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The Rapid Cycling Synchrotron (RCS), whose beam energy ranges from 400 MeV to 3 GeV
and which is located in the Japan Proton Accelerator Research Complex, is a kicker-impedance-
dominated machine, which violates the impedance budget from a classical viewpoint. Contrary
to conventional understanding, we have succeeded in accelerating a 1 MW equivalent beam.
The machine has some interesting features: e.g., the beam tends to be unstable for the smaller
transverse beam size and the beam is stabilized by increasing the peak current. Space charge
effects play an important role in the beam instability at the RCS. In this study, a new theory
has been developed to calculate the beam growth rate with the head-tail and coupled-bunch
modes (m,μ) while taking space charge effects into account. The theory sufficiently explains
the distinctive features of the beam instabilities at the RCS.
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1. Introduction

The 3 GeV Rapid Cycling Synchrotron (RCS) at the Japan Proton Accelerator Research Complex [1]
aims to achieve a megawatt-class beam. Two bunched beams (4.15 × 1013 particles per bunch) are
accelerated from 400 MeV to 3 GeV with a repetition rate of 25 Hz. To avoid the effects of eddy
currents on metal chambers [2,3], ceramic chambers are adopted instead [4,5]. Accordingly, the
resistive wall impedance [5–10] is negligible in the RCS [11–13].

However, there has been some concern that the kicker impedance limits the beam intensity of
the RCS [14] by exciting beam instabilities [6]. Precise offline and online measurements of the
impedance show that the kicker at the RCS has a huge impedance [15]. The offline measurement
is conducted using the standard wire method [7], while the online one is conducted by observing
the beam induced-voltage at the end of the power cable [15]. The results of these two independent
measurements agree with each other. Finally, we demonstrate that the RCS is a kicker-impedance-
dominated machine; we show this by suppressing the beam growth rate in accordance with the
reduction of the kicker impedance [12,13].

© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
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In general, when we design accelerators, a lower impedance source along the rings is preferable
for achieving a high intensity beam. Concretely, ceramic chambers are adopted, the chambers are
connected as smoothly as possible over the rings [16], and significant efforts are made to lower the
kicker impedances [12,17].

The conventional Sacherer formula [18,19] estimates the beam growth rate by using the impedances
as an input parameter. However, such estimation differs significantly from the measured results at
the RCS. We suspected the main reason for this is that the formula neglects space charge effects.
Because the RCS covers the intermediate energy region (from 400 MeV to 3 GeV), space charge
should have an effect on the beam instability.

Other theories exist to assess beam instability that includes space charge effects [20–22]. However,
those theories assume simple forms of impedance, e.g., resistive wall impedance, resonator type
impedance with a single resonance frequency, and constant wakes. Moreover, the theories do not
include coupled-bunch-type instabilities.1

In this paper, we develop a new theory that includes coupled-bunch and head-tail instabilities with
space charge effects based on the Vlasov equation [6,23]. Using this theory, we try to understand the
parameter dependence (the transverse emittance dependence, the beam peak current dependence,
the tune dependence, etc.) of the beam instability observed at the RCS.

In Sect. 2, we start with the Hamiltonian and construct the Vlasov equation [6]. In Sect. 2.1, we
derive a dispersion relation with the head-tail and coupled-bunch modes (m,μ) that includes space
charge effects. In Sect. 2.2, we reproduce the previous Sacherer formula by neglecting the space
charge effects.

In Sect. 3, typical parameters at the RCS are shown, and we show that the observed beam instability
cannot be explained at all using the classical theory, i.e., Sacherer’s theory [18,19], where space charge
effects are neglected.

In Sect. 4, the beam instability observed at the RCS is analyzed using our new theory. In Sect. 4.1,
the space charge effects on the beam instability are investigated by comparing the measurements
with the theoretical results. In Sect. 4.2, tune manipulations are discussed from both the theoretical
and the experimental viewpoints. The paper is summarized in Sect. 5.

In Appendix A, the scalar potential describing the space charge effect is calculated by solving
the Poisson equation with the boundary condition of being surrounded by a perfectly conductive
cylindrical chamber. In Appendix B, we explain canonical transformations to derive the Hamil-
tonian describing nonlinear betatron oscillation by using action-angle variables from the original
Hamiltonian given by Eq. (1) in the next section.

2. Linearized Vlasov approach

The linearized Vlasov approach is a standard theoretical method to analyze beam instabilities [6].
In Sect. 2.1, the linearized Vlasov equation converts to a dispersion relation as a powerful tool to
discuss the space charge effect on the beam instability. In Sect. 2.2, the classical Sacherer formula
is reproduced, based on the linearized Vlasov equation.

1 After this paper had been submitted on 22 June 2016, the authors attended the 57th ICFA Advanced Beam
Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB2016: https://hb2016.esss.se/)
and found that A. Burov had submitted a document entitled “Coupled-beam and coupled-bunch instabilities”
to http://arxiv.org/pdf/1606.07430v1.pdf on 27 June 2016. He discusses the space charge effect on coupled-
bunch-type instabilities by another approach.
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2.1. Dispersion relation with the head-tail and coupled-bunch modes that include space
charge effects

Here, we present the dispersion relation, by which we calculated the beam growth rate; this method
takes into account the coupled mode μ, head-tail mode m, and space charge effects.

The original Hamiltonian is given by [24,25]

Ho = −ps

(
1 + x

ρ

)
�E

psβsc
+ ps

2γ 2
s

(
�E

psβsc

)2

+ p2
x + p2

y

2ps
+ ps

2
Kx(s)

(
1 − �E

Es

)
x2

+ ps

2
Ky(s)

(
1 − �E

Es

)
y2 − psx

Es
Fx + e�c(x, y, s − cβst)

βsγ 2
s c

− eVrf

ωRF
δp(s) cos

(
ωRFt − hs

R
+ ϕs

)
+ . . . , (1)

where ϕs is the synchronous phase; ps is the constant longitudinal momentum of the synchronous
particle; Es = cps/βs is the particle energy on the designed orbit; βs and γs are the Lorentz-β and the
Lorentz-γ of the designed particle, respectively; �E is given by �E = E − Es; Fx is the transverse
wake force; δp(s) is the periodic δ-function; c is the velocity of light; Kx and Ky are the periodic
focusing forces in the horizontal and the vertical directions, respectively; �c is the space charge
potential felt by the bunch center [26]; h is harmonic number; Vrf is the amplitude of the radio
frequency (RF) voltage; 1/ρ is the local curvature around the machine; R is the average radius of
the machine; and ωRF is the angular frequency of the RF voltage, which is expressed as

ωRF = cβsh

R
. (2)

The orbit length s is used as an independent variable. The canonical variables are (x, px), (y, py), and
(t, −E) for the horizontal, vertical, and longitudinal directions, respectively. The scalar potential�c

is obtained by solving the Poisson equation with the boundary condition that the beam is surrounded
by a cylindrical, perfectly conductive chamber with radius a. The solution is expressed inAppendixA.

Successive canonical transformations convert Eq. (1) to the Hamiltonian with action-angle vari-
ables, to describe the nonlinear betatron motions. The derivation is explained in detail in Appendix B.
From now on, we consider only the horizontal and the longitudinal motions of the beam, for simplicity.
Finally, the Hamiltonian is given by

H � QxJx + νs0JL + Ux + Y ′, (3)

with the horizontal (Jx,ψx) and the longitudinal action-angle variables (JL,φL), and its independent
variable θ = s/R, where Qx and νs0 are the horizontal and the synchrotron tunes, and

Ux = −2βsR

c

((
βx(s)Jx

2ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
− D(s)

βs

(
ω0νs0JL

2Es|η|
)1/2

cosφL

)
Fx, (4)

φx(s) =
∫ s ds

βx(s)
, (5)

Y ′ = Y ′
coh,0(JL)+ Y ′

coh,2(JL)
βx(s)Jx

ps
+ Y ′

coh,4(JL)
3β2

x (s)J
2
x

2
, (6)
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Y ′
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+
eRZ0eNb exp

(
− c2JL|η|

2Esh2νs0σ 2
z ω0

)
8π2σ 4

x βsγ 2
s p2

s

(π
2

)1/2

×

⎧⎪⎨
⎪⎩
(8σ 2

x − exp
(
− a2

2σ 2
x

)
( a4

σ 2
x

+ 4a2 + 8σ 2
x ))I0(

c2JL|η|
2Esh2νs0σ 2

z ω0
)

4a2σz

+ σ 2
x

[
2σ 2

x − (a2 + 2σ 2
x ) exp

(
− a2

2σ 2
x

)]⎡⎣( 1

4σ 2
x

+ 1

a2

) I0(
c2JL|η|

2Esh2νs0σ 2
z ω0
)

σ 2
x σz

−
(σ 2

z − c2JL|η|
Esh2νs0ω0

)I0(
c2JL|η|

2Esh2νs0σ 2
z ω0
)+

c2JL|η|I1(
c2JL|η|

2Esh2νs0σ
2
z ω0

)

Esh2νs0ω0

4a2γ 2
s σ

5
z

⎤
⎥⎥⎥⎦+ σ 2

x

[
1 − exp

(
− a2

2σ 2
x

)]

×

⎡
⎢⎢⎢⎣−

I0(
c2JL|η|

2Esh2νs0σ 2
z ω0
)

σ 2
x σz

+
(σ 2

z − c2JL|η|
Esh2νs0ω0

)I0(
c2JL|η|

2Esh2νs0σ 2
z ω0
)+

c2JL|η|I1(
c2JL|η|

2Esh2νs0σ
2
z ω0

)

Esh2νs0ω0

4γ 2
s σ

5
z

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
eRZ0eNb exp

(
− c2JL|η|

2Esh2νs0σ 2
z ω0

)
32π2σ 4

x βsγ 2
s σzp2

s

(π
2

)1/2

⎛
⎝1 −

8σ 4
x − exp

(
− a2

2σ 2
x

)
(4a2σ 2

x + 8σ 4
x )

a4

⎞
⎠

× I0

(
c2JL|η|

2Esh2νs0σ 2
z ω0

)
+ eRZ0eNb

βsγ 2
s π

2σ 2
x p2

s

(π
2

)1/2
exp

(
− c2JL|η|

2h2ω0Esνs0σ 2
z

)

×
⎡
⎢⎣(− 1

128γ 2
s σ

3
z

+ 1

64σ 2
x σz

+ c2JL|η|
128γ 2

s σ
5
z h2ω0Esνs0

)
I0(

c2JL|η|
2h2ω0Esνs0σ 2

z
)

−
c2JL|η|I1(

c2JL|η|
2h2ω0Esνs0σ 2

z
)

128γ 2
s σ

5
z h2ω0Esνs0

⎤
⎦; (9)

η is slippage factor; Z0 = 120π � is the impedance of free space; ω0 is the angular revolution
frequency; βx(s) is the Twiss parameter; D(s) is the dispersion function; In(x) is the modified Bessel
function; Ei[z] is the exponential integral function [27]; γ̃ is Euler-γ ; and σx and σz are the root
mean square (rms) horizontal and longitudinal beam sizes, respectively. The potential functions Ux

and Y ′ originate from the horizontal wake and the space charge forces, respectively.
Here, let us consider the situation that M buckets are filled with M bunches in a ring. We denote

by �n(θ , Jx,ψx, JL,φL) the phase space distribution function of the nth bunch among M bunches.
The Vlasov equation is expressed as

∂�n

∂θ
+ J ′

x
∂�n

∂Jx
+ ψ ′

x
∂�n

∂ψx
∂ψy + J ′

L
∂�n

∂JL
+ φ′

L
∂�n

∂φL
= 0, (10)

where the prime denotes differentiation with respect to the variable θ .
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The distribution function �n is decoupled into an unperturbed part F0(Jx)G0(JL) and a perturbed
part f1(Jx,ψx)g1(JL,φL) as

�n = F0(Jx)G0(JL)+ f1(Jx,ψx)g1(JL,φL) exp
(

jνθ − jν
2πn

M
− j

Qxξxφcp

hη
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2πμn

M

)
, (11)

where Qxξx is the chromaticity in the horizontal direction and �n is normalized according to∫ ∞
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0
dJL

∫ π

−π
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In advance, let us formulate the dipole current Dp of the beam (and its Fourier transform D̃(p))
and the horizontal wake force Fx (i.e., the potential Ux) not only in the time domain but also in the
frequency domain. The horizontal wake force Fx is obtained by the summation of the wake force
induced by the previous passage of beams. It is expressed as

Fx = e2Nb
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where WT (s) is the horizontal wake function, which has the causality condition WT (s) = 0 for s ≤ 0,
and φcp denotes the longitudinal position of beam, which is related to JL and φL as

φcp =
(

2JLh2|η|ω0

cpsβsνs0

)1/2

sin φL, (14)

(see Eq. (B31)). The effect of the wake excited by all previous revolutions of beams is included as a
summation over k in Eq. (13). The dipole current Dp, its Fourier transform D̃(p), and the horizontal
impedance ZT (ω) are defined as

Dp(JL,φL) =
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and j is the imaginary unit (the definitions of the causality condition of the wake function and of the
impedance in Ref. [6] are different from those in this paper (see Eqs. (13) and (17))).

Substituting Eqs. (15) and (17) into Eq. (13) and using Poisson’s sum rule [6],

∞∑
k=−∞

exp (jkx) = 2π
∞∑
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δ(x − 2πp), (19)

where δ(x) is the δ-function, the wake force Fx is rewritten as
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in frequency domain, where T0 is the revolution time of the designed particle. Now, the potential Ux

in Eq. (4) can be expressed as
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M

)

×
((

βx(s)Jx

2ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
− D

βs

(
ω0νs0JL

2Es|η|
)1/2

cosφL

)

×
M−1∑
n′=0

∞∑
p=−∞

D̃

(
ν + p − Qxξx

η

)
exp

(
−j

2πμn′

M
+ jp

2π(n′ − n)

M

)

× ZT (ω0(ν + p)) exp
(

−j(ν + p)
φcp

h

)
. (21)

Second, we introduce the Fourier transforms of the perturbed parts f1 and g1 as

f1(Jx,ψx) =
∑

q

f̃1,q(Jx) exp (−jqψx) , (22)

g1(JL,φL) =
∑

m

g̃1,m(JL) exp (−jmφL) . (23)

Substituting Eqs. (22)–(23) into Eq. (15), the dipole current Dp is rewritten as

Dp(JL,φL)

=
∑
q′,m′

∫ ∞

0
dJx

∫ π

−π
dψx

x(Jx,ψx, JL,φL)f̃1,q′(Jx)g̃1,m′(JL)√
βx

exp
(−jq′ψx − jm′φL

)
. (24)
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Here, we introduce Dpq′,l′,m′(JL) as

Dp(JL,φL) =
∑
q′,m′

Dpq′,m′(JL) exp
(−jm′φL

)
, (25)

so that

Dpq′,m(JL) =
∑
m′

∫ π

−π
dφL

∫ ∞

0
dJx

∫ π

−π
dψx

× f̃1,q′(Jx)g̃1,m′(JL)
x(Jx,ψx, JL,φL)

2π
√
βx

exp
(−jq′ψx − j(m′ − m)φL

)
. (26)

Then, Eq. (16) is expanded by Dpq,m as

D̃(p) = 1

2π

∫ ∞

0
dJL

∫ π

−π
dφLDp(JL,φL) exp

(
jp
φcp

h

)

=
∑
q,m

∫ ∞

0
dJ ′

LDpq,m(J
′
L)J

∗
m

[
p
ωRF

h

(
2J ′

L|η|
cpsβsνs0ω0

)1/2
]

, (27)

by using the relation

∫ π

−π
exp

(
−jq

φcp

ωRF
+ jmφL

)
dφL =

∫ π

−π
exp

(
−jq

(
2JL|η|

cpsβsνs0ω0

)1/2

sin φL + jmφL

)
dφL

= 2πJm

[
q

(
2JL|η|

cpsβsνs0ω0

)1/2
]

, (28)

where ∗ denotes the complex conjugate and Jm[x] is the Bessel function [27].
The equations of motion are given by

dJx

dθ
= − ∂H

∂ψx
, (29)

dψx

dθ
= ∂H

∂Jx
, (30)

dJL

dθ
= − ∂H

∂φL
, (31)

dφL

dθ
= ∂H

∂JL
, (32)

where the Hamiltonian is given by Eq. (3). By substituting Eqs. (11) and (29)–(32) into Eq. (10),
and by retaining only the perturbed parts, the linearized Vlasov equation is obtained as(

jν − j
Qxξx

hη
νL(Jx, JL)ωRF

(
2|η|RJL

β3
s cEsνs0

)1/2

cosφL

)
f1(Jx,ψx)g1(JL,φL)

+ je2Nbβ
2
s βx(s)√

2psπR

√
Jx sin (ψx + φx(s)− Qxθ)

×
M−1∑
n′=0

∞∑
p=−∞

D̃

(
ν + p − Qxξx

η

)
exp

(
−j

2πμn′

M
+ jp

2π(n′ − n)

M

)
ZT (ω0(ν + p))
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× exp
(

−j(ν + p)
φcp

h

)
∂F0(Jx)

∂Jx
G0(JL) exp

(
j
Qxξxφcp

hη
+ j

2πμn

M

)

+ νx(Jx, JL)
∂f1(Jx,ψx)

∂ψx
g1(JL,φL)+ νL(Jx, JL)f1(Jx,ψx)

∂g1(JL,φL)

∂φL
= 0, (33)

where we assume

dG0(JL)

dJL
� 0, (34)

and

νL(Jx, JL) = νs0 + dY ′

dJL
, (35)

νx(Jx, JL) = Qx + dY ′

dJx
. (36)

Here, let us substitute Eqs. (22)–(23) into Eq. (33) before it is multiplied by exp
(
jq′ψx + jm′φL

)
.

By integrating the result over ψx and φL, we obtain approximately

f̃1,q′(Jx)g̃1,m′(JL)

� j
e2Nbβ

2
s βx(s)

√
Jx(exp (j(φx(s)− Qxθ)) δq′,−1 − exp (−j(φx(s)− Qxθ)) δq′,1) exp

(
j 2πμn

M

)
2
√

2psπR [ν − m′νL(Jx, JL)− q′νx(Jx, JL)]

×
M−1∑
n′=0

∞∑
p=−∞

D̃

(
ν + p − Qxξx

η

)
exp

(
−j

2πμn′

M
+ jp

2π(n′ − n)

M

)
ZT (ω0(ν + p))

× Jm′

[(
(ν + p)ωRF

h
− QxξxωRF

hη

)(
2JL|η|

cpsβsνs0ω0

)1/2
]
∂F0(Jx)

∂Jx
G0(JL), (37)

under the condition

1 �
(

− 2ω0JL

ν0sβ2
s Esη

)1/2 |Qxξx|
Qx

νL(Jx, JL), (38)

where we use the relation Eq. (28).
Multiplying the factor

x(Jx,ψx, JL,φL)

2π
√
βx

exp
(−jq′ψx − j(m′ − m)φL

)
(39)

by Eq. (37), before integrating the result over φL, Jx, ψx, Jy, ψy, and summing it over m′, we
derive

Dpq′,m(JL)

=
∑
m′

∫ π

−π
dφL

∫ ∞

0
dJx

∫ π

−π
dψx

x(Jx,ψx, JL,φL)

2π
√
βx

exp
(−jq′ψx − j(m′ − m)φL

)

× j
e2Nbβ

2
s βx(s)

√
Jx(exp (j(φx(s)− Qxθ)) δq′,−1 − exp (−j(φx(s)− Qxθ)) δq′,1) exp

(
j 2πμn

M

)
2
√

2psπR [ν − m′νL(Jx, JL)− q′νx(Jx, JL)]
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×
M−1∑
n′=0

∞∑
p=−∞

D̃

(
ν + p − Qxξx

η

)
exp

(
−j

2πμn′

M
+ jp

2π(n′ − n)

M

)
ZT (ω0(ν + p))

× Jm′

[(
(ν + p)ωRF

h
− QxξxωRF

hη

)(
2JL|η|

cpsβsνs0ω0

)1/2
]
∂F0(Jx)

∂Jx
G0(JL). (40)

Then, by substituting Eqs. (18) and (27) into Eq. (40), Eq. (40) is rewritten as

Dpq′,m′(JL)

=
∑
q,m

∫ ∞

0
dJx

je2Nbβ
2
s βx(s)Jx(δq′,−1 − δq′,1) exp

(
j 2πμn

M

)
2psR [ν − m′νL(Jx, JL)− q′νx(Jx, JL)]

×
M−1∑
n′=0

∞∑
p=−∞

∫ ∞

0
dJ ′

LDpq,m(J
′
L) exp

(
−j

2πμn′

M
+ jp

2π(n′ − n)

M

)
ZT (ω0(ν + p))

× ∂F0(Jx)

∂Jx
G0(JL)J

∗
m

[
(ν + p − Qxξx

η
)
ωRF

h

(
2J ′

L|η|
cpsβsνs0ω0

)1/2
]

× Jm′

[
(ν + p − Qxξx

η
)
ωRF

h

(
2JL|η|

cpsβsνs0ω0

)1/2
]

. (41)

Here, let us introduce the function Dm as

Dm(JL) = Dp1,m(JL)+ Dp−1,m(JL). (42)

When we retain only the diagonal terms, Eq. (41) is simplified by using the function Dm as

Dm(JL)

= − je2NbMβ2
s βx(s)G0(JL)

2psR

×
∫ ∞

0
dJx

[
1

[ν − mνL(Jx, JL)− νx(Jx, JL)]
− 1

[ν − mνL(Jx, JL)+ νx(Jx, JL)]

]

× Jx
∂F0(Jx)

∂Jx

∞∑
p=−∞

ZT (ω0(ν + μ+ pM ))Jm

[(
ν + μ+ pM − Qxξx

η

)(
2JLω0|η|
cpsβsνs0

)1/2
]

×
∫ ∞

0
dJ ′

LDm(J
′
L)J

∗
m

[(
ν + μ+ pM − Qxξx

η

)(
2J ′

Lω0|η|
cpsβsνs0

)1/2
]

. (43)

If we choose the functions Dm(JL), G0(JL), and F0(JL) as

Dm(JL) = Bmδ(JL − JL0), (44)

G0(JL) = 1

2π
δ(JL − JL0), (45)

F0(Jx) = 1

2πJx0
exp

(
− Jx

Jx0

)
, (46)
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where

Jx0 = βsEsεx,rms

c
, (47)

and εx,rms is the root mean square (rms) emittance of the beam, and expand Eq. (43) around small
Jx before integrating Eq. (43) over Jx, we finally obtain the dispersion relation as

1 �

−
je2NbMπβ2

s 〈βx(s)〉
[

1 + (ν−mνL0−νX 0)(
m dνL

dJx
+ dνx

dJx

)
Jx0

exp

(
− (ν−mνL0−νX 0)(

m dνL
dJx

+ dνx
dJx

)
Jx0

)
�

[
0, − (ν−mνL0−νX 0)(

m dνL
dJx

+ dνx
dJx

)
Jx0

]]

8π3Jx0psR
(

mdνL
dJx

+ dνx
dJx

)

×
∞∑

p=−∞

∣∣∣∣∣Jm

[(
ν + μ+ pM − Qxξx

η

)(
2ω0JL0|η|
cpsβsνs0

)1/2
]∣∣∣∣∣

2

ZT (ω0(�[ν] + μ+ pM )), (48)

where

νL0 = νs0 + dY ′
coh,0(JL)

dJL

∣∣∣∣∣
JL=JL0

, (49)

νX 0 = Qx + 〈βx(s)〉
ps

Y ′
coh,2(JL0), (50)

m
dνL

dJx
+ dνx

dJx
� m

dY ′
coh,2(JL)

dJL

∣∣∣∣∣
JL=JL0

〈βx(s)〉
ps

+ 3
〈
β2

x (s)
〉
Y ′

coh,4(JL0), (51)

νL0 and νX 0 are the coherent synchrotron and the betatron tunes, respectively,�[0, z] is the incomplete
�-function [27], and 〈· · · 〉 denotes the average value around the ring. Here we assume the rms beam
sizes σx and σz are given as

σx =
(

〈βx(s)〉 εx,rms + 〈
D2(s)

〉 (�p

p

)2
)1/2

=
(

〈βx(s)〉 cJx0

βsEs
+ 〈

D2(s)
〉 2JL0νs0ω0

Esβ2
s |η|

)1/2

, (52)

σz = c

ω0

(
2JL0|η|ω0

Esνs0

)1/2

, (53)

considering Eqs. (14), (47), (B17), (B18), and (B32). For reference, Fig. 1 illustrates typical behavior
of the functions dY ′

coh,0(JL0)/dJL0, Y ′
coh,2(JL0), dY ′

coh,2(JL0)/dJL0, and Y ′
coh,4(JL0) in Eq. (48), which

are calculated by using the beam parameters at the ramping time 15 ms in the RCS (refer to Sect. 3).
The beam growth rate and the coherent tune affected by the wake force, which are given by the

real parts of jω0ν and of ν, respectively, are solved by Eq. (48) as a function of nominal tune Qx.
The differences among Qx, νX 0, and �[ν] are tiny (� 0.01) in a practical situation.

2.2. The Sacherer formula

Here, we reproduce the classical Sacherer formula [18,19,23], where the space charge effect on the
beam oscillations is neglected. In this case, the Jx and JL dependence of the tunes νL and νx vanishes.
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Fig. 1. Typical behavior of the functions dY ′
coh,0(JL0)/dJL0 (left top), Y ′

coh,2(JL0) (right top), dY ′
coh,2(JL0)/dJL0

(left bottom), and Y ′
coh,4(JL0) (right bottom) calculated by using the beam parameters at the ramping time 15 ms

in the RCS.

If we confine ourselves to the case, the Jx-integration in Eq. (43) can be performed for the distribution
Eq. (46). Consequently, Eq. (43) is simplified as

Dm(JL) = je2NbMβx(s)G0(JL)

4πpsR

(
1

ν − mνs0 − Qx
− 1

ν − mνs0 + Qx

)

×
∞∑

p=−∞
ZT (ω0(ν + μ+ pM ))Jm

[(
ν + μ+ pM − Qxξx

η

)(
2JLω0|η|

cpsνs0

)1/2
]

×
∫ ∞

0
dJ ′

LDm(J
′
L)J

∗
m

[(
ν + μ+ pM − Qxξx

η

)(
2J ′

Lω0|η|
cpsνs0

)1/2
]

, (54)

for an ultra-relativistic beam (βs = 1). Here, following the conventional manner, let us replace the
action-variable JL with the amplitude-variable rs:

rs = 1

ω0

(
2JLω0|η|

cpsνs0

)1/2

, (55)

and assume the unperturbed distribution function G0(JL(rs)) as

G0(JL(rs)) = |η|
πω0cpsτ

2
0sνs0

�(τ0s − rs), (56)
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where �(x) is the step function and τs0 denotes the half-bunch length. Accordingly, Eq. (54) is
rewritten as

Dm(JL(rs)) = jce2NbM

4π2EsQxτ
2
0s

�(τ0s − rs)

(
1

ν − mνs0 − Qx
− 1

ν − mνs0 + Qx

)

×
∞∑

p=−∞
ZT (ω0(ν + μ+ pM ))Jm

[
ω0

(
ν + μ+ pM − Qxξx

η

)
rs

]

×
∫ ∞

0
dr′

sr
′
sDm(J

′
L(r

′
s))J

∗
m

[
ω0

(
ν + μ+ pM − Qxξx

η

)
r′

s

]
, (57)

where βx(s) is replaced by R/Qx.
Let us expand the function Dm(JL(rs)) using a complete set of orthogonal functions f (m)k (rs) as

Dm(JL(rs)) = W̃ (rs)

∞∑
k=0

a(m)k f (m)k (rs) ≡
∞∑

k=0

a(m)k gm,k(rs), (58)

where k is the radial mode and W̃ (rs) is the weight function. The functions f (m)k (r) and gm,k(r) satisfy
the orthogonality relationship ∫ ∞

0
W̃ (rs)f

(m)
k (rs)f

(m)
l (rs)rs drs = δkl , (59)

∫ ∞

0

gm,k(rs)gm,l(rs)

W̃ (rs)
rs drs = δkl , (60)

respectively. Here, the weight function W̃ (rs) is defined as

W̃ (rs) = C
ηNb

πτ 2
0sω0νs0

�(τ0s − rs), (61)

where C is a normalization constant. Accordingly, the functions f (m)k (rs) or gm,l(rs) can be revealed
as

f (m)k (rs) =
(

2

W̃

)1/2 Jm(
μmk rs
τ0s

)

τ0sJm+1(μmk)
, for rs < τ0s, (62)

gm,l(rs) =
(

2W̃ (rs)
)1/2 Jm(

μmlrs
τ0s

)

τ0sJm+1(μml)
=
(

2CηRNb

πcνs0τ
2
0s

)1/2
Jm(

μmlrs
τ0s

)

τ0sJm+1(μml)
(1 −�(rs − τ0s)), (63)

where μmk is the kth zero of Jm(x).
Let us introduce the particle distribution function ρm,l(τ ) with head-tail mode m and radial mode

l in real space as

ρm,l(τ ) = −
∫ ∞

−∞
gm,l(rs) exp (−jmφL) ωRF

dW

Es
≡
∫ ∞

−∞
gm,l(rs) exp (−jmφL) dδ, (64)

and its Fourier transform

ρ̃m,l(k) =
∫ ∞

−∞
dτ

2π
exp (jkτ) ρm,l(τ ), (65)

where τ = φcp/ωRF and W is the momentum conjugate to φcp (see Eq. (B17)).

13/39



PTEP 2017, 013G01 Y. Shobuda et al.

Substituting Eq. (64) into Eq. (65), Eq. (65) is written as

ρ̃m,l(k) =
∫ ∞

0
gm,l(r)

ω0νs0

η
jmJm(kr)r dr, (66)

(see Eqs. (55), (B31) and (B32)) by using the relation

1

2π

∫ 2π

0
dϕ exp (ilϕ − ix cosϕ) = j−lJl[x], (67)

while its inverse transform ρm,l(τ ) is given by

ρm,l(τ ) =
∫

gm,l(r)
ω0νs0

η
jmJm(kr) exp (−jkτ) r dr dk , (68)

which is expressed as

ρm,l(τ )

=
(

2CRNbνs0

πcη

)1/2

ω0μmlj
m
∫ ∞

0
dk

[((−1)m + 1) cos kτ + ((−1)m − 1)j sin kτ ]Jm(kτ0s)

(μ2
ml − k2τ 2

0s)
, (69)

for the function given by Eq. (63). Equation (66) satisfies the relationship ρ̃∗
m,l(k) = (−1)mρ̃m,l(k)

for real gm,l(r) (see Eq. (91)).
By substituting Eq. (58) into Eq. (57), in combination with Eqs. (60) and (66), Eq. (57) is solved

as

νm,l = Qx + mνs0 + je2cηCm,l

8π2EsQxCω2
0νs0

×
∑∞

p=−∞ ZT (ω0(ν + μ+ Mp))h′
m,l

(
ω0

(
Qx + mνs0 + μ+ Mp − Qxξ

η

))
∑∞

p=−∞ h′
m,l

(
ω0

(
Qx + mνs0 + μ+ Mp − Qxξ

η

)) , (70)

in the lowest-order approximation, where we define the constant Cm,l and the function h′
m,l(ω) as

Cm,l =
∫ ∞

−∞
dτ |ρm,l(τ )|2 = 2π

∫ ∞

−∞
dω|ρ̃m,l(ω)|2, (71)

h′
m,l(ω) ≡ |ρ̃m,l(ω)|2, (72)

respectively. In Eq. (70), the ω-integration is approximated by the summation of p.
The constants C and Cml are determined as follows. If we impose the condition ρm,l(±τ0s) = 0

on the distribution function, the function ρm,l(τ ) should be written as

ρm,l(τ ) =
∑

p=1,3,5,...

Dp cos
πp

2τ0s
τ +

∑
p=2,4,6,...

Ep sin
πp

2τ0s
τ , (73)
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where Dp and Ep are expansion coefficients. By equating Eq. (69) to Eq. (73), they are expressed as

Dp = −pπω0μml

τ 4
0s

(
2CRNbνs0

πcη

)1/2

(−1)m/2(−1)(p+1)/2�
⎡
⎢⎣∫ ∞

−∞
dk

Jm(kτ0s) exp (jkτ0s)

(k2 − μ2
ml
τ 2

0s
)(k2 − (

πp
2τ0s
)2)

⎤
⎥⎦,

for m = 0, 2, 4, . . . ,
(74)

Ep = −pπω0μml

τ 4
0s

(
2CRNbνs0

πcη

)1/2

(−1)(m−1)/2(−1)p/2

⎡
⎢⎣∫ ∞

−∞
dk

Jm(kτ0s) exp (jkτ0s)

(k2 − μ2
ml
τ 2

0s
)(k2 − (

πp
2τ0s
)2)

⎤
⎥⎦,

for m = 1, 3, 5, . . . ,
(75)

where we use ∫ τ0s

−τ0s

cos kτ cos
πpτ

2τ0s
dτ = (−1)(p+1)/2pπ

τ0s

(
k2 − (

πp
2τ0s
)2
) cos kτ0s, for odd p, (76)

∫ τ0s

−τ0s

sin kτ sin
πpτ

2τ0s
dτ = (−1)p/2pπ

τ0s

(
k2 − (

πp
2τ0s
)2
) sin kτ0s, for even p, (77)

Jm(−x) = (−1)mJm(x). (78)

By picking up the residues, the k-integration in Eqs. (74) and (75) is performed. As a result, we
obtain

Dp = ω0

τ0s

(
πCRNbνs0

cη

)1/2

(−1)m/2
2
√

2μmlJm(
πp
2 )(

μ2
ml − (

πp
2 )

2
) , for even m, (79)

Ep = ω0

τ0s

(
πCRNbνs0

cη

)1/2

(−1)(m−1)/2 2
√

2μmlJm(
πp
2 )(

μ2
ml − (

πp
2 )

2
) , for odd m. (80)

Finally, ρm,l(τ ) is summarized as

ρm,l(τ ) =
∑

p

Am
lpbp(τ ), (81)

bp(τ ) =
{

cos πpτ
2τ0s

, for p = 1, 3, 5, . . . ,

sin πpτ
2τ0s

, for p = 2, 4, 6, . . . ,
(82)

Am
lp = ω0

τ0s

(
πCRNbνs0

cη

)1/2

Pm,p,l

{
(−1)m/2, for m = 0, 2, 4, . . . ,

(−1)(m−1)/2, for m = 1, 3, 5, . . . ,
(83)

Pm,p,l = 2
√

2μmlJm(
πp
2 )

(μ2
ml − π2p2

4 )
, (84)

where p runs 1, 3, 5, . . . for m = 0, 2, 4, . . . , and p runs 2, 4, 6, . . . for m = 1, 3, 5, . . . .
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Here, let us focus on the lowest-order term for the radial mode l = 1. The factor

8μ2
m1J 2

m(
π(m+1)

2 )

(μ2
m,1 − π2(m+1)2

4 )2
, (85)

which appears in Eq. (70), dominates for the component m + 1 = p. Then, the function ρm,l=1(τ ),
its Fourier transform ρ̃m,l=1(ω), and the factor Pm,p=m+1,l=1 are approximated as

ρm,l=1(τ ) =
{
(−1)

m
2 cos π(m+1)τ

2τ0s
, for m = 0, 2, 4, . . . ,

(−1)
m−1

2 sin π(m+1)τ
2τ0s

, for m = 1, 3, 5, . . . ,
(86)

ρ̃m,l=1(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m/2
∫ τ0s
−τ0s

dτ
2π exp (jωτ) cos π(m+1)τ

2τ0s
= 2τ0s(1+m) cosωτ0s

π2

[
(1+m)2− 4ω2τ2

0s
π2

] ,

for m = 0, 2, 4, . . . ,

(−1)(m−1)/2
∫ τ0s
−τ0s

dτ
2π exp (jωτ) sin π(m+1)τ

2τ0s
= j(1+m)2τ0s sinωτ0s

π2

[
(1+m)2− 4ω2τ2

0s
π2

] ,

for m = 1, 3, 5, . . . ,

(87)

and

Pm,p=m+1,l=1 = 2
√

2μm,1Jm(
π(m+1)

2 )

(μ2
m,1 − π2(m+1)2

4 )
� 16(3 + 2m)

(5 + 4m)π2
√

m + 1
∼ 1√

m + 1
, (88)

respectively. Substituting Eq. (86) into Eq. (71), we finally obtain

Cm,l = τ0s. (89)

The constant C is determined by the condition Am
l=1,p=m+1 = 1. As a result, it is calculated as

C = ηc(m + 1)τ 2
0s

ω2
0νs0πRNb

. (90)

Accordingly, the function gm,l(rs) is described as

gm,l(rs) =
√

2(m + 1)|η|Jm(
μmlrs
τ0s

)

πω0νs0τ0sJm+1(μml)
(1 −�(rs − τ0s)), (91)

owing to Eqs. (63) and (90).
By summarizing all these results (by substituting Eqs. (89) and (90) into Eq. (70), and by calculating

Eq. (72) with Eq. (87)), we finally derive the conventional Sacherer formula:

τ−1
m = − cIc

4πQx(m + 1)Es/e

∞∑
p=−∞

�[ZT (ω
′
p)]F ′

m(ω
′
p − ωξ), (92)

where τ−1
m is the growth rate,

F ′
m(ω) = h′

m(ω)

B′
f

∑∞
p=−∞ h′

m(ω
′
p − ωξ)

, (93)
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h′
m(ω) = (2τ0s)

2

2π4 (m + 1)2
[1 + (−1)m cos(ω2τ0s)][
(ω2τ0s

π
)2 − (m + 1)2

]2 , (94)

ω′
p = ω0(Qx + mνs0 + μ+ Mp), (95)

ωξ = ω0
Qxξ

η
, (96)

Ic = eMNb

T0
, (97)

B′
f = M2τ0sc

2πR
. (98)

In this paper’s calculations, the factor B′
f is approximated by the typical bunching factor Bf defined

by the average current divided by the peak current (see Eq. (101)).

3. RCS parameters and the beam growth rate estimated by the Sacherer formula

At the RCS, the bunched beams are formed by accumulating the injection beam from the LINAC
with a painting scheme [28,29]. They are accelerated from 400 MeV to 3 GeV over 20 ms. Figure 2
shows the typical patterns of the acceleration voltage Vrf (red), and of the synchronous phase ϕs

(blue) in that period. Table 1 shows typical machine and beam parameters for the RCS, which were
used in this paper’s calculations. The average chamber radius a around the ring is determined to be
145 mm, in order that the coherent betatron tune shift reproduces the measured date for a 400 MeV
beam.

Eight kickers are installed in the RCS. The real and the imaginary parts of the horizontal impedance
ZT (ω) for one kicker are shown in the left and the middle panels of Fig. 3, respectively. The red and
blue lines show the impedances at βs = 0.7 and βs = 1, respectively. The impedance is roughly
proportional to the Lorentz-β [15]. The corresponding wake function WT (ω0t) calculated by Eq. (17)
is denoted by the same color in the right-hand figure. The reflection wave excited at the end of the
power cable of the kicker creates the spike structure of the kicker impedance.

As shown in the left and middle panels, the impedance is very large indeed. We have demonstrated
that the RCS is a kicker-impedance-dominated machine by stabilizing unstable beams by temporarily

Fig. 2. Typical pattern of the acceleration voltage Vrf (red), and the synchronous phase ϕs (blue) during the
ramping time.
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Table 1. Typical parameter list

T (kinetic energy, GeV) 0.4 3
f0 (revolution frequency, MHz) 0.61 0.84
η (slippage factor) -0.478 -0.047
Ic (average current, A) 8.1 11.2
νs0 (synchrotron tune) 0.0053 0.0005

〈βx(s)〉 (m) 11.6〈
β2

x (s)
〉

(m2) 172.3〈
D2(s)

〉
(m)2 3.46

εx,rms (mmrad) 100/6βsγs

JL0 (eV · s) 0.1645

(Circumference C = 348.333 m, harmonic number h = 2, repetition rate = 25 Hz, particles per bunch Nb = 4.15 × 1013,
and the average chamber radius a = 145 mm).
Here, βx(s) and D(s) are the β-function and the dispersion function, respectively; εx,rms and JL0 are the root mean square
(rms) horizontal and the longitudinal emittances, respectively; 〈· · · 〉 denotes the average value around the ring; and βs and
γs are the Lorentz-β and Lorentz-γ on the designed particle.

Fig. 3. Dependence of the horizontal kicker impedance ZT (ω) (left/middle) and of the wake function WT (ω0t)
(right) on the Lorentz-β. The red and blue lines show the results at βs = 0.7 and βs = 1, respectively. The wave
propagation speeds in the kicker magnet and in the power cable are about 0.02 × c and 0.57 × c, respectively.
The magnet length and the cable length are 705 mm and 130 m, respectively.

reducing the impedance [12,13]. For simplicity, we assume in this paper that the only source of
impedance in the RCS is kicker impedance.

Mostly (except the discussion about chromaticity dependence of beam growth rates shown in
Figs. 16 and 17), let us consider a case in which the chromaticity ξQx is activated by a DC-power
supply at the injection energy. In this case the chromaticity approaches the natural chromaticity
(ξQx = −10.3) [30] as the beam energy is increased, as shown in Fig. 4.

We have observed beam instabilities at the J-PARC RCS, where the chromaticity was fully corrected
only at the injection energy. The blue line of Fig. 5 shows an example of the results of the horizontal
beam position for a 750 kW equivalent beam (3.10 × 1013 particles per bunch). For reference, the
green line shows the results where only one bucket among the two is filled with one bunched beam.
Since no instability occurs on the green line, we have judged that the instabilities on the blue line
are the coupled-bunch instabilities.
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Fig. 4. Calculated chromaticity ξQx change during the ramping time.

Fig. 5. Measured horizontal beam positions for the case of 3.10 × 1013 particles per bunch and Qx = 6.45.
The blue line shows the results where two buckets are perfectly filled with two bunches, and the green line
shows the results where only one bucket among the two is filled with one bunch. The momentum spread of
the injection beam from LINAC is 0.18%.

Figure 6 shows the measured results for a 1 MW equivalent beam (4.15 × 1013 particles per
bunch), where the chromaticity was fully corrected only at the injection energy. Both results for
750 kW equivalent and 1 MW equivalent beams have demonstrated that the beam is stable at low
energies, while they tend to be unstable at high energies.

Here, let us investigate whether the conventional Sacherer formula Eq. (92) can explain the mea-
sured beam behavior. From now on, we assume that the maximum number of the head-tail mode m
is 5, and that the coupled mode μ runs from 0 to 1. Figure 7 shows the theoretical results for the
case. The results predict that the beam is unstable at low energies, while it is stable at high energies.
These results suggest that a partial chromaticity correction at low energies should enhance the beam
instability at low energies. However, these theoretical results (Fig. 7) differ significantly from the
measured data (Figs. 5 and 6).

The measurement results indicate that space charge stabilizes the beam instability at low energies.
Note that Eq. (92) is derived by neglecting this effect. In the next section, let us theoretically examine
the space charge effect on the beam instability at the RCS.
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Fig. 6. Measured horizontal beam positions for the case of 4.15 × 1013 particles per bunch and Qx = 6.45.
The momentum spread of the injection beam is 0.18%.

Fig. 7. The maximum beam growth rate among with different modes (m,μ) estimated by using the Sacherer
formula, Eq. (92), for Qx = 6.45.

4. Investigation of the beam instability at the RCS
4.1. Space charge effects on the beam growth rate

The Landau damping caused by the space charge effect appears in Eq. (51). Because this equation
depends only on the longitudinal emittance JL0 in our model, only the longitudinal size of the beam
is likely to affect the effect, significantly. However, the true space charge effect is revealed in Eq. (48)
after integration with respect to Jx according to Eq. (43). In particular, the damping effect is neglected
for a beam with infinitesimal transverse beam size, and Eq. (48) is sufficiently well approximated
by the analytical formula

ν � mνL0 + νX 0 + je2NbMπcβs 〈βx(s)〉
8π3EsR

×
∞∑

p=−∞
Fm

(
JL0, mνL0 + νX 0 + μ+ pM − Qxξx

η

)
ZT (ω0(mνL0 + νX 0 + μ+ pM )), (99)
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Fig. 8. The maximum beam growth rate among different modes (m,μ) estimated by Eq. (99) for Qx = 6.45.

Fig. 9. The maximum beam growth rate among different modes (m,μ) estimated by solving Eq. (48) for
Qx = 6.45.

where

Fm (JL0, x) =
∣∣∣∣∣Jm

[
x

(
2ω0JL0|η|
cpsβsνs0

)1/2
]∣∣∣∣∣

2

. (100)

Figure 8 shows the maximum beam growth rate among different modes (m,μ) estimated according
to Eq. (99). As in the results obtained using the conventional formula (shown in Fig. 7), these results
show that the beam is unstable at low energies. However, this result successfully explains the beam
instability of the measured results at high energies, which the conventional formula does not explain.
To understand the beam stabilization at low energies, the Landau damping effects owing to space
charge must be taken into account.

Here, let us investigate the effect more closely. First, we present the theoretical results of taking the
space charge effect into account for the maximum beam growth rate by solving Eq. (48). The results
are shown in Fig. 9. Comparing the results shown in Fig. 8 with the present results, we find that the
beam is stabilized at low energies and that the theoretical results explain well the characteristic of
the measurement ones (shown in Figs. 5 and 6). We can see a sharp rise at t = 13 ms only in the
measured data of the 1 MW-equivalent beam (Fig. 6). The space charge damping effect seems to
be drastically reduced for a beam with larger oscillation amplitudes. If this is a kind of nonlinear
phenomenon, our theory, based on the linearized Vlasov equation, has a limit to explain it.
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Fig. 10. Theoretical results of the transverse beam emittance εx,rms dependence of the beam growth rate at
15 ms for Qx = 6.45. The red, black, and purple lines are the beam growth rates excited by (m = 0,μ = 1),
(m = 2,μ = 1), and (m = 4,μ = 1) modes, respectively.

Fig. 11. Measurement results (Nb = 4.15 × 1013) of the horizontal beam positions for different transverse
painting areas, where the chromaticity was fully corrected only at the injection energy. The red, blue, black,
and yellow lines show the results for 0π (center injection), 100π , 150π , and 200π mmrad injection painting
schemes, respectively, where the tune Qx changes during the ramping time following the black line in the right
panel of Fig. 14. The momentum spread of the injection beam from LINAC is 0.18%.

Figure 10 shows the theoretical results of the transverse beam emittance dependence of the beam
growth rate. The red, black, and purple lines are the beam growth rates excited by (m = 0,μ = 1),
(m = 2,μ = 1), and (m = 4,μ = 1) modes, respectively (the growth rate excited by the other
modes is negligibly low.). As already explained, the Landau damping effect becomes ineffective for
all modes, as the transverse emittance decreases. Figure 11 illustrates the measured beam positions
for different transverse emittances. The red, blue, black, and yellow lines show the results for the
cases that the injection painting areas are 0π (center injection), 100π , 150π , and 200π mmrad,
respectively [28,29]. The emittance dependence is clearly observable in the results. As the painting
area is larger at the injection period, the beam tends to be more stabilized at high energies.

Thus, we find that the Landau damping effect owing to the space charge (depending on the lon-
gitudinal beam size) is enhanced by enlarging the transverse beam size. From a phenomenological
point of view, the space charge damping effect is easily activated for the lower-energy beam, as a
result of the larger transverse beam emittance.
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Fig. 12. Theoretical results of the beam growth rate (at 15 ms for Qx = 6.45) with (left/middle) and without
(right) space charge effects, dependence on the bunching factor. The red, blue, black, green, purple, and brown
lines are the beam growth rates excited by (m = 0,μ = 1), (m = 1,μ = 1), (m = 2,μ = 1), (m = 3,μ = 1),
(m = 4,μ = 1), and (m = 5,μ = 1) modes, respectively. The left and the middle panels show the results for
the chamber radii a = 145 mm and a = 160 mm, respectively.

Now, let us closely investigate the bunching factor Bf (longitudinal beam size) dependence of
the beam growth rate for different head-tail and coupled-bunch modes (m,μ). Figure 12 shows the
theoretical results of the beam growth rate at 15 ms, where the bunching factor Bf is evaluated by
using

Bf = 4

3(π − φe − ϕs)

(
2JL,0h2|η|ω0

Esβ2
s νs0

)1/2

, (101)

where φe is the solution of

cosφe + φe sin ϕs + cosϕs − (π − ϕs) sin ϕs = 0, (102)

which satisfies the condition −π < φe < 0 [31]. The left and the middle panels of Fig. 12 illustrate
the beam growth rates with space charge effects for the chamber radii a = 145 mm and a = 160 mm,
respectively. The right panel illustrates the beam growth rate without space charge effects calculated
by using Eq. (99). The red, blue, black, green, purple, and brown lines are the beam growth rates
excited by (m = 0,μ = 1), (m = 1,μ = 1), (m = 2,μ = 1), (m = 3,μ = 1), (m = 4,μ = 1), and
(m = 5,μ = 1) modes, respectively (the other modes do not excite the beam instabilities).

The conventional Sacherer formula (92) indicates that the beam growth rate without space charge is
roughly inversely proportional to the bunching factor Bf . The left and middle panels demonstrate that
the overall behavior of the beam growth rate including space charge effect is also roughly inversely
proportional to the bunching factor Bf . However, the beam is ultimately stabilized in the extremely
compressed beam (with the extremely small bunching factor). In this case, the Landau damping due
to the space charge force absolutely stabilizes the beam instability.

The beam growth rates for the different modes (m,μ) in all panels of Fig. 12 reveal the respective
comb-like structures along the bunching factor. The behavior originates from the head-tail motion
of the beam, as shown in the form factor Fm(JL, x) in Eq. (99). Thus, when we fix a mode, the beam
growth rate for the mode follows the characteristic comb-like behavior, even in the results without
space charge effect (right). However, because the growth rate patterns are overlapped for the different
modes (m,μ) in the results without space charge effect, it is hard to specify the optimized point
along the bunching factor from the viewpoint of beam instability. Thus, we reach the conventional
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conclusion that the larger bunching factor (smaller peak current) is preferable for beam stabilization,
when the space charge effect is neglected.

Contrary to the such conventional understanding, beam stabilized regions emerge along the bunch-
ing factor in the results with the space charge effects for a = 145 mm (e.g., around the area A).
Comparing both the results for a = 145 mm (left) and for a = 160 mm (middle), we find that
the bandwidth of the stabilized region caused by the space charge effect significantly depends on
the chamber radius a. Though the difference between the chamber radii is only 15 mm, the beam
stabilization area A in the results for a = 145 mm (left) disappears in the results for a = 160 mm
(middle). In conclusion, the smaller chamber radius is preferable in view of the beam stabilization
to make maximum use of the space charge damping effect.

The existence of such a beam stabilization region, stemming from the space charge effects, along
the bunching factor can be demonstrated at a low-energy proton ring like the RCS. At the RCS,
the bunching factor can be changed by changing the momentum spread of the injection beam from
the LINAC. We can prepare two types of injection beams: dp/p = 0.08% and dp/p = 0.18%. The
injection beam with the smaller momentum spread creates an accumulated beam with a smaller
bunching factor. The measurement results for the beam positions and their corresponding bunching
factors are illustrated in Fig. 13 with the same colors, where the number of particles per bunch is
3.10 × 1013. It is observable that the beam can be more stabilized with the smaller bunching factor,
contrary to conventional understanding. Theoretically, this stabilization is caused by the dip around
the area A in Fig. 12.

4.2. The effects of tune manipulation on beam growth rate

Here, let us illustrate the tune dependence of the beam growth rate. The measurement results are
shown in the left panel of Fig. 14. The tracking pattern of the tune during the acceleration period
is shown in the right panel of Fig. 14 using the same color. The results represented by the red line
correspond to the highest beam growth rate case. The second highest case is represented by the
yellow line. The most stable case is indicated by the black line, which is sandwiched by these two
unstable cases (the red and the yellow lines). Figure 15 shows the theoretical results of the beam
growth rate at 15 ms, which are obtained by solving Eq. (48). The red, black, and purple lines are
the beam growth rates excited by the m = 0, m = 2, and m = 4 modes, respectively. The solid and

Fig. 13. Beam growth rate (for 3.10 × 1013 particles per bunch) dependence on the bunching factor, where the
tune is fixed to 6.45. The chromaticity was fully corrected only at the injection energy. The left panel shows
the measured beam positions for two different bunching factors. The right panel shows the measured bunching
factor. The two lines with the same color in both figures denote identical situations.
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Fig. 14. The left panel shows the measured (4.15 × 1013 particles per bunch) beam positions for five different
tune tracking patterns, where the chromaticity was fully corrected only at the injection energy. The right panel
shows the measured tune tracking patterns under the condition that the space charge effect is negligible. The
lines of matching color in each panel denote identical situations. The momentum spread of the injection beam
is 0.08%.

Fig. 15. Dependence of the theoretical results of the beam growth rate at 15 ms on the tune Qx. The red, black,
and purple lines are the beam growth rates excited by the m = 0, m = 2, and m = 4 modes, respectively. The
solid and dashed lines show the μ = 1 and μ = 0 modes, respectively.

dashed lines show theμ = 1 andμ = 0 modes, respectively (the other head-tail modes do not excite
the beam instabilities). The theoretical calculation explains the characteristic of the tune dependence
of the beam growth rate sufficiently well, as revealed by the measured results (Fig. 14). The tune
dependence of the beam growth rate originates from the spike structure of the kicker impedance (see
Fig. 3).

Finally, we illustrate the chromaticity dependence of the beam growth rate. Figure 16 shows the
theoretical results of the beam growth rate at 15 ms for Qx = 6.45. The red, blue, black, green,
purple, and brown lines are the beam growth rates excited by the (m = 0,μ = 1), (m = 1,μ = 1),
(m = 2,μ = 1), (m = 3,μ = 1), (m = 4,μ = 1), and (m = 5,μ = 1) modes, respectively
(the other modes do not excite the beam instabilities). We expect that the beam growth rate will be
drastically suppressed, as the chromaticity correction is weakened.

The measured results are shown in Fig. 17. To clearly observe the chromaticity dependence of
the beam growth rate, let us study the highest growth rate case (the tracking pattern of the tune is
designated by the red line in the right panel of Fig. 14). The red, blue, and black lines in Fig. 17
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Fig. 16. Theoretical results of the beam growth rate at 15 ms dependence on the chromaticity ξQx for Qx =
6.45. The red, blue, black, green, purple, and brown lines are the beam growth rates excited by the (m =
0,μ = 1), (m = 1,μ = 1), (m = 2,μ = 1), (m = 3,μ = 1), (m = 4,μ = 1), and (m = 5,μ = 1) modes,
respectively.

Fig. 17. Measured beam positions (Nb = 4.15 × 1013, dp/p = 0.08%) with different chromaticity, where the
tune changes, following the red line in the right panel of Fig. 14. The red, blue, and black lines show the results
for which, at the injection energy only, the chromaticity was fully, half, and quarter corrected, respectively.

show, respectively, the results for which the chromaticity was fully corrected only at the injection
energy by the DC-power supply, half corrected compared to the full correction, and quarter corrected
in the same manner. Concretely, the chromaticity values at 15 ms are −7.46 for the red line, −8.92
for the blue line, and −9.64 for the black line. As expected, the beam is drastically suppressed by an
increase in chromaticity in the negative direction.

5. Summary

The RCS in J-PARC, where kicker impedance dominates, is a special machine from an impedance
viewpoint, which means that the RCS violates the impedance budget from a classical viewpoint [6,18,
19]. Nevertheless, we have successfully accelerated a 1 MW equivalent beam (4.15 × 1013 particles
per bunch). The RCS is an accelerator covering the intermediate beam energy region (from 400 MeV
to 3 GeV). Thus, it is pertinent to study the space charge effects on the beam instability.
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The machine has some interesting characteristics: e.g., the beam can be stabilized by reducing the
bunching factor (increasing the peak current) and the beam tends to be unstable when reducing the
transverse beam size. The classical theory, i.e., Sacherer’s theory, fails to explain these characteristics
by neglecting the space charge effects.

Recently, there has been a significant development in the field of computer technologies. Numerical
computer simulations are powerful tools to quantitatively estimate the beam behavior associated with
space charge effects [32–34]. It may seem that a numerical simulation study is sufficient to accelerate
beams from a practical viewpoint.

However, such simulations take excessive CPU time and memory for one set of fixed parameters.
If we theoretically understand what conditions (parameters sets) excite beam instabilities in com-
bination with space charge effects in advance, numerical studies are more efficiently performed by
selecting the appropriate parameters sets, based on the theoretical comprehension. Consequently, we
can focus on the quantitative discussion about the issues concerning beam commissioning (beam loss,
beam halo, etc.). Moreover, the theoretical study is vital to understand the nature of the phenomena
concerning beams in accelerators.

In this paper, we try to understand the beam instabilities associated with the space charge effects
by developing a new theory. And, we have clarified the parameters (such as the transverse emittance,
the bunching factor, etc.) dependence on the beam growth rate.

The space charge damping effect is significant at low energies, not only due to the smaller Lorentz-
γ but also due to the larger transverse beam size. The large transverse emittance is essential to activate
the Landau damping owing to the space charge effect.

It is of interest that the beam growth rate is suppressed by increasing the peak current (shortening
the bunch length, or reducing the bunching factor) at the RCS. Theoretically, the beam growth rate
for different modes (m,μ) follows different characteristic comb-like structures along the bunching
factor. The dependence of the beam growth rate on the bunching factor originates from the head-tail
motion of the beam. Thus, even in the case without the space charge effect, the beam growth rate for
one fixed mode can be suppressed by increasing the peak current (shortening the bunch length, or
reducing the bunching factor).

However, the beam growth rates excited by different modes (m,μ) are sufficiently overlapped
along the bunching factor in the case. Finally, the theory reproduces the conventional conclusion that
the maximum beam growth rate among different modes (m,μ) is reduced by increasing the bunch
length (reducing the peak current or increasing the bunching factor) when the space charge effect is
neglected.

On the contrary, if we take the space charge effect into consideration, the overlap of the beam
growth rates for different modes (m,μ) is separated over the axis of the bunching factor, and some
beam stabilization regions emerge on the axis. The optimization of bunching factor enables the beam
to be stabilized, regardless of the amount of the bunching factor, in a lower-energy proton synchrotron
like the RCS.

The space charge damping effect is quite sensitive to the chamber radius. Consequently, a smaller
radius chamber is preferable from a beam instability point of view. As the beam energy becomes
higher, the space charge damping effect becomes less effective, and the beam stabilization region
diminishes along the bunching factor.

In a low-energy proton machine, such as the RCS, the violation of the impedance budget from a
classical viewpoint is not vital to achieve high intensity beams. They can be realized by optimizing the
machine’s (beam) parameters, i.e., the bunching factor, transverse emittance, tune, chromaticity, etc.

27/39



PTEP 2017, 013G01 Y. Shobuda et al.

Acknowledgements

The authors would like to thank Kazuhito Ohmi, Jie Wei, Katsunobu Oide, Yoshishige Yamazaki, Tadashi
Koseki, Kazuo Hasegawa, and Michikazu Kinsho for fruitful discussions. They also would like to thank all
members of the J-PARC Accelerator Technical Advisory Committee, which was led by Steve Holmes until
2009, and has been led by Thomas Roser since 2010. The authors would also like to thank all the members of
the J-PARC project at JAEA/KEK.

Appendix A. A solution of the Poisson equation with cylindrical chamber

In this section, we show how to solve the Poisson equation for an axisymmetric beam that is sur-
rounded by a perfectly conductive cylindrical chamber with radius a. The Poisson equation in the
rest frame of the beam (ct̄, x, y, z̄) is described by

∂2�̄

∂x2 + ∂2�̄

∂y2 + ∂2�̄

∂ z̄2 = −cZ0ρ̄p(x, y, z̄), (A1)

with

ρ̄p(x, y, z̄) = eNbρ̂(z̄)
exp

(
− (ρ cosϕ−r0 cos θ0)

2+(ρ sin ϕ−r0 sin θ0)
2

2σ 2
x

)
2πσ 2

x
, (A2)

ρ̂(z̄) =
exp

(
− z̄2

2σ̄ 2
z

)
√

2πσ̄z
, (A3)

σ̄z = γsσz, (A4)

where γs is the Lorentz-γ of the reference particle, c is light velocity, Z0 is the impedance of free
space,σx is the rms transverse beam size, and Nb is the number of particle per bunch. Polar coordinates
are introduced as

x = ρ cosϕ, (A5)

y = ρ sin ϕ, (A6)

and the center of the bunch on the horizontal plane is given by (r0 cos θ0, r0 sin θ0). From now on,
the condition σx � a is assumed.

When a perfectly conductive chamber with radius a exists, the Green function G(�r, �r′) that satisfies
the boundary condition G = 0 at ρ = a, is given by [35]

G(�r, �r′) =
∞∑

m=0

εm

2π2 cos m(ϕ − ϕ′)

×
⎧⎨
⎩
∫∞

0 dλ
[
Km(λρ

′)− Km(λa)
Im(λa) Im(λρ

′)
]

Im(λρ) cos λ(z̄ − z̄′), for ρ′ > ρ,∫∞
0 dλ

[
Km(λρ)− Km(λa)

Im(λa) Im(λρ)
]

Im(λρ
′) cos λ(z̄ − z̄′), for ρ′ < ρ,

(A7)

where Im(z) and Km(z) are the modified Bessel functions, �r = (ρ,ϕ, z̄), �r′ = (ρ′,ϕ′, z̄′), εm = 2−δm0

and δmn is the Kronecker-δ. By using the Green function, the solution �̄ is approximated as

�̄(ρ,ϕ, z̄) �
∫ ∞

0
dλ

∫ ∞

−∞
dz̄′

∫ a

ρ

ρ′dρ′
∫ 2π

0
dϕ′

∞∑
m=0

cZ0εm

2π2 cos m(ϕ − ϕ′)
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×
[

Km(λρ
′)− Km(λa)

Im(λa)
Im(λρ

′)
]

Im(λρ) cos λ(z̄ − z̄′)

× eNb

exp
(
− z̄′2

2σ̄ 2
z

)
√

2πσ̄z

exp
(
− (ρ′ cosϕ′−r0 cos θ0)

2+(ρ′ sin ϕ′−r0 sin θ0)
2

2σ 2
x

)
2πσ 2

x

+
∫ ∞

0
dλ

∫ ∞

−∞
dz̄′

∫ ρ

0
ρ′dρ′

∫ 2π

0
dϕ′

∞∑
m=0

cZ0εm

2π2 cos m(ϕ − ϕ′)

×
[

Km(λρ)− Km(λa)

Im(λa)
Im(λρ)

]
Im(λρ

′) cos λ(z̄ − z̄′)

× eNb

exp
(
− z̄′2

2σ̄ 2
z

)
√

2πσ̄z

exp
(
− (ρ′ cosϕ′−r0 cos θ0)

2+(ρ′ sin ϕ′−r0 sin θ0)
2

2σ 2
x

)
2πσ 2

x
. (A8)

By using the formulae∫ 2π

0
dϕ′ cos m(ϕ − ϕ′) exp

(
ρ′r0 cos(ϕ′ − θ0)

σ 2
x

)
= 2π Im(

ρ′r0

σ 2
x
) cos(m(ϕ − θ0)), (A9)

1√
2πσ̄z

∫ ∞

−∞
dz̄′ exp

(
− z̄′2

2σ̄ 2
z

)
cos λ(z̄ − z̄′) = exp

(
−λ

2σ̄ 2
z

2

)
cos λz̄, (A10)

the integrations in the azimuthal and longitudinal directions in Eq. (A8) are performed, so that we
get

�̄(ρ,ϕ, z̄) =
∫ a

ρ

ρ′dρ′
∞∑

m=0

cZ0εm

2π2 eNb

exp
(

−ρ′2+r2
0

2σ 2
x

)
σ 2

x
Im(

ρ′r0

σ 2
x
) cos(m(ϕ − θ0))

×
∫ ∞

0
dλ

[
Km(λρ

′)− Km(λa)

Im(λa)
Im(λρ

′)
]

Im(λρ) cos λz̄ exp
(

−λ
2σ̄ 2

z

2

)

+
∫ ρ

0
ρ′dρ′

∞∑
m=0

cZ0εm

2π2 eNb

exp
(

−ρ′2+r2
0

2σ 2
x

)
σ 2

x
Im(

ρ′r0

σ 2
x
) cos(m(ϕ − θ0))

×
∫ ∞

0
dλ

[
Km(λρ)− Km(λa)

Im(λa)
Im(λρ)

]
Im(λρ

′) cos λz̄ exp
(

−λ
2σ̄ 2

z

2

)
. (A11)

The potential �̄c felt at the bunch center is calculated by plugging in ρ = r0 and ϕ = θ0 [26].
Figure 18 illustrates typical behavior of the potential �̄c(z̄ = 0) calculated by using the beam
parameters at the ramping time 15 ms in the RCS.

Here, let us expand the result for small ρ around zero. As a result, it is expressed as

�̄c(x, y, z̄) � �̄coh,0(z̄)+ �̄coh,2(z̄)(x
2 + y2)+ �̄coh,4(z̄)(x

2 + y2)2, (A12)

where

�̄coh,0(z̄) = cZ0eNb

2π2σ 2
x

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ exp

(
−λ

2σ̄ 2
z

2

)

×
[

K0(λρ
′)− K0(λa)

I0(λa)
I0(λρ

′)
]

cos λz̄, (A13)
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Fig. 18. Typical behavior of the potential �̄c(z̄ = 0) calculated by using the beam parameters at the ramping
time 15 ms in the RCS.

�̄coh,2(z̄) = cZ0eNb

2π2σ 2
x

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ

(
λ2

4
+ ρ′2

4σ 4
x

− 1

2σ 2
x

)
exp

(
−λ

2σ̄ 2
z

2

)

×
[

K0(λρ
′)− K0(λa)

I0(λa)
I0(λρ

′)
]

cos λz̄

+ cZ0eNb

4σ 4
x π

2

∫ a

0
dρ′ρ′2 exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλλ exp

(
−λ

2σ̄ 2
z

2

)

×
[

K1(λρ
′)− K1(λa)

I1(λa)
I1(λρ

′)
]

cos λz̄ − cZ0eNb

8π2σ 2
x σ̄z

(π
2

)1/2
exp

(
− z̄2

2σ̄ 2
z

)
, (A14)

�̄coh,4(z̄) = cZ0eNb

16π2σ 2
x

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ

(
λ4

8
+ ρ′2λ2

2σ 4
x

+ ρ′4

8σ 8
x

− λ2

σ 2
x

− ρ′2

σ 6
x

+ 1

σ 4
x

)

× exp
(

−λ
2σ̄ 2

z

2

)[
K0(λρ

′)− K0(λa)

I0(λa)
I0(λρ

′)
]

cos λz̄

+ cZ0eNb

8π2σ 4
x

∫ a

0
dρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ

(
ρ′4λ
4σ 4

x
+ ρ′2λ3

4
− ρ′2λ

σ 2
x

)
exp

(
−λ

2σ̄ 2
z

2

)

×
[

K1(λρ
′)− K1(λa)

I1(λa)
I1(λρ

′)
]

cos λz̄

+ cZ0eNb

64π2σ 6
x

∫ a

0
dρ′ exp

(
− ρ′2

2σ 2
x

)
ρ′3

∫ ∞

0
dλλ2 exp

(
−λ

2σ̄ 2
z

2

)

×
[

K2(λρ
′)− K2(λa)

I2(λa)
I2(λρ

′)
]

cos λz̄

+ cZ0eNb

π2σ 2
x

(
−(σ̄

2
z − z̄2)

128σ̄ 5
z

+ 1

64σ 2
x σ̄z

)(π
2

)1/2
exp

(
− z̄2

2σ̄ 2
z

)
. (A15)

The terms �̄coh,2(z̄) and �̄coh,4(z̄) contribute to the coherent space charge tune shift, and to the
nonlinear motion of the beam, respectively.
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The scalar potential � and the vector potential Az in the lab-frame (ct, x, y, z) are given by

�(x, y, z − βsct) = γs�̄(x, y, γs(z − βsct)), (A16)

Az(x, y, z − βsct) = βs

c
γs�̄(x, y, γs(z − βsct)), (A17)

respectively, where βs is the Lorentz-β of the reference particle.

Appendix B. Derivation of the Hamiltonian with action-angle variables including
horizontal wake and space charge effects

In this section, we will obtain the Hamiltonian Eq. (B50) with action-angle variables, by successively
canonically transforming Hamiltonians.

The original Hamiltonian in an electromagnetic field is approximately given by [24,25]

Ho = −ps

(
1 + x

ρ

)
�E

psβsc
+ ps

2γ 2
s

(
�E

psβsc

)2

+ p2
x + p2

y

2ps
+ ps

2
Kx(s)

(
1 − �E

Es

)
x2

+ ps

2
Ky(s)

(
1 − �E

Es

)
y2 − psx

Es
Fx + e�c(x, y, s − cβst)

βsγ 2
s c

− eVrf

ωRF
δp(s) cos

(
ωRFt − hs

R
+ ϕs

)
+ . . . , (B1)

where ϕs is the synchronous phase; ps is the constant momentum on the synchronous particle; Es =
cps/βs is the particle energy on the designed orbit; βs and γs are the Lorentz-β and γ , respectively;
�E is given by �E = E − Es; Fx is the horizontal wake force; δp(s) is the periodic δ-function;
c is the velocity of light; Kx and Ky are the periodic focusing forces in the horizontal and vertical
directions, respectively;�c is the space charge potential; h is harmonic number; Vrf is the amplitude
of the radio frequency (RF) voltage; 1/ρ is the local curvature around the machine; R is the average
radius of the machine; and ωRF is the angular frequency of the RF voltage, which is expressed as

ωRF = cβsh

R
. (B2)

The orbit length s is used as an independent variable. The canonical variables are (x, px), (y, py), and
(t, −E) for the horizontal, vertical, and the longitudinal directions, respectively. It is noticeable that
the contribution from the vector potentials is included in the Hamiltonian, where the contributions
from both the scalar and vector potentials are confined to the scalar potential only with Eqs. (A16)
and (A17).

Using the generating function F1,

F1(x, p̄x, y, p̄y, t, −�Ē) =
(

x − �Ē

psβsc
D

)
p̄x + yp̄y − t(�Ē + Es)

+ �Ē

βsc

dD

ds
x − ps

2

(
�Ē

psβsc

)2

D
dD

ds
, (B3)

we make a canonical transformation from the variables (x, px), (y, py), and (t, −E) to (x̄, p̄x), (ȳ, p̄y),
and (t̄, −�Ē), respectively, according to

px = ∂F1

∂x
= p̄x + �Ē

βsc

dD

ds
, (B4)
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x̄ = ∂F1

∂ p̄x
= x − �Ē

psβsc
D, (B5)

py = p̄y, (B6)

ȳ = y, (B7)

−E = ∂F1

∂t
= −�Ē − Es, (B8)

t̄ = − ∂F1

∂�Ē
= Dp̄x

psβsc
+ t − 1

βsc

dD

ds
x̄, (B9)

where the dispersion function D(s) in the horizontal direction satisfies the relation

d2D

ds2 + KxD = 1

ρ
. (B10)

The new Hamiltonian H1 is obtained as

H1 � p̄2
x + p̄2

y

2ps
+ ps

2

(
1 − �Ē

Es

)
(Kxx̄2 + Kyȳ2)− ps

Es

(
x̄ + �Ē

psβsc
D

)
Fx

+
e�c

[
x̄ + �Ē

psβsc D, ȳ, s − cβs

(
t̄ − Dp̄x

psβsc + 1
βsc

dD
ds x̄

)]
βsγ 2

s c

− �Ē

βsc
+ ps

2γ 2
s

(
�Ē

psβsc

)2

− ps

2

(
�Ē

psβsc

)2
D

ρ
− Kx

D

ps
x̄
�Ē2

c2 − 1

2
Kx

D2

βs

�Ē3

p2
s c3

− eVrf

ωRF
δp(s) cos

(
ωRF t̄ − hs

R
+ ϕs

)
. (B11)

In the above derivation, the assumption is made that D(s = 0) = dD(s = 0)/ds = 0 at the RF cavity.
Next, using the generating function F2,

F2(x̄, px, ȳ, py, W , t̄) = x̄p̃x + ȳp̃y + W

(
ωRF t̄ − hs

R

)
, (B12)

we make a canonical transform from (x̄, p̄x), (ȳ, p̄y), (t̄, −�Ē) to (x̃, p̃x), (ỹ, p̃y), (φcp, W ), respec-
tively, using

p̄x = ∂F2

∂ x̄
= p̃x, (B13)

x̃ = ∂F2

∂ p̃x
= x̄, (B14)

p̄y = p̃y, (B15)

ỹ = ȳ, (B16)

−�Ē = ∂F2

∂ t̄
= WωRF, (B17)

φcp = ∂F2

∂W
= ωRF t̄ − hs

R
. (B18)
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Then, the new Hamiltonian H2 is described as

H2 � p̃2
x + p̃2

y

2ps
+ ps

2

(
1 + WωRF

Es

)
(Kxx̃2 + Kyỹ2)

+
e�c

(
x̃ − Wh

psRD, ỹ, − cβsφcp
ωRF

+ Dp̃x
ps

− dD
ds x̃

)
βsγ 2

s c

− ps

Es

(
x̃ − ωRFW

psβsc
D

)
Fx − Kx

D

ps
x̃

W 2ω2
RF

c2 + 1

2
Kx

D2

βs

W 3ω3
RF

p2
s c3

+
(

1

γ 2
s

− D

ρ

)
h2

2R2ps
W 2 − eVrf

ωRF
δp(s) cos(φcp + ϕs), (B19)

where Eq. (B2) is used.
By extracting the Hamiltonian H3,L for the synchrotron oscillation, we obtain

H3,L ≡ − ηh2

2R2ps
W 2 + eVrf cosϕs

4πRωRF
φ2

cp = − ηh2

2R2ps
W 2 − Esc2β4

s

2ηω0Rω2
RF

(νs0

R

)2
φ2

cp, (B20)

where the synchrotron tune νs0 is given by

νs0 = 1

βs

(
−ηheVrf cosϕs

2πEs

)1/2

. (B21)

Accordingly, Eq. (B19) is rewritten as

H2 � H3,L + p̃2
x + p̃2

y

2ps
+ ps

2

(
1 + WωRF

Es

)
(Kxx̃2 + Kyỹ2)

+
e�c

(
x̃ − Wh

psRD, ỹ, − cβsφcp
ωRF

+ Dp̃x
ps

− dD
ds x̃

)
βsγ 2

s c

− ps

Es

(
x̃ − ωRFW

psβsc
D

)
Fx − Kx

D

ps
x̃

W 2ω2
RF

c2 + 1

2
Kx

D2

βs

W 3ω3
RF

p2
s c3

+
(

1

γ 2
s

− D

ρ

)
h2

2R2ps
W 2 − eVrf

ωRF
δp(s) cos(φcp + ϕs)

+ ηh2

2R2ps
W 2 − eVrf cosϕs

4πRωRF
φ2

cp. (B22)

Before describing the Hamiltonian in terms of action-angle variables, let us continue to make the
canonical transformations from (x̃, p̃x), (ỹ, p̃y) to ( ¯̄x, ¯̄px), ( ¯̄y, ¯̄py), respectively, which are generated by
the function F3:

F3( ¯̄x, p̃x, ¯̄y, p̃y) = − ¯̄xp̃x√
ps

−
¯̄yp̃y√

ps
. (B23)

The canonical transformations are expressed as

¯̄px = p̃x√
ps

, x̃ = ¯̄x√
ps

, (B24)
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¯̄py = p̃y√
ps

, ỹ = ¯̄y√
ps

. (B25)

The new Hamiltonian H3 is divided as

H3 = H3,L + H3,T +�H3,T +�H3,L, (B26)

where H3,L is given by Eq. (B20), and

H3,T ≡
¯̄p2

x + ¯̄p2
y

2
+ 1

2
(Kx ¯̄x2 + Ky ¯̄y2)− ps

Es

( ¯̄x√
ps

− ωRFW

psβsc
D

)
Fx, (B27)

�H3,T = WωRF

2Es
(Kx ¯̄x2 + Ky ¯̄y2)+

e�c

( ¯̄x√
ps

− Wh
psRD,

¯̄y√
ps

, − cβsφcp
ωRF

+ D ¯̄px√
ps

− dD
ds

¯̄x√
ps

)
βsγ 2

s c

− Kx
D

ps

¯̄x√
ps

W 2ω2
RF

c2 + 1

2
Kx

D2

βs

W 3ω3
RF

p2
s c3 , (B28)

�H3,L =
(

1

γ 2
s

− D

ρ

)
h2

2R2ps
W 2 − eVrf

ωRF
δp(s) cos(φcp + ϕs)+ ηh2

2R2ps
W 2 − eVrf cosϕs

4πRωRF
φ2

cp.

(B29)

For the longitudinal motion, let us consider the generating function

F(φcp,φL, s) = − cpsβsνs0

2h2|η|ω0
φ2

cp tan
(
φL − π

2

)
, (B30)

which gives

φcp =
(

2JLh2|η|ω0

cpsβsνs0

)1/2

sin φL, (B31)

W =
(

2JLνs0cpsβs

|η|h2ω0

)1/2

cosφL. (B32)

Consequently, the Hamiltonian is written as

H3,L +�H3,L = −|η|
η

νs0

R
JL + |η|

η

νs0

R
JL sin2 φL

− eVrf

ωRF
δp(s) cos

((
2JLh2|η|ω0

cpsβsνs0

)1/2

sin φL + ϕs

)
. (B33)

To extract the Twiss parameters dependence from the transverse variables ( ¯̄x, ¯̄px) and ( ¯̄y, ¯̄py), we
consider the canonical transformations generated by the function F4:

F4( ¯̄x,ψx, ¯̄y,ψy, s) = − ¯̄x2

2βx(s)

[
tan

(
ψx + φx(s)− Qx

R
s

)
+ αx(s)

]

− ¯̄y2

2βy(s)

[
tan

(
ψy + φy(s)− Qy

R
s

)
+ αy(s)

]
, (B34)
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φx(s) =
∫ s ds

βx(s)
, (B35)

φy(s) =
∫ s ds

βy(s)
. (B36)

We obtain the canonical transformations from ( ¯̄x, ¯̄px), ( ¯̄y, ¯̄py) to (Jx,ψx), (Jy,ψy), respectively, as

¯̄px = ∂F4

∂ ¯̄x = − ¯̄x
βx(s)

[
tan

(
ψx + φx(s)− Qx

R
s

)
+ αx(s)

]
, (B37)

Jx = − ∂F4

∂ψx
= ¯̄x2

2βx(s) cos2
(
ψx + φx(s)− Qx

R s
) , (B38)

¯̄py = − ¯̄y
βy(s)

[
tan

(
ψy + φy(s)− Qy

R
s

)
+ αy(s)

]
, (B39)

Jy = ¯̄y2

2βy(s) cos2
(
ψy + φy(s)− Qy

R s
) , (B40)

where the Twiss parameters satisfy

d2

ds2

√
βi + Ki

√
βi − 1

(
√
βi)3

= 0, (B41)

αi = −1

2

dβi

ds
, (B42)

βiγs,i − α2
i = 1, (B43)

and i denotes x or y.
Thus, the new Hamiltonian H4 is expressed as

H4 � H4,0 +�H4, (B44)

where

H4,0 = QxJx

R
+ QyJy

R
− η

|η|
νs0JL

R

− 2βs

c

((
βx(s)Jx

2ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
− D(s)

βs

(
ω0νs0JL

2Es|η|
)1/2

cosφL

)
Fx,

(B45)

�H4 = Kxβx(s)Jx

(
2JLνs0β

2
s ω0

|η|Es

)1/2

cosφL cos2
(
ψx + φx(s)− Qx

R
s

)

+ Kyβy(s)Jy

(
2JLνs0β

2
s ω0

|η|Es

)1/2

cosφL cos2
(
ψy + φy(s)− Qy

R
s

)
+ e�c(X , Y , Z)

βsγ 2
s c

− KxD

(
2βx(s)Jx

cβsEs

)1/2 2JLω0νs0βs

|η| cos
(
ψx + φx(s)− Qx

R
s

)
cos2 φL

+ Kx
√

2
D2ω3

0√
Esc

(
JLνs0

|η|ω0

)3/2

cos3 φL
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+ |η|
η

νs0

R
JL sin2 φL − eVrf

ωRF
δp(s) cos

((
2JLh2|η|ω0

cpsβsνs0

)1/2

sin φL + ϕs

)
, (B46)

X =
(

2βx(s)Jx

ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
− h

psR
D

(
2JLνs0cpsβs

|η|h2ω0

)1/2

cosφL, (B47)

Y =
(

2βy(s)Jy

ps

)1/2

cos
(
ψy + φy(s)− Qy

R
s

)
, (B48)

Z = cβs

ωRF

(
2JLh2|η|ω0

cpsβsνs0

)1/2

sin φL

+ D√
ps

(
2Jx

βx(s)

)1/2 [
αx(s) cos

(
ψx + φx(s)− Qx

R
s

)
+ sin

(
ψx + φx(s)− Qx

R
s

)]

+ dD

ds

(
2βx(s)Jx

ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
. (B49)

The application of the canonical perturbation theory (see, e.g., Ref. [36]) for the Hamiltonian and
neglecting the higher-order terms lead to the new Hamiltonian H :

H � QxJx + QyJy + JLνs0 + Ux + Y ′, (B50)

with its independent variable θ = s/R, where

Ux = −R
2βs

c

((
βx(s)Jx

2ps

)1/2

cos
(
ψx + φx(s)− Qx

R
s

)
− D(s)

βs

(
ω0νs0JL

2Es|η|
)1/2

cosφL

)
Fx,

(B51)

Y ′ = eR

8π3βsγ 2
s c

∫ 2π

0
dψx

∫ 2π

0
dψy

∫ 2π

0
dφL

×�c

[(
2βx(s)Jx

ps

)1/2

cosψx − D(s)

R

(
2JLνs0cβs

|η|psω0

)1/2

cosφL,
(

2βy(s)Jy

ps

)1/2

cosψy,

c

h

(
2JL|η|
ω0Esνs0

)1/2

sin φL + D(s)√
ps

(
2Jx

βx(s)

)1/2

(αx(s) cosψx + sinψx)

+dD

ds

(
2βx(s)Jx

ps

)1/2

cosψx

]
, (B52)

Ux and Y ′ are the effect of the horizontal wake and the space charge forces, respectively.
Here, we consider a rather nonrelativistic condition, namely, a long bunch beam in the ring with

the conditions

(
2βx(s)Jx

ps

)1/2

� |D|
R

(
2JLνs0cβs

|η|psω0

)1/2

, (B53)

∣∣∣∣∣ D√
ps

(
2Jx

βx(s)

)1/2

(αx(s)+ 1)+ dD

ds

(
2βx(s)Jx

ps

)1/2
∣∣∣∣∣ � c

h

(
2JL|η|
ω0Esνs0

)1/2

. (B54)
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In this case, the function Y ′ is approximated as

Y ′ = Y ′
coh,0(JL)+ Y ′

coh,2(JL)

(
βx(s)Jx

ps
+ βy(s)Jy

ps

)

+ Y ′
coh,4(JL)

(
3β2

x (s)J
2
x

2
+ 3β2

y (s)J
2
y

2
+ 2βx(s)βy(s)JxJy

)
, (B55)

where

Y ′
coh,0(JL) = eRZ0eNb

2π2βsγsσ 2
x

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ exp

(
−λ

2γ 2
s σ

2
z

2

)

×
[

K0(λρ
′)− K0(λa)

I0(λa)
I0(λρ

′)
]

J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

, (B56)

Y ′
coh,2(JL) = eRZ0eNb

2π2σ 2
x βsγs

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλ

(
λ2

4
+ ρ′2

4σ 4
x

− 1

2σ 2
x

)

× exp
(

−λ
2γ 2

s σ
2
z

2

)[
K0(λρ

′)− K0(λa)

I0(λa)
I0(λρ

′)
]

J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

+ eRZ0eNb

4σ 4
x π

2βsγs

∫ a

0
dρ′ρ′2 exp

(
− ρ′2

2σ 2
x

)∫ ∞

0
dλλ exp

(
−λ

2γ 2
s σ

2
z

2

)

×
[

K1(λρ
′)− K1(λa)

I1(λa)
I1(λρ

′)
]

J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

− eRZ0eNb

8π2βsγ 2
s σ

2
x σz

(π
2

)1/2
exp

(
− c2JL|η|

2σ 2
z h2ω0Esνs0

)
I0

(
c2JL|η|

2σ 2
z h2ω0Esνs0

)
, (B57)

Y ′
coh,4(JL) = eRZ0eNb

16π2σ 2
x βsγsp2

s

∫ a

0
dρ′ρ′ exp

(
− ρ′2

2σ 2
x

)
J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

×
∫ ∞

0
dλ

(
λ4

8
+ ρ′2λ2

2σ 4
x

+ ρ′4

8σ 8
x

− λ2

σ 2
x

− ρ′2

σ 6
x

+ 1

σ 4
x

)
exp

(
−λ

2γ 2
s σ

2
z

2

)

×
[

K0(λρ
′)− K0(λa)

I0(λa)
I0(λρ

′)
]

+ eRZ0eNb

8π2σ 4
x βsγsp2

s

∫ a

0
dρ′ exp

(
− ρ′2

2σ 2
x

)
J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

×
∫ ∞

0
dλ

(
ρ′4λ
4σ 4

x
+ ρ′2λ3

4
− ρ′2λ

σ 2
x

)
exp

(
−λ

2γ 2
s σ

2
z

2

)[
K1(λρ

′)− K1(λa)

I1(λa)
I1(λρ

′)
]

+ eRZ0eNb

64π2σ 6
x βsγsp2

s

∫ a

0
dρ′ exp

(
− ρ′2

2σ 2
x

)
ρ′3

∫ ∞

0
dλλ2 exp

(
−λ

2γ 2
s σ

2
z

2

)

×
[

K2(λρ
′)− K2(λa)

I2(λa)
I2(λρ

′)
]

J0

[
γs
λc

h

(
2JL|η|
ω0Esνs0

)1/2
]

+ eRZ0eNb

βsγ 2
s π

2σ 2
x p2

s

(π
2

)1/2
exp

(
− c2JL|η|

2h2ω0Esνs0σ 2
z

)
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×
[(

− 1

128γ 2
s σ

3
z

+ 1

64σ 2
x σz

+ c2JL|η|
128γ 2

s σ
5
z h2ω0Esνs0

)

×I0

(
c2JL|η|

2h2ω0Esνs0σ 2
z

)
−

c2JL|η|I1(
c2JL|η|

2h2ω0Esνs0σ 2
z
)

128γ 2
s σ

5
z h2ω0Esνs0

⎤
⎦. (B58)

Finally, they are simplified to Eqs. (7), (8), and (9) as in the text, under a typical parameter region.
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