compensation, i.e., when |m| → 0, the
electron-magnetization interaction in Eq. (15) vanishes and
no STTs arise. When |m| becomes as large as J |m|/� �
|∂t (m/|m|)| and J |m|/� � |vF · ∇(m/|m|)| over the relevant
sample region, it can induce the net spin polarization where
the majority (minority) electron spins adiabatically follow the
direction of −m (+m). In this latter case, T i in Eq. (2) are
given by (see Appendix D for a derivation)

T i = −mi × [m̂ × (ut · ∇)m̂ + βt (ut · ∇)m̂], (16)

where m̂ = m/|m|,βt is a phenomenological parameter, and
the STT efficiency ut is defined by

ut = gμBPm

2eMS|m| j c. (17)

Here, Pm is the net spin polarization of the conduction electrons
with respect to m. Because the magnitude of the effective
exchange coupling in Eq. (15) is given by J |m|, a crude
estimation suggests the smallness of Pm as Pm ∼ Psub|m|,
which may be compensated in Eq. (17) by the factor |m|−1.
Notice that Eq. (16) clearly differs from Eq. (9); both m1 and
m2 enter the STTs T i in Eq. (16), in the contrast that each of
mi appears in Eq. (9).

III. SPIN-WAVE DOPPLER SHIFT

Here let us study the effects of the STTs on the spin-wave
dispersions of the two systems shown in Fig. 1: an easy-axis
(EA) AFM with external dc magnetic field applied along the
easy axis, and an easy-plane (EP) AFM with external dc field
applied in the easy plane. We take the magnetic energy density
as [22]

w = A0m1 · m2

+A1

∑
μ=x,y,z

[(∂μm1)2 + (∂μm2)2 − 2∂μm1 · ∂μm2]

−K
(
m2

1z + m2
2z

) + μ0 H · (m1 + m2), (18)

where A0 and A1 characterize the homogeneous and inho-
mogeneous exchange couplings, K is the uniaxial anisotropy
constant along the z axis, and H is the external magnetic field.

In the case of EA-AFM (K > 0), both m1 and m2 lie in the
z direction at equilibrium [Fig. 1(a)] when the external dc field
Hdc ‖ ẑ is in the range of 0 < ωH <

√
(2ωE + ωK )ωK [17],

where

ωH ≡ γ |Hdc|, ωE ≡ γA0

μ0MS
, ωK ≡ 2γK

μ0MS
. (19)

FIG. 1. (a) Schematic of the easy-axis (EA) AMF. (b) The
spin-wave dispersions of the EA-AFM in the absence (ωEA

q,±) and
presence (ωEA

quJ ,±) of charge current. The horizontal axis indicates the
parallel component of q with respect to the charge current. These
modes are affected by the charge current only in the exchange-
dominant regime. The inset magnifies the area indicated by the
dotted box, clearly showing the shift of the spectrum around the
q = 0 point. (c) Schematic of the easy-plane (EP) AMF. (d) The
spin wave dispersions of the EP-AFM in the absence (ωEP

q,1 and ωEP
q,2)

and presence (ωEP
quJ ,1,ω

EP
quJ ,2, and ωEP

qut ,1) of charge current. In the
mixing-dominant regime, only the ωEP

q,1 mode couples to the charge
current. In (a) and (c), the arrows me

1 and me
2 indicate the equilibrium

configurations of m1 and m2.

054409-3



YUTA YAMANE, JUN’ICHI IEDA, AND JAIRO SINOVA PHYSICAL REVIEW B 94, 054409 (2016)

In the absence of charge current, the low-energy spin-wave
dispersions of this EA-AFM are given by

ωEA
q,± =

√
(	q2 + ωK )(2ωE + ωK ) ± ωH , (20)

where

	 ≡ 4γA1

μ0MS
. (21)

For the EP-AFM (K < 0), the parallel component of the
magnetizations with respect to the dc field is determined
by [17] [Fig. 1(c)]

sin ϕp = ωH

2ωE

. (22)

The low-energy spin-wave dispersions are

ωEP
q,1 =

√
ω2

H {1 + (|ωK |/2ωE)} + 	q2(2ωE + |ωK |) cos2 ϕp, (23)

ωEP
q,2 =

√
2ωE |ωK | cos2 ϕp + (	q2 sin ϕp)2 + 	q2(2ωE cos2 ϕp + |ωK | sin2 ϕp). (24)

Let us examine the STT effects on the above eigenfre-
quencies. In the exchange-dominant regime, Eq. (9) indicates
that, in the small dissipation limit with α → 0 and βJ → 0,
applying the charge current is to replace the partial derivative
∂t in Eq. (2) by the Lagrange derivative;

Dt ≡ ∂t − uJ · ∇, (25)

implying the Galilean invariance of the system with respect to
the electron flow. In systems where the Galilean invariance is
respected, the spin-wave spectrum exhibits the current-induced
Doppler shift [11,23]; the spin-wave dispersions change as

ωEA
quJ ,± ≡ ωEA

q,± + uJ · q,

ωEP
quJ ,1(2) ≡ ωEP

q,1(2) + uJ · q,
(〈t12〉/J � 1). (26)

In the mixing-dominant regime, the analytic form for the
STTs in Eq. (16) requires the net moment m to be large
enough to satisfy the condition discussed in the previous
section. For the ωEA

q,± modes of the EA-AFM, m is mostly
vanishingly small, and thus tangible STT effects cannot be
expected. For the EP-AFM, on the other hand, there exists
the canting moment m that can satisfy the above-mentioned
condition when the dc field is sufficiently large. It is shown
from Eqs. (2) and (16) that the spin-wave Doppler shift takes
place in the ωEP

q,1 mode but not in the ωEP
q,2 mode;

ωEP
qut ,1 ≡ ωEP

q,1 + ut · q,

ωEP
qut ,2 ≡ ωEP

q,2,
(〈t12〉/J � 1). (27)

This distinct feature arises because in the mixing-dominant
regime the charge current couples only to m; the excitation in
the ωEP

q,2 mode is the precession of (nx,nz), whereas it is the
precession of (mx,mz) in the ωEP

q,1 mode.
In Figs. 1(b) and 1(d) the spin-wave dispersions of the

EA- and EP-AFMs with and without charge current are
compared. For the material parameters, values in the typical
range for AFMs are employed [17]: A0 = 2 × 107 J/m3,A1 =
3 × 10−12 J/m, K = 2 × 104 J/m3,MS = 8 × 105 A/m, and
γ = 2.215 × 105 s−1/(A/m). The magnitude of the dc field
is set to |Hdc| = 2 × 105 A/m and 2.4 × 106 A/m for the
EA- and EP-AFMs, respectively. For the ratio of the STT
efficiencies, |uJ |/|ut | = 1 is assumed for simplicity, with
|uJ | = |ut | = 300 m/s.

These results demonstrate the important role played by the
intersublattice electron dynamics; the reaction of an AFM to

the charge current qualitatively differs depending on the ratio
〈t12〉/J . The spin-wave Doppler shift offers a way to quantify
the STT in the stationary condition in both time and space [23].

IV. DISCUSSIONS AND CONCLUSIONS

Let us compare our results with existing literature. For this
purpose, we rewrite Eq. (2) in terms of (m,n). In the exchange-
dominant regime, this leads to the closed equation of motion
for n;

n × [(
D2

t − 	ωE∇2
)
n + γ 2(n · H0)H0 + γ n × Dt H0

− 2γ (n · H0)n × Dt n − 2ωEωKnz ẑ

+ 2ωE(α∂t − βJ uJ · ∇)n
] = 0, (28)

while m is determined as a slave function of n;

m = − 1

2ωE

n × (Dt n + γ n × H0), (29)

where the condition |m| � 1 has been used. The charge current
enters Eqs. (28) and (29) through the Lagrange derivative Dt

(except for the dissipation part), consistent with the previous
discussion regarding the Galilean invariance. In the absence of
charge current, Eqs. (28) and (29) reproduce the well-known
equations of motion for n and m under magnetic fields [20].
In the mixing-dominant regime, the (m,n) representation of
Eq. (2) is generally not as compact as Eqs. (28) and (29). When
we limit ourselves to the special case where m and n are always
in a single plane, however, the Galilean invariance is restored
in the strict manner, and Eqs. (28) and (29) hold with uJ and
βJ replaced by ut and βt , respectively. This condition can be
met when, e.g., a DW is formed in a nanowire that possesses
a homogeneous DMI with its DMI vector pointing out-of-
plane [24]. The DW motion predicted by Eq. (28) is consistent
with the results in literature (see Appendix E) [11,12,14].

Equation (28) contains the STT terms predicted in Ref. [12]
by symmetry argument, whereas the phenomenologically
introduced coefficients are now explicitly given by the STT
efficiency uJ . Since the newly-added terms in Eq. (28) are
higher order in terms of the field and derivatives, they were
discarded in the previous work. Equation (28) not only makes
clear that there is the Galilean-invariant nature in the AFMs,
but also predicts the cross terms of magnetic field and charge
current, which we will investigate elsewhere.
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The main focus of Ref. [11] is on the one-dimensional
bipartite AFM where 〈t12〉/J � 1. They conjectured
the nonequilibrium electron spin density proportional to
n × (v · ∇)n with v being a parameter in the unit of velocity.
We found that, however, the electron spins predominantly
couple to m in this parameter regime. This fact leads to the
difference in the results obtained by the two approaches. While
our STT in the mixing-dominant regime is of the first order of
Pm ∝ J , their STT in Ref. [11] is of higher order as ∝ J 3.

In conclusion, we have derived the STT efficiency in the
two-sublattice AFMs when the intersublattice kinetic energy of
the conduction electrons is dominant/negligible compared to
the exchange coupling energy. In reality, many AFM materials
should be somewhere in between the two extremes, where
numerical approaches will become more powerful. Our theory
demonstrates quantitatively that the STTs in AFMs can, in con-
trast to in FMs, highly depend on the nature of kinetic energy
of the electrons. These predictions may be tested by studying
the spin-wave Doppler shift in the presence of charge current.
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APPENDIX A: DERIVATION OF EQ. (3) FROM
A TIGHT-BINDING MODEL

Here let us start from an atomistic model for the AFM metal.
The presence of two sublattices leads to unit cells that contain
two sites: the j th unit cell consists of the j1 site that belongs to
the first sublattice and the j2 site from the second sublattice, on
which the magnetizations mj1 and mj2 are located, respectively
[Figs. 2(a) and 2(b)]. The tight-binding Hamiltonian for the
conduction electron is given by

H = t

′∑
〈jj ′〉σ

(c†j1σ
cj ′

1σ
+ c

†
j2σ

cj ′
2σ

)

+ t ′
∑
〈jj ′〉σ

(c†j1σ
cj ′

2σ
+ c.c.)

+ J
∑
jσσ ′

(c†j1σ
σ σσ ′cj1σ ′ · mj1 + c

†
j2σ

σ σσ ′cj2σ ′ · mj2 ).

(A1)

Here, cj1σ (c†j1σ
) is the annihilation (creation) operator of an

electron with spin σ =↑↓ at the j1 site and similarly for
cj2σ (c†j2σ

). The first and second terms are the kinetic energies,
where t (t ′) represents the nearest-neighbor hopping parameter
between intra(inter)sublattice sites [Figs. 2(a) and 2(b)]. The
sum

∑′ in the first terms only takes into account the nearest-

FIG. 2. (a) and (b) Schematics of the AFMs with bipartite and lay-
ered sublattice structures, respectively. The dotted boxes indicate the
j th unit cells, where the sublattice 1 (2) contributes the magnetization
mj1 (mj2 ). t and t ′ represent the nearest-neighbor hopping parameters
between intra- and intersublattice sites, respectively. (c) Schematic
of the coarse-grained model in Eq. (3), where both of the sublattice
magnetizations m1 and m2 are continuous and defined at every point
in space. The atomistic lattice structures and the electron hopping
natures are reflected in the kinetic energy tensor of the electron.

neighbor intrasublattice pairs, i.e., j �= j ′, whereas the second
terms include pairs within unit cells, i.e., j = j ′. The third
terms describe the on-site exchange coupling.

Introducing the four-component field operator �j =
(cj1↑,cj1↓,cj2↑,cj2↓)T and its Fourier transformation by � p =
(c1 p↑,c1 p↓,c2 p↑,c2 p↓)T ≡ V −1/2 ∑

j �je
−i p·rj /�, with V be-

ing the sample volume and rj indicating the position vector of
the j th unit cell, Eq. (A1) can be rewritten into 4 × 4 fashion
as

H =
∑

p

�†
p

(
t p t ′p
t ′p t p

)
� p + J

∑
j

�
†
j

(
σ · mj1 0

0 σ · mj2

)
�j .

(A2)

Here, t p ≡ t
∑

δ ei p·δ/� and t ′p ≡ t ′
∑

δ′ ei p·δ′/�, where δ and
δ′ denote, respectively, the vectors connecting the intra- and
intersublattice nearest-neighbor sites. The explicit forms of t p

and t ′p are given, e.g., in the bipartite AFM by

t p = −4ta2 p2/�
2, t ′p = −t ′a2 p2/�

2, (A3)

and in the layered AMF by

t p = −tb2
(
p2

x + p2
y

)/
�

2, t ′p = −t ′c2p2
z

/
�

2. (A4)

Here a is the lattice constant in the bipartite AFM, and b and c

are, respectively, the lattice constants within and between the
FM-ordered layers in the layered AFM. The p-independent
terms have been neglected in Eqs. (A3) and (A4).

By taking the continuous limit in the real space for the
second term of Eq. (A2) and moving to the first-quantized
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representation, we arrive at Eq. (3) where t11( p) and t12( p)
are identified with t p and t ′p, respectively, with p read as the
quantum operator.

APPENDIX B: DERIVATION OF EQ. (8)

To expand H in Eq. (3) in powers of J−1, we perform the
unitary transformation in Eq. (6) or

HJ ≡ eSJ (H + i�∂t )e
−SJ = H + [SJ ,H] + [SJ ,[SJ ,H]]

2
+ · · · + i�∂tSJ + · · · , (B1)

with SJ given in Eq. (7). The terms in Eq. (B1) are computed up to the first order of J−1 as

[SJ ,H] = −γ5

(
t12 + [t12,σ · n]σ · n

2

)
+ γ0

J

(
t2
12σ · n − t12[t12,σ · n]

2

)

+ γ0γ5

(
− t12[t11,σ · n]

2J
+ [t12,σ · m]σ · n + 2it12σ · (n × m)

2

)
, (B2)

[SJ ,[SJ ,H]]

2
= − γ0

2J

(
t2
12σ · n − t12[t12,σ · n]

2
+ {t12σ · n,[t12,σ · n]σ · n}

4

)
− 1

2J

(
t2
12σ · m + [t12σ · n,[t12,σ · m]σ · n]

4

+ it12
[t12,σ · (n × m)]σ · n − [t12,σ · n]σ · (n × m)

2

)
+ O(J−2). (B3)

The expression for HJ is thus given by

HJ = γ0(Jnσ · n + F1) + 1(t11 + Jmσ · m + F2) + γ5F3 + γ0γ5F4 + O(J−2), (B4)
with

Jn ≡ J

(
1 + t2

12

2J 2

)
, Jm ≡ J

(
1 − t2

12

2J 2

)
, (B5)

F1 = − 1

4J

(
t12[t12,σ · n] + {t12σ · n,[t12,σ · n]σ · n}

2

)
, (B6)

F2 = − 1

4J

(
[t12σ · n,[t12,σ · m]σ · n]

2
+ it12{[t12,σ · (n × m)]σ · n − [t12,σ · n]σ · (n × m)}

)
, (B7)

F3 = [t12,σ · n]σ · n
2

, (B8)

F4 = t12

2J
(−[t11,σ · n] + iσ · �∂t n) + [t12,σ · m]σ · n + 2it12σ · (n × m)

2
. (B9)

Fs in Eq. (B4) can be neglected up to the first order of J−1 when the spatiotemporal variations of the magnetizations are as slow
as 〈[t12,σ · n]〉 � 〈t12〉2/J,〈[t12,σ · m]〉 � 〈t12〉2/J,〈[t11,σ · n]〉 � 〈t12〉, and �|∂t n| � 〈t12〉. Approximating both Jn and Jm by
J , we arrive at Eq. (8).

The commutators of the kinetic energy terms, t11 and t12, and n and/or m give rise to a spatial derivative of n and/or m,
because the kinetic energies are functions of p = −i�∇. The expressions of the commutators are accessible by assuming the
forms of t11 = p2/2m11 and t12 = p2/2m12, where the effective masses m11 and m12 can be deduced from, e.g., Eqs. (A4) in the
case of the layered AFM. Setting 〈t12〉/J = 0.1 and J = 1 eV, and employing the typical value for the Fermi wave number kF

of the conduction electrons in metals as kF ∼ 1010 m−1, the above mentioned conditions are well met with the spatiotemporal
variations of the magnetizations considered in the present paper.

APPENDIX C: DERIVATION OF EQ. (15)

Expand Ht in powers of the operator t−1
12 by the unitary transformation in Eq. (13) or

Ht ′ ≡ eSt (Ht + i�∂t )e
−St = Ht + [St ,Ht ] + [St ,[St ,Ht ]]

2
+ · · · + i�∂tSt + · · · , (C1)

with St given in Eq. (14). Each term in Eq. (C1) is computed up to the first order of t−1
12 as

[St ,Ht ] = −γ5J

(
σ · n +

[
t−1
12 ,σ · n

]
t12

2

)
+ γ0J

2

(
t−1
12 −

[
t−1
12 ,σ · n

]
σ · n

2

)

− γ0γ5
J

2

{
t−1
12 [t11,σ · n] − J

[
t−1
12 ,σ · m

]
σ · n − 2it−1

12 Jσ · (n × m)
}
, (C2)

[St ,[St ,Ht ]]

2
= −γ0

J 2

2

(
t−1
12 + σ · n

[
t−1
12 ,σ · n

]
2

+
{
t−1
12 σ · n,

[
t−1
12 ,σ · n

]
t12

}
4

)
+ O

(
t−2
12

)
. (C3)
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The expression for Ht ′ is thus given by

Ht ′ = γ0(t ′12 + Y1) + 1(t11 + Jσ · m) − γ5Y2 + γ0γ5Y3, (C4)

where

t ′12 ≡ t12

(
1 + t−2

12 J 2

2

)
, (C5)

Y1 = −J 2

4

([
t−1
12 ,σ · n

]
σ · n +

{
t−1
12 σ · n,

[
t−1
12 ,σ · n

]
t12

}
2

)
, (C6)

Y2 = −J
[
t−1
12 ,σ · n

]
t12

2
, (C7)

Y3 = t−1
12 J

(−[t11,σ · n] + σ · i�∂t n
2

+ iJσ · (n × m)

)
+ J 2

[
t−1
12 ,σ · m

]
σ · n

2
. (C8)

Ys in Eq. (C4) can be neglected up to the first order of t−1
12 when the spatiotemporal variations of the magnetizations are sufficiently

slow that 〈[t−1
12 ,σ · n]t12〉 � t−2

12 J 2,〈[t11,σ · n]〉 � t−1
12 J 2, and �|∂t n| � t−1

12 J 2. It can be shown by the similar discussion as in
Appendix B and setting 〈t12〉/J = 10 and J = 0.1 eV that these conditions are well satisfied in the systems considered in the
present paper. Approximating t ′12 by t12, we arrive at Eq. (15).

APPENDIX D: DERIVATION OF EQ. (16)

Under the adiabatic approximation where the majority
(minority) electron spin adiabatically follows the direction
of −m (+m), the (normalized) expectation value s± of the
conduction electron spin can be represented by

s± � ∓m̂ + δs±, (D1)

where the upper (lower) sign corresponds to the majority
(minority) electron, and δs±(|δs±| � 1) is the slight deviation
from ∓m̂. Assume that the electron spin obeys the following
continuity equation:

(v± · ∇)s± = −|m|
τex

s± × m̂ − 1

τsf
δs±, (D2)

where v± denotes the average electron velocity, τex = �/2J ,
and τsf is the relaxation time for the electron-spin flip.

By substituting Eq. (D1) into (D2), the expression for δs±
is obtained as

δs± = ± τex

|m| [m̂ × (v± · ∇)m̂ + βt (v± · ∇)m̂], (D3)

where βt = τex/τsf . The torques T i that the electron spins exert
on mi are given by

T i = −γ mi ×
[
− 1

μ0MS
J (n+s+ + n−s−)

]

= −gμB(n+ − n−)

2τexMS|m| mi × mj �=i − mi

× [m̂ × (ut · ∇)m̂ + βt (ut · ∇)m̂], (D4)

where n+(−) is the majority (minority) electron density, and the
STT efficiency ut is given in Eq. (17). In the second equality
of Eq. (D4), γ = gμBμ0/� and j c = −e(n+v+ + n−v−) have
been used. Here, the spin polarization Pm of the conduction
electrons with respect to m is defined by Pm j c = −e(n+v+ −
n−v−). The first term in the second equality of Eq. (D4)
contributes the modulation to the AFM coupling between m1

and m2; we absorb this first term into the definition of the AFM
exchange coupling. The second terms in the second equality

of Eq. (D4), which are Eq. (16), are the STTs T i that act on
textured AFMs.

APPENDIX E: DOMAIN WALL MOTION

Consider a one-dimensional AFM nanowire stretching in
the z axis with easy-axis anisotropy (K > 0) along it. An
equilibrium AFM texture is determined by n and m at which
the magnetic energy density w, which is given in Eq. (18), takes
an extremal value. In the absence of external field, a static DW
solution satisfying the boundary condition nz(±∞) = ∓1 is

θ (z) = 2 tan−1[e(z−q)/�], (E1)

ϕ(z) = 0, (E2)

where the polar angles are defined by n = (sin θ cos ϕ,

sin θ sin ϕ, cos θ ),q represents the DW center position, and
� = √

2A1/K .
Apply a dc charge current in the z direction and examine

the current-driven dynamics of the DW by using Eq. (28)
for the exchange-dominant regime. To obtain an analytical
solution for the DW dynamics, we make the steady-motion ap-
proximation, where the DW maintains the equilibrium profile
with q being time dependent; the DW exhibits a translational
motion described by time evolution of the collective coordinate
q. By rewriting Eq. (28) into the equation of motion for q

by preforming the volume integral of the equation [14], one
obtains

dq

dt

∣∣∣∣
t→∞

= −βJ

α
uJ . (E3)

As the dynamics of AFM textures in general has an iner-
tia [20,24], the above equation provides with the terminal
velocity of the DW. The dissipative process described by βJ is
required to drive the DW by the charge current.

The same argument applies to the mixing-dominant regime
with βJ and uJ replaced by βt and ut , respectively, when there
exists a sufficiently large m over the relevant sample region and
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n and m lie in a single plane, as pointed out in Sec. IV. When,
in the mixing-dominant regime, the magnitude and direction
of m have some significant dependence on time and space that

does not meet the above-mentioned conditions, it can make it
difficult to obtain analytical expressions for the STT effects,
which is beyond the scope of the present paper.
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