

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

Title	Processes affecting long-term changes in ¹³⁷ Cs concentration in surface sediments off Fukushima
Author(s)	Otosaka Shigeyoshi
Citation	Journal of Oceanography, 73(5), p.559-570 (2017).
Text Version	Author Accepted Manuscript
URL	https://jopss.jaea.go.jp/search/servlet/search?5057599
DOI	https://doi.org/10.1007/s10872-017-0421-5
Right	This is a post-peer-review, pre-copyedit version of an article published in Journal of Oceanography. The final authenticated version is available online at: https://doi.org/10.1007/s10872-017-0421-5

¹³⁷Cs concentration in surface sediments off 2 **Fukushima** 3 Shigeyoshi Otosaka 4 5 Research Group for Environmental Science, Japan Atomic Energy Agency, 2-4 6 Shirakata, Tokai, Ibaraki 319-1195, Japan 7 8 Phone +81.282.5171, FAX +81.282.6760 9 Email otosaka.shigeyoshi@jaea.go.jp 10 11 12 Abstract Temporal changes in cesium-137 (¹³⁷Cs) concentrations in the surface (0-10 cm) layer of seabed 13 14 sediment were quantified from continuous observation data at 71 stations within a 150 km radius 15 of the Fukushima Daiichi Nuclear Power Plant, and the primary processes affecting temporal 16 changes were identified. From March 2011 to the end of 2015, about 80% of the initially-deposited 17 137 Cs in the surface sediment in the coastal region (bottom depth ≤ 100 m) region has dissipated (radioactive decay is not included). Such a remarkable change in the ¹³⁷Cs concentration was not 18 19 observed in the offshore (>100m) region. This paper focuses on the following three processes that 20 affected the decrease in the ¹³⁷Cs concentrations, and assesses their relative importance; (1) resuspension and transport of 137 Cs-bound sediment, (2) desorption of 137 Cs from the sediment, 21 22 and (3) dilution of ¹³⁷Cs by vertical mixing of sediment. Consequently, it was estimated that the 23 first two processes together have potentially contributed to reduce the ¹³⁷Cs inventory in the top 10 24 cm of the coastal region by at most 35%. Furthermore, by applying a pulse input sediment mixing 25 model to the observed vertical distribution of sedimentary ¹³⁷Cs, it was also estimated that more than 43% of the ¹³⁷Cs in the surface sediment was transported to deeper sediment layers by vertical 26 mixing of the sediment. This indicates that the decrease of ¹³⁷Cs concentrations in coastal 27 sediments was mainly affected by mixing of ¹³⁷Cs-bound surface sediment with less-contaminated 28 29 sediment in the deeper layers. 30 31 Keywords: Fukushima Daiichi Nuclear Power Plant accident, radiocesium, 32 sediment, suspended particles, bioturbation, particle-seawater interaction 33

Processes affecting long-term changes in

1

1

34 **1.** Introduction

35 Among the radionuclides released by the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP), cesium-137 (137 Cs; half-life = 30.2 years) is a key 36 radionuclide that should be monitored from a viewpoint of middle-term (~50 37 38 years) dose assessment (e.g., Saito et al., 2015). Within a year after the accident that occurred on March 11, 2011, 15-18 PBq of ¹³⁷Cs was released to the North 39 Pacific (Buesseler et al., 2017), and about 1-2% of the ¹³⁷Cs in the ocean 40 (0.2±0.05 PBq) was deposited onto the seabed (Otosaka and Kato, 2014). 41 Continuous monitoring showed that the concentration of ¹³⁷Cs in the surface 42 seawater in the western North Pacific decreased over several orders of magnitude 43 44 from 2011 to 2015, and has approached to the pre-accident level except for the vicinity of the FDNPP (e.g., NRA, 2016). The ¹³⁷Cs concentration in seabed 45 sediment has also shown a decreasing trend, but the rate is slow relative to that in 46 47 the seawater. Consequently, the general characteristics of the lateral distribution of ¹³⁷Cs in seabed sediment have remained over a long period. 48 The ¹³⁷Cs activity in fishes caught in the coastal area off Fukushima has 49 decreased to an insignificant level for radiation dose (Okamura et al., 2016). A 50 51 small portion of the radiocesium in the seabed, however, is in bioavailable 52 fractions of the sediment (Ono et al., 2015; Otosaka and Kobayashi, 2013) and 53 may be incorporated into the marine ecosystem through the benthic food web. Iwata et al. (2013) reported that the ecological half-life of 137 Cs in common 54 55 demersal fish (e.g., marbled sole) is 280-380 days, a few times longer than the 56 biological half-life obtained from a controlled laboratory experiment. Estimations 57 using a dynamic food chain transfer model pointed out that the concentration of ¹³⁷Cs in demersal fishes in the Fukushima coastal area cannot be explained only 58 by the supply of ¹³⁷Cs via the surface seawater (Tateda et al., 2013), and there is 59 another source supplying ¹³⁷Cs in the coastal environment (Tateda et al., 2017). 60 61 Thus, the importance of a clear understanding of the processes affecting the 62 long-term change in the radiocesium concentration in the seabed sediments is needed in order to reconstruct the impact of the accident on the marine ecosystem, 63 64 as well as to predict the effect of nuclear incidents which may take place in future. 65 In the region off Fukushima, Cs bound to seabed sediment is often 66 resuspended and transported laterally according to the turbulent flow of the

bottom water current (Yagi et al., 2015; Otosaka and Kobayashi, 2013).

Depending on the hydrographic conditions, such suspended particles sometimesare transported offshore where they are re-incorporated into the seabed (Ikehara et

70 al., 2014; Buesseler et al., 2015).

It is known that the majority of radiocesium in sediments is tightly adsorbed on the surface of clay minerals and the mobility is relatively low. However, as mentioned above, desorbable ¹³⁷Cs is also found in seabed sediment (Otosaka and Kobayashi, 2013), suspended particles (Takata et al., 2015), and soils (Murota et al., 2016). Although the expected desorption rate is quite slow, such desorbable ¹³⁷Cs from the seabed sediment can be incorporated by the benthos (Wang et al., 2016).

78 Bioturbation and bioirrigation are key processes for the vertical mixing of the 79 sediment particles and pore water (e.g. Teal et al., 2008). Such processes were 80 observed in the coastal region of this study, even though the benthic ecosystems 81 of this area were once severely affected by a tsunami in 2011 (Seike et al., 2016). 82 Black and Buesseler (2014) suggested that bioturbation efficiently transports ¹³⁷Cs 83 from the surface to deeper layers of the sediment. Additionally, in the shallower 84 (~20 m) regions, wave-derived mixing of surface sediment occurs regularly (e.g., Sawaragi, 1995). Such vertical mixing of sediment also reduces the apparent ¹³⁷Cs 85 86 concentrations in the surface sediment.

87 In this study, continuous monitoring data of seabed sediment in the 88 surrounding region of Fukushima (~150 km radius from the FDNPP) were 89 systematically compiled, to provide a more comprehensive understanding of the temporal changes in the inventory of sedimentary ¹³⁷Cs in the first 5 years after 90 91 the accident. Furthermore, this study assessed the effects of the following major processes on the temporal change in the ¹³⁷Cs abundance: (1) resuspension and 92 93 lateral transport of radiocesium-bound particles, (2) leaching of radiocesium from 94 sediments, and (3) downward transport of sedimentary radiocesium due to vertical 95 mixing of the sediment.

96

97 2 Methods

98 2.1 Data sources

Data from monitoring of ¹³⁷Cs in seabed sediment observed between 2011 99 100 and 2015 were used for the analysis. All data were obtained from the region 101 within a 150 km radius of FDNPP. In addition to sediment data from 18 stations 102 obtained by this study, data at 53 stations from monitoring programs of the 103 Ministry of the Environment, Japan (MOE, 2013; 2016a; 2016b), and of the 104 Tokyo Electric Power Co. (TEPCO), reported by the Nuclear Regulation 105 Authority, Japan (NRA, 2016) were compiled in the dataset (Table 1, Fig. 1). For 106 all stations, ¹³⁷Cs concentrations are from the top 10 cm of the sediment. The 0-10 107 cm layer was selected because it includes the sediment-water interface and 108 important habitats for benthic biota that may affect the concentration of 109 radionuclides in the ecosystem over decades. Topographic data for the TEPCO 110 stations were obtained from the 1-minute Gridded Global Relief Data (ETOPO2v2) (NOAA, 2006). 111

112

113 **2.2 Sampling and sample analysis**

114 Seabed sediment was collected using a multiple corer or a Smith-McIntyre 115 grab sampler. The sampling was carried out with cooperation of R/V Hakuho 116 maru, R/V Tansei maru, R/V Daisan Kaiyo maru, R/V Shinsei maru, and the R/V 117 Seikai. After recovery, core samples were cut into 1-2 cm intervals and kept in a 118 freezer until further processing for analysis. After being transferred to a laboratory 119 on land, sediment samples were dried at 105°C, the coarse fractions were removed 120 using a 2-mm sieve, and crushed (IAEA, 2003). Polystyrene container (43 or 87 mL) were filled with the powdered samples, and specific gamma-rays of ¹³⁷Cs 121 122 (661 keV) were measured using a coaxial Ge detector (ORTEC GEM20P4, 1.7 keV/1.33 MeV resolution and 29-31% relative efficiencies). Specific gamma-rays 123 124 of ²¹⁰Pb (46.5 keV) and ²¹⁴Pb (352 keV) were measured using a low-energy photon detector (ORTEC LOAx-51370/20P, 0.625 keV/122 keV of resolution), 125 and activities of the excess- 210 Pb (210 Pb_{ex}) were calculated by subtracting 214 Pb 126 activities from the ²¹⁰Pb activities on the assumption that the activities of the 127 ²²⁶Ra-derived ²¹⁰Pb is equal to those of ²¹⁴Pb. Concentrations of radiocesium 128

reported in the following sections are represented as Bq kg⁻¹ dry weight. Activities of radiocesium were decay-corrected to March 11, 2011, and activities of 210 Pb_{ex} were decay-corrected to the date of sampling.

Water content and dry bulk density were measured with a given volume of
plastic tube. From the measured ¹³⁷Cs activity and dry bulk density in each
sample, cumulative ¹³⁷Cs concentration in the 0-10 cm sedimentary layer was
calculated.

The loss upon ignition method was used to determine the organic matter content. Samples were heated in a muffle furnace at 500°C for 24 hours. Grainsize distributions of the defrosted (undried) sediment were measured using a laser diffraction particle size analyzer (Shimadzu, SALD-2000J). 0.1% pyrophosphoric acid solution was used as dispersant for the grain-size measurement.

142 **2.3 Data analysis**

143 2.3.1 Estimation of variation rates in ¹³⁷Cs concentrations in surface 144 sediment

At most coastal stations, the decay-corrected ¹³⁷Cs concentrations in the sediment changed exponentially with time (see subsection 3.1). As a first step to assess the effect of factors affecting the temporal change, except for radioactive decay, the trend, for convenience, was expressed as an exponential curve (eq. (1)), and the exponent α was calculated,

150

151
$$I = I_0 \exp(\alpha \times \Delta t) \tag{1}$$

152

where, *I* is ¹³⁷Cs concentration in the sediment, I_0 is ¹³⁷Cs concentration on the reference date (March 11, 2011), Δt is the elapsed time between the reference date and date of observations. Both ¹³⁷Cs activities of *I* and I_0 are decay-corrected to the reference date.

157 Based on the exponent α , the variation rate of ¹³⁷Cs activity in the seabed 158 sediment (*X*) was calculated by eq. (2).

159

160 $X(\%) = (e^{\alpha} - 1) \times 100$ (2)

161

162 Uncertainty of the variation rate at each station (*u*) was defined as eq. (3),

163

164
$$u = \sqrt{\frac{\sigma^2}{\sum (t_i - \bar{t})^2}}$$
(3)

165

166 where, σ is variance of the average of ln [*I*] in each station, t_i is the i th data of 167 time (*t*), and \overline{t} is the average of *t*. 168

169 2.3.2 Evaluation of vertical mixing of surface sediment

The effect of vertical mixing of the sediment on the vertical distribution of 170 ¹³⁷Cs was evaluated at 10 stations. A theoretical vertical distribution of ¹³⁷Cs at 171 the date of observation was estimated using a 1-D biodiffusion model (Cochran et 172 173 al., 1985), and then the effect of bioturbation was assessed by comparing the theoretical and observed vertical profiles of ¹³⁷Cs in the sediment. 174 In this biodiffusion model, a certain amount of ¹³⁷Cs (assumed to be the same 175 as I, here) was set for the surficial sediment (0-1 cm layer), and "diffused" to the 176 177 deeper layers with a biodiffusion coefficient D_b (eq. (4)).

178

179

$$C = C_0 \exp\left(\frac{-z^2}{4D_b \Delta t}\right) \tag{4}$$

180

181 where, *C*: ¹³⁷Cs activity, and Δt : time after the reference date (April 6, 2011) when 182 the highest ¹³⁷Cs concentration was observed in the surface seawater of the coastal 183 area of Fukushima (Oikawa et al., 2013).

184 At eight stations where a vertical gradient of 210 Pb_{ex} was observed, D_b values 185 were calculated using eq (5).

186

187
$$A = A_0 \exp\left(-\sqrt{\frac{\lambda}{D_b}} z\right)$$
(5)

188

189 where, *A*: ²¹⁰Pb_{ex} activity, *z*: sediment depth, and λ : decay constant of ²¹⁰Pb 190 (0.0312 year⁻¹). The eq (5) is based on the assumption that sedimentation is much 191 smaller than bioturbation. In the coastal stations where the gradation of 210 Pb_{ex} did not appear, a maximum D_b value was estimated assuming that the observed decreasing trend of 137 Cs concentration was controlled by the vertical mixing of sediment. The validity of the maximum D_b is discussed in subsection 4.3.

197 **3. Results**

3.1 Temporal change in ¹³⁷Cs concentration in the upper (0-10cm) sediment

The temporal change in ¹³⁷Cs concentrations in surface (0-10cm) sediment 200 collected from the coastal area (bottom depth ≤ 100 m) of Miyagi, Fukushima, 201 202 Ibaraki prefectures, and offshore (>100 m) are shown in Figs. 2a, b, c, and d, respectively. Except for the offshore stations (Fig. 2d), ¹³⁷Cs concentrations in the 203 surface sediment generally showed a decreasing trend. Considering that the ¹³⁷Cs 204 205 concentrations were decay-corrected to a reference date, these trends are not 206 affected by radioactive decay, but by other processes leading to a decrease in 207 radiocesium concentration in the seabed sediment. As shown in Figs. 2b and 2c, the rate of decrease in ¹³⁷Cs in surface 208 209 sediments seems to have slowed down with time. This may indicate that fitting of 210 an exponential curve on this temporal change is not appropriate, but this study 211 attempted to generalize trends systematically, and approximated the trends as 212 exponential functions. Calculated exponents in Miyagi, Fukushima, and Ibaraki coastal areas were $-0.0009 \pm 0.0004 \text{ day}^{-1}$ (n = 32), $-0.0009 \pm 0.0006 \text{ day}^{-1}$ (n = 213 1,938), -0.0008 \pm 0.0002 day⁻¹ (n = 58) respectively, and there was no clear 214 regional difference in the exponents. 215 216 The exponents similarly calculated for surface seawater near the FDNPP were -0.05- -0.01 day⁻¹ between 2011 and 2012 (Oikawa et al., 2013; Kanda, 217 2013), and about -0.001 day⁻¹ between 2012 and 2015 (Buesseler et al., 2017). 218 219 The exponents for demersal fishes caught in the coastal region were -0.001 - -0.002 day⁻¹, based on monitoring data (MAFF, 2016). The decrease of ¹³⁷Cs 220 221 concentrations in coastal sediments was slower than that for seawater and similar 222 to those in demersal fishes.

In the offshore region, no notable temporal change in 137 Cs concentrations was observed in the surface sediment (Fig. 2d) and values remained in the range of ca. 10 – 100 Bg kg⁻¹.

226 Relative variances between 2011 and 2015 calculated for four sediment parameters (dry bulk density, median diameter, organic matter content, and ¹³⁷Cs 227 228 concentration) are listed in Table 2. In the calculation of the values in the table, 229 relative standard deviations (RSD) were obtained for each station, then median 230 and range of the RSDs were calculated for each parameter. Among the four 231 parameters, dry bulk density showed the lowest variance, and the RSD calculated 232 for 18 stations was less than 12% (median: 6.7%). The median RSDs of particle size and organic matter content were 15% and 29%, respectively. Median RSD of 233 ¹³⁷Cs concentration was 43% (range: 1-124%), and was highest of the four 234 235 parameters.

This result indicates that temporal change in the dry bulk density in the surface sediments of this study area is quite small, even though the ¹³⁷Cs concentration changed continuously between 2011 and 2015. Accordingly, we can consider that the temporal changes in ¹³⁷Cs concentration correspond to that of the ¹³⁷Cs inventory in the surface sediments.

241

242 **3.2 Variation rate of ¹³⁷Cs inventory in surface sediment**

In Figure 3, variation rates of ¹³⁷Cs in the surface sediment are plotted 243 against bottom depth. The calculated variation rate ranged between -63% vear⁻¹ 244 and +54% year⁻¹, and were generally lower in the coastal ($\leq 100 \text{ m depth}$) 245 sediment, consists of medium and coarse sand. The geometric mean of the 246 variation rate in the coastal region was -27% year⁻¹ (Table 3). This result 247 suggested that the ¹³⁷Cs was dissipated from the surface sediment in the coastal 248 249 region. The variation rates in the offshore region (>100 m) plotted around 0% year⁻¹ 250

except for a high rate (+48% year⁻¹) in Sta. FS1 where the smallest initial 137 Cs inventory was recorded (0.1 kBg m⁻². Appendix A2). The geometric mean of the

252 inventory was recorded (0.1 KBq in ', Appendix A2). The geometric mean of the 253 variation rate in the offshore was +5% year⁻¹, and this result indicates that the

254 inventory of sedimentary ¹³⁷Cs in the offshore region has remained relatively

constant until the end of 2015.

256 In order to investigate the distribution of variation rates in the coastal region 257 in detail, latitudinal distributions of the variation rate obtained from the 63 coastal stations (≤ 100 m: Fig. 4a) is shown in Figure 4b. The majority of the variation 258 rates in Figure 4 ranged between -50- -10% year⁻¹. For the coastal stations, there 259 was no notable latitudinal trend in the initial $(2011)^{137}$ Cs concentration in the 260 261 surface sediment (Fig. 4c). Considering that the initial distribution of sedimentary ¹³⁷Cs concentration was established by contact of contaminated seawater with the 262 sediment surface (Otosaka et al., 2014; Misumi et al., 2014), the latitude-263 independent distribution of sedimentary ¹³⁷Cs in Figure 4c would correspond the 264 distribution of contaminated seawater in the initial stages after the accident. 265 Consequently, the net change in the sedimentary ¹³⁷Cs (expressed as the "variation" 266 index": product of ¹³⁷Cs variation rate by concentration) differed markedly 267 between some stations (Fig. 4d). 268 269 Incidentally, in Figure 4b, some coastal stations showed exceptionally high (>-10% year⁻¹) variation rates. These stations can be categorized into 3 groups; (i) 270 271 1 station, 145 km northeast of the FDNPP, (ii) 4 stations in the area 73-114 km 272 south of the FDNPP, and (iii) 10 stations in the vicinity of the FDNPP. All 273 stations in groups (i) and (ii) are located around the boundary between the coastal 274 and offshore regions (71-95 m depth) and are far from the FDNPP. Therefore, we 275 can consider that results from the groups (i) and (ii) showed features closer to 276 those of offshore regions, rather than the coastal region. Water depth of stations in group (iii), on the contrary, ranged between 5 m 277 and 66 m (19 m in average). It is known that 137 Cs concentration in seawater of 278 the FDNPP's harbor still has remained at more than 100 times higher than 279 280 concentrations outside the harbor, although the level is decreasing with time 281 (TEPCO, 2016). Considering that the harbor water exchanges with outside water at a certain rate (e.g., 44% day⁻¹: Kanda, 2013), the high variation rate observed in 282

- the group (iii) stations may be affected by continuing supply of local input of
- ¹³⁷Cs from the harbor or the neighboring regions. In fact, relatively high
- 285 concentrations of ¹³⁷Cs are detected in surface seawater within 10 km radius of the
- 286 NPP (Fukuda et al., 2016). Nevertheless, such areas showing "exceptionally" high
- variation rates are limited compared to the entire area investigated by this study.

288

289 **3.3 Vertical profiles of ¹³⁷Cs in sediment**

Vertical profiles of ¹³⁷Cs concentrations at 10 stations observed between 290 2012 and 2015 are shown in Figure 5. At most stations, ¹³⁷Cs showed higher 291 concentrations in the surface sediment and decreased with increasing sediment 292 293 detpth. In the coastal region (≤ 100 m), significant proportion of accident-derived ¹³⁷Cs migrated to deeper sediment layers. In these coastal stations, typical 294 structures of vertical mixing were observed from ²¹⁰Pbx_{ex} profiles (data are shown 295 in Appendix A3), and considerable population of macrobenthos, such as 296 297 polychaetes (*Capitellidae gen sp.*, *Maldanella sp.*), were observed in the 3-15 cm sedimentary layers. In the vicinity of the FDNPP (St. NP0 and NP1), unusually 298 high concentrations of ¹³⁷Cs, exceeding 1,000 Bq kg⁻¹, were observed in a 299 subsurface horizon in each core. Although the general distribution of the accident-300 301 derived radiocesium in sediment was established by deposition of dissolved 302 radiocesium in the early stage after the accident, a scattering of debris particles during the explosion of the FDNPP's facility in March 2011 has also pointed out 303 as a mechanism bringing radiocesium to the seabed in the vicinity of the FDNPP 304 (Adachi et al., 2013). Such a heterogeneous distribution of ¹³⁷Cs in the seabed 305 sediment would be derived by a local deposition of highly ¹³⁷Cs-enriched 306 307 particles. On the contrary to the coastal region, most $(>94\%)^{137}$ Cs in the offshore 308

sediment remained in the upper 10 cm. The ¹³⁷Cs concentrations showed a
maximum in the intermediate (2-5 cm) layer in several offshore stations (St. K6
and J7, Fig. 5).

312

313 4. Discussion

4.1 Resuspension as a potential process affecting radiocesium inventory in surface sediment

The 137 Cs concentrations in the coastal sediment generally decreased within a certain range variation (Fig. 4b), regardless of the wide range of initial inventory (concentration) of 137 Cs (Fig. 4c). It can be considered that a common mechanism might have affected the decrease of 137 Cs concentrations in the coastal sediments.

320 In the following subsections, the relative importance of the three major

mechanisms that seem to be particularly important for the decrease of the
sedimentary ¹³⁷Cs concentration, is discussed. Since the primary purpose of this
paper is to overview the general temporal change occurring in a mesoscale (10100km) area, discussion of local and "expectable" processes are only minimally
presented.

326 Firstly, we focus on the loss of sedimentary radiocesium due to lateral 327 transport of surface sediment. Fine sediment particles generally have higher 328 concentrations of radionuclides due to their larger specific surface area (e.g., Abril 329 and Fraga, 1996), and this tendency was observed in the seabed sediments after 330 the FDNNP accident (Otosaka and Kobayashi, 2013; Ambe et al., 2014). It has also been suggested that such high concentrations of ¹³⁷Cs are also influenced by a 331 332 high content of organic matter in the sediment (Ono et al., 2015). Recent field 333 observations in the coastal area off Fukushima pointed out that westward long 334 period waves often increase the shear stress near the seabed, and induce 335 resuspension of bottom sediment (Yagi et al., 2015). This effect is temporally 336 enhanced by stormy weather, and turbidity near the seafloor during storms 337 approaches 10 ppm. Although it is difficult to generalize on the relationship 338 between the waves and mobility of suspended particles, it is reasonable that 339 highly mobile (i.e., small and low density) particles on the coastal seafloor can be 340 resuspended during storms and exported laterally. Nevertheless, assuming that the 341 turbidity is 10 ppm and the thickness of the highly turbid water is 50 m, the mass of suspended particles would be 0.5 kg m^{-2} , equivalent to only 0.3% of sediment 342 in the 0-10 cm layer (~150 kg m⁻²). If such storms take place 20 times a year, the 343 loss of seabed sediment is estimated to be only about 6%, and is insufficient to 344 reduce 30% of ¹³⁷Cs inventory in the surface sediment. 345 In the coastal region in this study area, it is reported that ¹³⁷Cs concentrations 346 in highly-mobile fine particles ($<75 \mu m$) have several times (~ 6 times) higher 347 348 than those in coarse sand (Otosaka and Kobayashi, 2013). However, the abundance of ¹³⁷Cs associate with fine particles in August 2011 was only 24% of 349

the total 137 Cs in the sediment (Otosaka and Kobayashi, 2013). Therefore, the

351 export of the fine particles hardly decreases the inventory of 137 Cs in sediment

352 continuously at a rate of 30% year⁻¹.

As another estimation, the potential of lateral transport of the suspended particulate radiocesium between the coastal and offshore regions is assessed. In 355 the coastal region, from the results in Table 3, it can be estimated that about 0.13 PBq of ¹³⁷Cs have potentially been "exported" to the offshore or outside of this 356 study area between 2011 and 2015. Time-series sediment traps deployed at 800 m 357 358 depth at approximately 100 km southwest of FDNNP actually observed the export 359 of "coastal" particulate radiocesium to the offshore seabed (Buesseler et al., 360 2015). However, Table 3 also indicates that the increased amount of sedimentary 137 Cs in the offshore region until the end of 2015 (+0.01PBq) corresponds to only 361 6% of the initial ¹³⁷Cs inventory in the coastal sediment (0.16 PBq). Assuming 362 that the increase of sedimentary ¹³⁷Cs in the offshore region is caused by lateral 363 transport of ¹³⁷Cs-bound particles from the coast, the annual export rate of 364 particulate ¹³⁷Cs from the coastal area to the offshore in the 4.8 years is calculated 365 to be about 1.3% year⁻¹. This value generally corresponds with the results from 366 367 the sediment trap experiments (Buesseler et al., 2015), estimating that only 1-2% 368 of sedimentary radiocesium is transported laterally to the offshore annually. These 369 estimates also support the conclusion that the transport of suspended particles 370 between coastal and offshore sediments is insufficient to significantly reduce ¹³⁷Cs inventories in the coastal sediments. 371

372

4.2 Effect of leaching of sediment-bound radiocesium

374 Many studies have suggested that radiocesium is almost irreversibly 375 adsorbed on the surface of clay minerals (e.g., Comans et al., 1991). This 376 irreversibility has also been supported by suspension experiments using seabed 377 sediments (Otosaka and Kobayashi, 2013) and suspended particles (Takata et al., 378 2015) collected from in the surrounding regions off Fukushima, indicating that the dissolvable ¹³⁷Cs fractions are less than 10% of total particulate ¹³⁷Cs. However, 379 these experiments were carried out under a closed system (¹³⁷Cs is in 380 equilibrium), and might therefore underestimate the effect of desorption of 137 Cs 381 382 from the particles. Recent field measurements off Fukushima have observed that dissolved ¹³⁷Cs concentrations in the seawater, overlying the seabed, are several 383 384 times higher than levels in the intermediate layers of the water column (Otosaka et al., in prep.). This indicates that the leaching of ¹³⁷Cs from sediments should not 385 386 be ignored from a long-term viewpoint.

Unfortunately, there is only limited data to quantify the benthic flux of the desorption of ¹³⁷Cs from the seabed, but assuming that the residence time of pore water is long (weeks or longer), and ¹³⁷Cs is in an equilibrium between the pore water and sediment with a typical distribution coefficient (K_d : 3,500 L kg⁻¹; IAEA, 2004), benthic flux of ¹³⁷Cs from the sediment (F_{CS}) can be estimated using Fick's Law (eqs. 6 and 7),

393

394

$$F_{cs} = D_{cs} \times \varphi \times (\frac{Cpw - Cbw}{\Delta Z})$$
(6)

395

396

- $C_{pw} = C_{sed} / K_d \tag{7}$
- 397

398 where, D_{CS} , φ , and ΔZ are whole sediment diffusion coefficient of Cs, porosity of 399 the sediment, and thickness of the diffusion boundary layer, respectively. C_{pw} , 400 C_{bw} , and C_{sed} are concentrations of ¹³⁷Cs in pore water, overlying water, and 401 sediment, respectively.

Assuming $D_{CS} = 2.2 \times 10^{-5} \text{ m}^2 \text{ day}^{-1}$ (Li and Gregory, 1974), $\varphi = 0.41$ (typical 402 value in this study), $C_{bw} = 0$ Bq L⁻¹, and $\Delta Z = 1 \times 10^{-4}$ m (Santschi et al., 1983), as 403 a high estimate, F_{CS} is expressed as $0.026 \times C_{sed}$ Bq m⁻² day⁻¹. As the typical dry 404 bulk density of sediment was 1.3 g mL⁻¹ (Appendix A2), Cs inventory in the 405 surface sediment (with 10 cm thickness) is calculated to be $130 \times C_{sed}$ Bq m⁻². 406 Accordingly, the diffusion of 137 Cs from the sediment to the overlying water can 407 reduce 0.02% of ¹³⁷Cs inventory in sediment in a day, and it indicates that about 408 7% of ¹³⁷Cs can be desorbed from the surface sediment in a year. This estimate 409 suggests that the leaching of ¹³⁷Cs from the sediment cannot reduce the measured 410 decrease of ¹³⁷Cs inventory of 27% year⁻¹ in the surface sediment, while the ¹³⁷Cs 411 benthic flux definitely increases concentrations in the overlying water. 412 413 Additionally, assuming that the porosity of sediment is 0.41 and K_d is 3,500 kg L⁻ ¹, the 137 Cs abundance in the pore water is less than 0.01% of the 137 Cs inventory 414 in the surface sediment. Even if the pore water is completely exchanged with the 415 416 less-contaminated overlying water several times in a year, the loss of sedimentary ¹³⁷Cs by the exchange of pore water would be negligible. 417 418

419 **4.3 Effect of vertical mixing of sediment**

420 In Figure 6, biodiffusion coefficients (D_b) estimated from the vertical gradient of 210 Pb_{ex} are plotted against bottom depth. The D_b data were obtained 421 from eight stations where the water depth ranges from 75 m to 1175 m. Estimated 422 D_b s ranged between 0.06 and 21 cm² year⁻¹, and generally decreased with 423 424 increasing depth. This tendency agrees with estimates reported by previous 425 studies (hatched areas in Fig. 6). The D_b s of this study also agrees with the value estimated inversely from typical vertical distribution of sedimentary ¹³⁷Cs in the 426 427 semi-offshore (100-200 m) region of Fukushima (Ambe et al., 2014). Since a significant vertical gradient of ²¹⁰Pb_{ex} was not found in the coastal 428 region (≤ 100 m depth) due to the rapid apparent sedimentation rate as well as low 429 input of ²²⁶Ra-supported ²¹⁰Pb, no ²¹⁰Pb_{ex}-based D_b s are plotted in Figure 6 for the 430 431 coastal region. Nevertheless, we can consider that the D_b in the coastal region is 432 not less than $10 \text{ cm}^2 \text{ year}^{-1}$. This D_b , of 10 cm² year⁻¹, is only a minimum value to be applied to the 433 434 coastal region, and the actual D_b values in the region would be higher. In order to 435 estimate a "realistic" D_b in the coastal region, the D_b s were inversely estimated from the temporal change of ¹³⁷Cs inventory in the surface sediment. In Figure 7, 436 four examples of simulated temporal change of ¹³⁷Cs inventory are illustrated. The 437 decreasing rate estimated with a minimum D_{h} (10 cm² year⁻¹) was about 10% 438 year⁻¹, and was insufficient to reproduce the actual rate (-27% year⁻¹). On the other 439 hand, the decrease was reproduced with a higher D_b , 200 cm² year⁻¹. Interestingly, 440 the simulated temporal change in the ¹³⁷Cs inventory does not show a constant 441 442 rate of decrease, and it seems to represent an actual trend (e.g. Fig. 2b). The "realistic" D_b , 200 cm² year⁻¹, is 1-3 orders of magnitude higher than 443 444 values in offshore regions, and 5 orders of magnitude lower than that at a beach (> 10^7 cm² year⁻¹: Nadaoka et al., 1981)(Fig. 6). Considering that the wave base 445 446 regularly approaches the seabed in the shallow regions less than 20 m depth (e.g., Sawaragi, 1995), the D_b in these regions might exceed 200 cm² year⁻¹. On the 447 448 other hand, typical D_b s in the temperate zone fall within the range of 10-200 cm² year⁻¹ (Teal et al., 2008). For a conservative estimate, we conclude that the 449 possible D_b values in the coastal (≤ 100 m) region range between 10 and 200 cm² 450 year⁻¹. 451

In Figure 5, observed and simulated distributions of ¹³⁷Cs are shown for comparison. Lines in Figure 5 indicate simulated profiles of the ¹³⁷Cs concentration. In the stations, deeper than 75 m depth, simulated profiles are based on the ²¹⁰Pb_{ex} based D_b value at the corresponding station. For the two stations less than 75 m depth (St. NP0 and NP1), D_b was provisionally given as 200 cm² year⁻¹.

In the hemipelagic stations (>900 m), modeled 137 Cs profiles in the sediment agreed well with the observed ones. This result indicates that the vertical profiles of sedimentary 137 Cs in this region were dominated by vertical mixing. Although it is reported that resuspension of the surface sediment takes place in the hemipelagic region (e.g., Otosaka et al., 2014), the extent is quite limited and such turbulence barely changes the vertical structures of the sediment. Therefore, the vertical mixing in the hemipelagic stations would be dominated by bioturbation.

465 In the semi-offshore stations (water depth: 75-300 m), except for Sta. J11, observed vertical profiles of ¹³⁷Cs generally agreed with the simulated data, but 466 relatively lower in the upper (\sim 5 cm) layers. Such a deficit of ¹³⁷Cs in the upper 467 468 layer of sediment would be attributed to the effect of resuspension and desorption of sedimentary ¹³⁷Cs, as described in the previous subsections. These results also 469 suggest that the vertical profiles of ¹³⁷Cs in sediment were mainly controlled by 470 the vertical mixing of sediment, and the other processes affected only the upper 471 472 part of sedimentary layers.

Among the semi-offshore stations, only J11 did not show the deficit of 137 Cs 473 474 in the surface sediment. This exceptional station is located on the outer edge of 475 Sendai Bay, adjacent to where the Abukuma River enters to the ocean. The 476 Abukuma River is the largest river flowing into the study area, and supplies one 477 third of the total river discharge of particulate radiocesium (Yamaguchi et al., 2014). As far as we can see from Figure 4, the variation rate for sedimentary 137 Cs 478 concentration in Sendai Bay (38.2°N - 38.3°N) is around -30 % year⁻¹ and can be 479 considered as a "typical" rate. This indicates that terrestrial-particles-bound ¹³⁷Cs 480 481 is not accumulated in Sendai Bay. Detailed observations in Sendai Bay by Kakehi 482 et al. (2016) also reported that there is no notable local accumulation of riverine 483 particles in the bay except within brackish estuaries. Accordingly, the remarkable accumulation of ¹³⁷Cs in the upper part of the sediment at Sta. J11, is thought to 484

be caused by lateral transport of terrestrial particle-bound ¹³⁷Cs to the outer edge
of Sendai Bay.

At the nearshore stations (NP0 and NP1), shallower than 54 m depth, 487 significant vertical change of ¹³⁷Cs concentration was not observed, and except for 488 the horizons with anomalously high ¹³⁷Cs concentration, the observed profiles 489 490 agreed with simulated ones based on a maximum D_b value (200 cm² year⁻¹)(Fig. 5). Similarly to the semi-offshore stations, observed 137 Cs concentrations in the 491 upper layers were lower than those of the simulated ones. From these results, we 492 conclude that the accident-derived ¹³⁷Cs migrated to the lower layers of the 493 494 sediment via vertical mixing, and the extent is greater in shallower regions.

495

496 **4.4 Budget of ¹³⁷Cs in the surface sediment**

Processes affecting the variation of ¹³⁷Cs concentrations in the surface 497 498 sediments are summarized in Figure 8. Assuming that the coastal sediment had been mixing with a minimum biodiffusion coefficient, D_b , of 10 cm² year⁻¹, it is 499 500 estimated that about 43% of sedimentary radiocesium migrated to the deeper sedimentary layers (i.e., below 10 cm) between March 2011 and December 2015 501 (4.8 years). As shown in Table 3, the variation rate (X) of 137 Cs inventory in 502 nearshore sediment is -27% year⁻¹ (the exponent α is -0.32 year⁻¹ from eq. (2)), 503 and the result indicates that about 22% of 137 Cs remained in the surface (top 10 504 cm) sediment. Accordingly, it can be inferred that more than 65% of the initially 505 deposited ¹³⁷Cs has remained in the nearshore sediment. Furthermore, if the D_h is 506 set as 200 cm² year⁻¹, the decrease in ¹³⁷Cs inventory in the surface sediment can 507 508 be explained by the transport to the deeper layers. Considering that about 22% of the initial ¹³⁷Cs has remained in the top 10 cm sediment and about 6 % of initial 509 deposition of ¹³⁷Cs to sediment is considered to be transported to the offshore 510 sediment (Table 3), it can be estimated that 72% of ¹³⁷Cs has been transported to 511 the deeper layers. These estimates indicate that the majority of ¹³⁷Cs deposited 512 513 to the coastal region has remained in the sediment. 514 On the other hand, this estimation also indicates that at most 29% of sedimentary ¹³⁷Cs might have dissolved or been dispersed associated with fine 515 particles within the 4.8 years. Assuming a constant rate of the loss of ¹³⁷Cs from 516

517 the sediment, the annual elimination rate is estimated to be 7%, and this rate

approximately agrees with the loss of ¹³⁷Cs-bound particles (1.3% year⁻¹;
subsection 4.1) and dissolution of ¹³⁷Cs (7% year⁻¹; subsection 4.2) from coastal
sediment. Therefore, it can be concluded that the mass balance of ¹³⁷Cs illustrated
in Figure 8 represents the general movement of sedimentary ¹³⁷Cs within the 4.8
years.

523

524 **5. Conclusion**

In this paper, temporal change in the concentration of ¹³⁷Cs in the surface sediment (0-10 cm) between 2011 and 2015 observed in a 150 km radius of FDNPP is outlined, and the primary factors affecting the temporal change was inferred.

In the coastal region, about 80% of the initially-deposited ¹³⁷Cs in the surface 529 530 sediment had dissipated by the end of 2015. As the abundance of radionuclides in the surface sediment affects the radioactive levels in benthic organisms, possible 531 ¹³⁷Cs dose effects on the benthic ecosystem might have decreased with time. 532 533 In the meantime, it was estimated that the primary process affecting the decrease of ¹³⁷Cs concentrations in the coastal surface sediment was the vertical 534 mixing of sediments. This indicates that the majority of the ¹³⁷Cs in the coastal 535 536 sediment has not been exported to other regions, but migrated to the deeper sedimentary layers (>10 cm). Although the export of particle-bound 137 Cs and 537 dissolution of ¹³⁷Cs from the coastal sediment is also crucial to reduce the ¹³⁷Cs 538 539 inventory, the contribution is considered to be minor.

Needless to say, further understanding of the local-scale behavior of ¹³⁷Csbound particles, such as flushing of the particles during storm weather, is essential to better predict the fate of the accident-derived radionuclides near the seabed. The larger-scale mass balance of sedimentary ¹³⁷Cs suggested by this study would be a benchmark for the integration of local-scale behaviors of particulate ¹³⁷Cs from a long-term viewpoint.

546

547 Acknowledgements

548 The author is grateful to captains, crews and scientists of the R/V Tansei-Maru KT-11-27, KT-13-

549 01, R/V Hakuho-Maru KH-11-07, R/V Shinsei-Maru KS-14-20, KS-15-13 (Univ of

17

- 550 Tokyo/JAMSTEC), and R/V Seikai (JAEA) cruises for their assistance in the fieldwork. The
- author is also grateful to J. Nishikawa, H. Narita, Y. Kato (Tokai Univ.), T. Aono, M. Fukuda
- 552 (QST), M. Uematsu, H. Obata (Univ. Tokyo), H. Tazoe (Hirosaki Univ.), M.C. Honda
- 553 (JAMSTEC), K.O. Buesseler (WHOI), S. Nagao (Kanazawa Univ.), T. Morita, T. Ono, H.
- 554 Kaeriyama, D. Ambe (Natl. Res. Inst. Fish Sci., Japan), T. Kobayashi, H. Kawamura, T.
- 555 Nakanishi, E. Takeuchi, M. Watanabe, Y. Kumagai, Y. Segawa, Y. Satoh, M. Nakano, T. Isozaki,
- 556 M. Nemoto, K. Tobita, M. Nagaoka, M. Hirasawa, K. Matsumura (JAEA) for their support in the
- 557 field, laboratory work and their valuable comments. The manuscript was improved by two helpful
- reviews.

559	References
560	Abril JM, Fraga E (1996) Some physical and chemical features of the variability of k_d distribution
561	coefficients for radionuclides. J Environ Radioact 30: 253-270
562	Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles
563	from an early stage of the Fukushima nuclear accident. Sci Rep 3:2554.
564	doi:10.1038/srep02554.
565	Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K, Ono T, Sawada H, Saito H, Miki S, Setou T,
566	Morita T, Watanabe T (2014) Five-minute resolved spatial distribution of radiocesium in sea
567	sediment derived from the Fukushima Dai-ichi Nuclear Power Plant. J Environ Radiact 138:
568	264-275
569	Black EE, Buesseler KO (2014) Spatial variability and the fate of cesium in coastal sediments near
570	Fukushima, Japan. Biogeosci 11: 5123-5137
571	Buesseler KO, German CR, Honda MC, Otosaka S, Black EE, Kawakami H, Manganini SJ, Pike
572	SM (2015) Tracking the fate of particle associated Fukushima Daiichi cesium in the ocean
573	off Japan. Environ Sci Technol 49: 9807-9816
574	Buesseler KO, Dai M, Aoyama M, Benitez-Nelson, Charmasson S, Higley K, Medrich V, Masque
575	P, Oughton D, Smith JN (2017) Fukushima Daiichi-derived radionuclides in the ocean:
576	Transport, fate, and impacts. Annu Rev Mar Sci 9: 173-203
577	Cochran JK (1985) Particle mixing rates in sediments of the eastern equatorial Pacific: Evidence
578	from ²¹⁰ Pb, ^{239,240} Pu and ¹³⁷ Cs distributions at MANOP sites. Geochim Cosmochim Acta 49:
579	1195-1210
580	Comans RN, Haller M, De Preter P (1991) Sorption of cesium on illite: Non-equilibrium
581	behaviour and reversibility. Geochim Cosmochim Acta 55: 433-440
582	Fukuda M, Aono T, Yamazaki S, Nishikawa J, Otosaka S, Ishimaru T, Kanda J (2016) Dissolved
583	radiocaesium in seawater off the coast of Fukushima during 2013-2015. J Radioanal Chem:
584	doi:10.1007/s10967-016-5009-9
585	IAEA (2003) Collection and Preparation of Bottom Sediment Samples for Analysis of
586	Radionuclides and Trace Elements. IAEA TECDOC 1360, International Atomic Energy
587	Agency, Vienna, pp. 130
588	IAEA (2004) Sediment Distribution Coefficients and Concentration Factors for Biota in the
589	Marine Environment. IAEA Technical Report Series 422, International Atomic Energy
590	Agency, Vienna, pp. 95
591	Ikehara K, Irino T, Usami K, Jenkins R, Omura A, Ashi J (2014) Possible submarine tsunami
592	deposits on the outer shelf of Sendai Bay, Japan resulting from the 2011 earthquake and
593	tsunami off the Pacific coast of Tohoku. Mar Geol 349: 91-98
594	Iwata K, Tagami K, Uchida S (2013) Ecological half-lives of radiocesium in 16 species in marine
595	biota after the TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Environ Sci
596	Technol 47: 7696-7703
597	Kanda J (2013) Continuing ¹³⁷ Cs release to the sea from the Fukushima Dai-ichi Nuclear Power
598	Plant through 2012. Biogeosci 10: 6107-6113

599	Kakehi S, Kaeriyama H, Ambe D, Ono T, Ito S, Shimizu Y, Watanabe T (2016) Radioactive
600	cesium dynamics derived from hydrographic observations in the Abukuma River Estuary,
601	Japan. J Environ Radioact 153: 1-9
602	Li YH, Gregory S (1974) Diffusion of ions in sea-water and in deep-sea sediments. Geochim
603	Cosmochim Acta 38: 703-714
604	MAFF (Ministry of Agriculture, Forestry and Fisheries), Japan (2016) Results of the monitoring
605	on radioactivity level in fisheries products.
606	http://www.jfa.maff.go.jp/e/inspection/index.html. Accessed 13 March 2017
607	MOE (Ministry of the Environment), Japan (2013) Results of the monitoring survey after the
608	Great East Japan earthquake (in Japanese).
609	http://www.env.go.jp/jishin/monitoring/results_me.html. Accessed 13 March 2017
610	MOE (2016a) Results of the 2014 monitoring survey after the Great East Japan earthquake (in
611	Japanese). http://www.env.go.jp/press/files/jp/102775.pdf. Accessed 13 March 2017
612	MOE (2016b) Results of the 2015 monitoring survey after the Great East Japan earthquake (in
613	Japanese). http://www.env.go.jp/jishin/jishin/waste/101662/bessi_4.pdf. Accessed 20 January
614	2017
615	Misumi K, Tsumune D, Tsubono T, Tateda Y, Aoyama M, Kobayashi T, Hirose K (2014) Factors
616	controlling the spatiotemporal variation of ¹³⁷ Cs in seabed sediment off the Fukushima coast:
617	implications from numerical simulations. J Environ Radioact 136: 218-228
618	Murota K, Saito T, Tanaka S (2016) Desorption kinetics of cesium from Fukushima soils. J
619	Environ Radioact 153: 134-140
620	Nadaoka K, Tanaka N, Katoh K (1981) Field observation of local sand movements in the surf zone
621	using fluorescent sand tracer. Port Harbour Res Inst Rep, 20: 75-126
622	NOAA (National Oceanic and Atmospheric Administration), US (2006) 1-Minute Gridded Global
623	Relief Data (ETOPO2v2), NOAA National Geophysical Data Center, Boulder
624	NRA (Nuclear Regulation Authority), Japan (2016) Monitoring information of environmental
625	radioactivity level. http://radioactivity.nsr.go.jp/en/list/205/list-1.html. Accessed 13 March
626	2017
627	Oikawa S, Takata H, Watabe T, Misonoo J, Kusakabe M (2013) Distribution of the Fukushima-
628	derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and
629	Ibaraki Prefectures, Japan. Biogeosci 10: 5031-5047
630	Okamura H, Ikeda S, Morita T, Eguchi S (2016) Risk assessment of radioisotope contamination
631	for aquatic living resources in and around Japan. Proc Natl Acad Sci USA 113: 3838-3843
632	Ono T, Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K, Sogame K, Nishiura N, Fujikawa T,
633	Morita T, Watanabe T (2015) Risk assessment of radioisotope contamination for aquatic
634	living resources in and around Japan. Geochem J 49: 219-227
635	Otosaka S, Kobayashi T (2013) Sedimentation and remobilization of radiocesium in the coastal
636	area of Ibaraki, 70 km south of the Fukushima Dai-ichi Nuclear Power Plant. Environ Monit
637	Assess 185: 5419-5433

638	Otosaka S, Kato Y (2014) Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant
639	accident in seabed sediments: initial deposition and inventories. Environ Sci: Processes
640	Impacts 16: 978-990. doi:10.1039/c4em00016a
641	Otosaka S, Nakanishi T, Suzuki T, Satoh Y, Narita H (2014) Vertical and lateral transport of
642	particulate radiocesium off Fukushima. Environ Sci Technol 48: 12595-12602
643	Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y,
644	Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata T (2015) Detailed
645	deposition density maps constructed by large-scale soil sampling for gamma-ray emitting
646	radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ
647	Radioact 139: 308-319
648	Santschi PH, Bower P, Nyffeler UP, Azevedo A, Broecker WS (1983) Estimates of the resistance
649	to chemical transport posed by the deep-sea boundary layer. Limnol Oceanogr 28: 899-912.
650	Sawaragi T (1995) Coastal Engineering - Waves, Beaches, Wave-Structure Interactions, Elsevier,
651	Amsterdam, pp. 478
652	Seike K, Kitahashi T, Noguchi T (2016) Sedimentary features of Onagawa Bay, northeastern
653	Japan after the 2011 off the Pacific coast of Tohoku Earthquake: sediment mixing by
654	recolonized benthic animals decreases the preservation potential of tsunami deposits. J
655	Oceanogr, 72: 141-149.
656	Takata H, Hasegawa K, Oikawa S, Kudo N, Ikenoue T, Isono RS, Kusakabe M (2015)
657	Remobilization of radiocesium on riverine particles in seawater: The contribution of
658	desorption to the export flux to the marine environment. Mar Chem 176: 51-63
659	Tateda Y, Tsumune D, Tsubono T (2013) Simulation of radioactive cesium transfer in the southern
660	Fukushima coastal biota using a dynamic food chain transfer model. J Environ Radioact 124:
661	1-12
662	Tateda Y, Tsumune D, Misumi K, Aono T, Kanda J, Ishimaru T (2017) Biokinetics of radiocesium
663	depuration in marine fish inhabiting the vicinity of the Fukushima Dai-ichi Nuclear Power
664	Plant. J Environ Radioact 166: 67-73
665	Teal LR, Bulling MT, Parker ER, Solan M (2008) Global patterns of bioturbation intensity and
666	mixed depth of marine soft sediments. Aquat Biol 2: 207-218
667	TEPCO (Tokyo Electric Power Co.) (2016) Analysis results of radioactive materials obtained at
668	each sampling location. http://www.tepco.co.jp/en/nu/fukushima-np/f1/smp/index-e.html.
669	Accessed 13 March 2017
670	Wang C, Baumann Z, Madigan DJ, Fisher NS (2016) Contaminated marine sediments as a source
671	of cesium radioisotopes for benthic fauna near Fukushima. Environ Sci Technol 50: 10448-
672	10455
673	Yagi H, Sugimatsu K, Kawamata S, Nakayama A, Udagawa T (2015) Bottom turbidity, boundary
674	layer dynamics, and associated transport of suspended particulate materials off the
675	Fukushima coast. In: Nakata K, Sugisaki H (eds) Impacts of the Fukushima Nuclear Accident
676	on Fish and Fishing Grounds, Springer, Tokyo, pp. 238

- 677 Yamaguchi M, Kitamura A, Oda Y, Onishi Y (2014) Predicting the long-term ¹³⁷Cs distribution in
- 678 Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter
- 679 sensitivity analysis. J Environ Radioact 135: 135-146

680	Figure legends				
681 682	Figure 1. Sampling locations. Filled circles, open circles, and triangles indicate data from this study, Tokyo Electric Power Co., and Ministry of Environment, Japan, respectively.				
683 684 685 686	 Figure 2. Trend of ¹³⁷Cs concentrations in surface (0-10 cm) sediment collected from the coast of Miyagi (a: 38.97-37.90 °N), Fukushima (b: 38.97-37.90 °N), Ibaraki (c: 38.90-36.86 °N) Prefectures, and offshore (bottom depth >100m) regions. Activities were decay-corrected to March 11, 2011. 				
687 688	Figure 3. Plot of variation rate of sedimentary ¹³⁷ Cs vs bottom depth. Distribution of median grain size (in Wentworth scale) is also shown at the top of the figure.				
689 690	Figure 4. (a) Location of coastal (bottom depth <100m) stations, and latitudinal changes in (b) ¹³⁷ Cs variation rate, (c) initial ¹³⁷ Cs concentrations, and (d) variation index.				
691 692 693 694 695 696	Figure 5. Vertical profiles of ¹³⁷ Cs in sediment. Open circles and lines indicate observed and modelled profiles. Note changes in horizontal scales. Due to a lack of significant vertical change of ²¹⁰ Pb _{ex} in stations NP0 and NP1, modelled ¹³⁷ Cs profiles in those stations (dashed lines) were estimated using a representative biodiffusion coefficient in the coastal region (D_b = 200). In St. J11, S6, and J7, different Db values are used between the upper and deeper layers reflecting a difference of extent of disturbance.				
697 698	Figure 6. Biodiffusion coefficient (D_b) vs bottom depth. Filled circles indicate data obtained by this study.				
699 700	Figure 7. Temporal changes of 137 Cs concentrations in surface sediment modelled with different biodiffusion coefficient (D_b) values.				
701 702	Figure 8. Schematic of mass balance of ¹³⁷ Cs in the coastal seabed.				
703	Table title				
704	Table 1. Overview of the data sources				
705	Table 2. Coefficient of variation between 2011 and 2015				
706 707	Table 3. Variation rates and temporal changes in ¹³⁷ Cs concentrations in surface sediment between 2011 and 2015				

Otosaka, Fig. 1

¹³⁷Cs concentration (Bq kg⁻¹)

Otosaka, Fig. 4

Number of	Observation period	
stations	Start	End
18	2011/6/20	2015/10/16
8	2011/6/16	2015/11/21
45	2011/4/29	2015/11/30
	Number of stations 18 8 45	Number of stations Observation p Start 18 2011/6/20 8 2011/6/16 45 2011/4/29

Table 1 Overview of the data sources

Table 2 Coefficient of variation between 2011 and 2013					
Parameter	Number of stations	Coefficient of variation Median (Range)			
Dry bulk density	18	6.7% (2.9-12.2%)			
Median diameter	16	14.7% (1.0-36.1%)			
Organic matter content	16	29.0% (7.2-74.7%)			
¹³⁷ Cs concentration (0-10 cm)	18	43.3% (1.1-124%)			

Table 2 Coefficient of variation between 2011 and 2015

Area	Variation rate of ¹³⁷ Cs inventory				Total ¹³⁷ Cs inventory	Change in ¹³⁷ Cs inventory
	(% year ⁻¹)				in 2011 ^{**}	between 2011 and 2015
	Mean [*]	Minimum	Maximum	n	(PBq)	(PBq)
Nearshore (≤100m)	-27	-59	+54	63	0.16	-0.13
Offshore (>100m)	+5	-13	+48	8	0.036	+0.010

Table 3 Variation rates and temporal changes in ¹³⁷Cs inventories in surface sediment

*Geometric mean **Otosaka and Kato (2014)