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Two-body wave functions and compositeness from scattering amplitudes:
General properties with schematic models

Takayasu Sekihara*
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(Received 16 October 2016; revised manuscript received 11 January 2017; published 28 February 2017)

For a general two-body bound state in quantum mechanics, both in the stable and decaying cases, I establish a
way to extract its two-body wave function in momentum space from the scattering amplitude of the constituent
two particles. For this purpose, I first show that the two-body wave function of the bound state corresponds
to the residue of the off-shell scattering amplitude at the bound state pole. Then, I examine my scheme to
extract the two-body wave function from the scattering amplitude in several schematic models. As a result,
the two-body wave function from the Lippmann-Schwinger equation coincides with that from the Schrödinger
equation for an energy-independent interaction. Of special interest is that the two-body wave function from the
scattering amplitude is automatically scaled; the norm of the two-body wave function, to which I refer as the
compositeness, is unity for an energy-independent interaction, while the compositeness deviates from unity for
an energy-dependent interaction, which can be interpreted to implement missing-channel contributions. I also
discuss general properties of the two-body wave function and compositeness for bound states with the schematic
models.

DOI: 10.1103/PhysRevC.95.025206

I. INTRODUCTION

The wave function is one of the most fundamental quantities
in quantum mechanics, and to determine the wave function is
the most important subject in understanding the character of a
quantum system. This fact can be seen especially in a bound
state of two particles in a quantum system. In the nonrelativistic
condition, such a system is governed by the Schrödinger
equation, and the wave function of the bound state is evaluated
as an eigenfunction of the Hamiltonian in the Schrödinger
equation, bringing a discrete eigenvalue, which is nothing but
the eigenenergy of the bound state. The wave function of the
bound state represents the behavior of the two constituents
inside the bound system in coordinate or momentum space.
Namely, the squared value of the wave function corresponds
to the “probability” of the amplitude of the quantum fluctuation
by the constituent two particles in coordinate or momentum
space. Moreover, the wave function can be utilized for, e.g.,
the calculation of the transition amplitude from the bound state
to other states and vice versa.

In addition, the properties of the quantum system are
reflected also in the scattering amplitude of the two particles,
which is the solution of the Lippmann-Schwinger equation.
Interestingly, if there exists a bound state in the quantum
system, the bound state must be accompanied by a pole in
the complex energy plane of the scattering amplitude for the
constituent two particles. The pole position coincides with the
eigenvalue of the Hamiltonian in the Schrödinger equation
associated with the bound state wave function, and hence
determining the pole position of the bound state is equivalent
to evaluating the discrete eigenvalue of the Hamiltonian.

Then, one can naı̈vely expect that one may extract properties
of the bound state from the scattering amplitude of two
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constituents, especially from the residue of the scattering
amplitude at the pole. In this line, a famous study was done
by Weinberg [1]. In his study, by using the Schrödinger
equation and Lippmann-Schwinger equation and taking the
weak binding limit of a bound state, he expressed the scattering
length and effective range model independently in terms of the
so-called field renormalization constant, which equals unity
minus norm of the two-body wave function for the bound
state. Then, from the experimental values of the scattering
length and effective range for the proton-neutron scattering, he
concluded that the deuteron is indeed a proton-neutron bound
state. An essential point in this discussion is that, because
the deuteron pole position exists very close to the lower limit
of the physically accessible energy, i.e., the proton-neutron
threshold, one can relate the residue of the scattering amplitude
at the deuteron pole with the observable threshold parameters
in a model-independent manner. After several decades from the
work by Weinberg, studies on the structure of near threshold
bound and resonance states have been recently done in, e.g.,
Refs. [2–7].

In general cases, however, the pole position is not located
near the two-body threshold but largely below the threshold
or has negatively large imaginary part. In such a case, one
has to employ a model to investigate the structure of the
bound/resonance state. In this line, a well-known result from
decades ago is that, for a given interaction which generates
a stable bound state, one can relate the residue of the
scattering amplitude at the pole with the wave function of
the bound state [8]. The discussion was extended in Ref. [9]
especially to resonance states, where the authors proved that,
with a general energy-independent interaction, a resonance
wave function in momentum space can be obtained from the
residue of the scattering amplitude of the constituent two
particles at the pole position and is correctly normalized
as unity. Then, the structure of the bound state from the
coupled-channels scattering amplitude is investigated with a
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separable interaction in Refs. [10,11], where the two-body
wave function was found to be proportional to the residue of the
scattering amplitude at the resonance pole. Recently, the norm
of the two-body wave function, which is called compositeness
[12,13], was extracted from the hadron-hadron scattering
amplitude with the separable interaction for candidates of
hadronic molecules in, e.g., Refs. [13–24].

In the present study, from a more general point of view,
I investigate the relation between the wave function of the
two-body bound state in momentum space, including the
case of an unstable state, and the scattering amplitude of
the two particles. Compared to the works in the literature,
I further introduce the energy dependence for a general
two-body interaction, consider the semirelativistic formulation
and the coupled-channels problems, and take into account
the self-energy effect for an unstable constituent. I show
that solving the Lippmann-Schwinger equation at the pole
position of the bound state is equivalent to evaluating the
two-body wave function of the bound state in momentum
space which is automatically scaled. An interesting finding is
that the compositeness from the scattering amplitude deviates
from unity for energy-dependent interactions, which can be
interpreted as missing-channel contributions. A basic idea of
my approach was partly given in Ref. [22], and I extend this
to resonances in practical problems, for which I employ the
complex scaling method [25].

This paper is organized as follows. In Sec. II, I formulate
the two-body wave functions and compositeness for bound
states in general quantum systems in the nonrelativistic and
semirelativistic conditions. In the formulation, I show that
the two-body wave function of the bound state, both in the
stable and decaying cases, appears in the residue of the off-
shell scattering amplitude at its pole. Next, in Sec. III, I give
numerical calculations of the two-body wave functions and
compositeness in several schematic models for bound states.
Section IV is devoted to the summary of this study. This is
the first paper of a series for the two-body wave function
and compositeness in general quantum systems; my scheme
constructed here will be applied to the physical N∗ and �∗
resonances in a precise scattering amplitude [26].

II. FORMULATION

In this section, I formulate the two-body wave function for
a bound state, regardless of whether the bound state is stable or
not. For this purpose, I first give a setup of the quantum system
in Sec. II A. Next, I formulate the Schrödinger equation for
the bound state in Sec. II B. In this section I also define the
so-called compositeness as the norm of the two-body wave
function for the bound state. Then, in Sec. II C, I clarify
how the two-body wave function appears in the scattering
amplitude, which is a solution of the Lippmann-Schwinger
equation, and propose a way to extract the two-body wave
function for the bound state from the scattering amplitude.
The model dependence of the compositeness is discussed in
Sec. II D. Finally, to investigate numerically the structure of
a resonance state, I show my formulas of the wave function,
compositeness, and so on, in the complex scaling method in
Sec. II E.

A. Setup of the system

In this paper I consider a two-body to two-body coupled-
channels scattering system. The system is governed by the
full Hamiltonian Ĥ , which can be decomposed into the free
Hamiltonian Ĥ0 and the interaction part V̂ :

Ĥ = Ĥ0 + V̂ (E). (1)

Here, I assume that only the two-body states appear in the
practical model space, i.e., I do not treat one-body bare states
nor states composed of more than two particles acted by Ĥ , Ĥ0,
and V̂ . In addition, I assume that the scattering process with
the interaction V̂ is time-reversal invariant and, for the later
applications, the interaction is allowed to depend intrinsically
on the energy of the system E, which corresponds to the
eigenenergy of the full Hamiltonian. I neglect the spin of the
scattering particles for simplicity.

As an eigenstate of the free Hamiltonian Ĥ0, I introduce
the j th channel two-body scattering state with relative three-
momentum q as |qj 〉:

Ĥ0|qj 〉 = Ej (q)|qj 〉, 〈qj |Ĥ0 = Ej (q)〈qj |, (2)

where q ≡ |q| is the magnitude of the momentum q. For
the eigenenergy Ej (q), I employ two options. One is the
nonrelativistic form containing the threshold energy,

Ej (q) ≡ mj + Mj + q2

2μj

, μj ≡ mjMj

mj + Mj

, (3)

and the other is the semirelativistic form,

Ej (q) ≡
√

q2 + m2
j +

√
q2 + M2

j . (4)

Here, mj and Mj are masses of scattering particles in the
channel j and μj is the reduced mass for them. In the present
study, the scattering state is normalized as

〈q ′
j |qk〉 = (2π )3δjkδ(q ′ − q). (5)

In terms of the eigenstates |qj 〉, the free Hamiltonian can be
expressed as

Ĥ0 =
∑

j

∫
d3q

(2π )3
Ej (q)|qj 〉〈qj |. (6)

For the interaction V̂ , on the other hand, I employ a general
form in the following coupled-channels expression with the
two-body scattering states in coordinate space |rj 〉:

〈r ′
j |V̂ (E)|rk〉 = Vjk(E; r ′, r). (7)

Here, r is the relative distance between two particles in the
considering channel, r is its magnitude, r ≡ |r|, and the j th
channel scattering state |rj 〉 is normalized as

〈r ′
j |rk〉 = δjkδ(r ′ − r). (8)

The interaction term in coordinate space Vjk(E; r ′, r) may, as
I have mentioned, depend intrinsically on the energy of the
system E. Because I assume the time-reversal invariance of
the scattering process, the interaction term satisfies a relation,

Vjk(E; r ′, r) = Vkj (E; r, r ′), (9)

with an appropriate choice of phases of the states.
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I also consider the matrix element of the interaction with
the scattering states in momentum space:

〈q ′
j |V̂ (E)|qk〉 = Ṽjk(E; q ′, q). (10)

This is related to the matrix element in coordinate space (7)
via the Fourier transformation as

Ṽjk(E; q ′, q) =
∫

d3r ′
∫

d3r 〈q ′
j |r ′

j 〉〈r ′
j |V̂ (E)|rk〉〈rk|qk〉

=
∫

d3r ′
∫

d3r Vjk(E; r ′, r)e−iq ′ ·r ′+iq·r , (11)

where I have used 〈qj |rk〉 = δjke
−iq·r . I note that the

time-reversal invariance of the scattering process brings a
relation,

V̂jk(E; q ′, q) = V̂kj (E; q, q ′), (12)

with an appropriate choice of phases of the states.

B. Schrödinger equation

Let us now suppose that the full Hamiltonian has a discrete
eigenstate |ψLM〉 in the partial wave L with its azimuthal
component M , in addition to the ordinary scattering states. I
formulate the Schrödinger equation and wave function for this
discrete eigenstate. If its eigenvalue Epole is a real number, one
can treat the |ψLM〉 state as a usual stable bound state. On the
other hand, if Epole has an imaginary part, the eigenstate |ψLM〉
is a resonance state; Re Epole and −2 Im Epole are the mass
and width of the resonance state, respectively. Because I treat
both bound and resonance states on the same footing in the
following discussions, I formulate the Schrödinger equation
and wave function in a manner applicable to both cases. In any
case, the state |ψLM〉 is a solution of the Schrödinger equation,

Ĥ |ψLM〉 = [Ĥ0 + V̂ (Epole)]|ψLM〉 = Epole|ψLM〉. (13)

Then, to establish the normalization of the resonance state, one
should employ the Gamow vector [9,27–30], where one takes
〈ψ̃LM | ≡ 〈ψ∗

LM | instead of 〈ψLM | for the bra vector of the
resonance. In this notation, one can normalize the resonance
wave function in the following manner:

〈ψ̃LM ′ |ψLM〉 = δM ′M. (14)

The Schrödinger equation for the resonance bra state is
expressed with the same eigenenergy as

〈ψ̃LM |Ĥ = 〈ψ̃LM |[Ĥ0 + V̂ (Epole)] = 〈ψ̃LM |Epole. (15)

From the Schrödinger equation in the operator form (13),
one can formulate the usual Schrödinger equation with the
c-number wave function. Because in this study I formulate
the Schrödinger equation in momentum space and solve it,
I employ the j th channel wave function in momentum space
ψ̃j (q) ≡ 〈qj |ψLM〉. By using the expressions of Ĥ0 and V̂ in
Eqs. (6) and (10), I can express the Schrödinger equation (13)
as

Ej (q)ψ̃j (q) +
∑

k

∫
d3q ′

(2π )3
Ṽjk(Epole; q, q ′)ψ̃k(q ′)

= Epoleψ̃j (q), (16)

where I have inserted a relation,

1lmodel =
∑

k

∫
d3q ′

(2π )3
|q ′

k〉〈q ′
k|, (17)

which is valid in the practical model space, between V̂ and
|ψLM〉. This Schrödinger equation can be simplified with the
partial wave decomposition. Namely, on the one hand, the
interaction term can be decomposed as

Ṽjk(E; q ′, q) =
∞∑

L=0

(2L + 1)VL,jk(E; q ′, q)PL(q̂ ′ · q̂), (18)

with q̂ ≡ q/q being the direction of the vector q, and each
partial wave component can be calculated as

VL,jk(E; q ′, q) = 1

2

∫ 1

−1
d(q̂ ′ · q̂)PL(q̂ ′ · q̂)Ṽjk(E; q ′, q), (19)

thanks to the relation for the Legendre polynomials PL(x),∫ 1

−1
dxPL(x)PL′(x) = 2

2L + 1
δLL′ . (20)

On the other hand, the wave function ψ̃j (q) consists of the
radial part Rj (q) and the spherical harmonics YLM (q̂) as

ψ̃j (q) = Rj (q)YLM (q̂). (21)

I fix the normalization of the spherical harmonics YLM (q̂) as∫
d�qYLM (q̂)Y ∗

L′M ′ (q̂) = δLL′δMM ′ , (22)

with the solid angle �q for q. By using the above expressions
in the partial wave decomposition, I can rewrite the
Schrödinger equation (16) as

Ej (q)Rj (q) +
∑

k

∫ ∞

0

dq ′

2π2
q ′2VL,jk(Epole; q, q ′)Rk(q ′)

= EpoleRj (q), (23)

where I have used the relation in Eq. (22) and

PL(q̂ ′ · q̂) = 4π

2L + 1

L∑
M=−L

YLM (q̂ ′)Y ∗
LM (q̂). (24)

The Schrödinger equation (23) is the final form to evaluate
the radial part of the two-body wave function Rj (q) for stable
bound states. For resonance states, I employ the complex
scaling method, which is explained in Sec. II E. I note that I
solve the integral equation (23) numerically by discretizing
the momentum and replacing the integral with respect to the
momentum with a summation.

Before going to the formulation of the Lippmann-
Schwinger equation, I here comment on the norm of the
two-body wave function for the resonance state. Namely, while
the wave function in momentum space can be written as in
Eq. (21) from the ket state |ψLM〉, the two-body wave function
from the bra state 〈ψ̃LM |, 〈ψ̃LM |qj 〉, can be evaluated as

〈ψ̃LM |qj 〉 = 〈ψ∗
LM |qj 〉 = Rj (q)Y ∗

LM (q̂). (25)

Here I emphasize that, while I take the complex conjugate
for the spherical harmonics, I do not take for the radial part.
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This is because, while the spherical part can be calculated and
normalized in a usual sense, the radial part should be treated
so as to remove the divergence of the wave function at r → ∞
when I calculate the norm (see discussions in Refs. [9,13,28–
30]). From the above wave function, I can calculate the norm
with respect to the j th channel two-body wave function Xj in
the following manner:

Xj ≡
∫

d3q

(2π )3
〈ψ̃LM |qj 〉〈qj |ψLM〉 =

∫ ∞

0
dq Pj (q), (26)

where I have introduced a density distribution Pj (q):

Pj (q) ≡ q2

(2π )3
[Rj (q)]2. (27)

The quantity Xj is referred to as the compositeness. I note that
the compositeness Xj as well as the wave function ψ̃j (q) is not
observable and hence in general a model-dependent quantity
(see the discussion in Sec. II D). As one can see from the
construction, for the resonance state, the compositeness Xj is
given by the complex number squared of the radial part Rj (q)
rather than by the absolute value squared, which is essential to
normalize the resonance wave function. Therefore, in general
the compositeness becomes complex for resonance states.

I also note that the sum of the norm Xj should be unity if
there is no missing (or implicit) channels, which would be an
eigenstate of the free Hamiltonian, to describe the bound state.
However, in actual calculations one may have contributions
from missing channels, which can be implemented into the
interaction and be the origin of the intrinsic energy dependence
of the interaction. In such a case, denoting the missing channels
representatively as |ψ0〉, one can decompose unity in terms of
the eigenstates of the free Hamiltonian:

1l = |ψ0〉〈ψ0| +
∑

j

∫
d3q

(2π )3
|qj 〉〈qj |, (28)

instead of Eq. (17). Therefore, introducing the missing-channel
contribution Z defined as

Z ≡ 〈ψ̃LM |ψ0〉〈ψ0|ψLM〉, (29)

which is a model-dependent quantity and becomes complex
for resonance states as well, one can express the normalization
of the wave function |ψLM〉 as

〈ψ̃LM |ψLM〉 = Z +
∑

j

Xj = 1. (30)

Thus, in contrast to the naı̈ve manner in quantum mechanics, in
the present study I do not make the sum of the compositeness
Xj coincide with unity by hand. Instead, as I will discuss in
Sec. II C, the value of the norm, Xj , is automatically fixed
without any artificial factor when I calculate the residue of the
scattering amplitude.

C. Lippmann-Schwinger equation

In this subsection I consider the same problem as in
the previous subsection with the scattering amplitude. In
particular, I show how one can extract the two-body wave
function of the bound state from the scattering amplitude.
Although the relation between the bound-state wave function

and the residue of the scattering amplitude at the pole position
is already discussed in the literature, in this study I treat
a more general case with an energy-dependent interaction
in a coupled-channels problem. I note that some of the
formulation presented here is already given in Ref. [22], but
for completeness I give it in detail.

In general, the scattering amplitude can be formally
obtained with the Lippmann-Schwinger equation in an
operator form:

T̂ (E) = V̂ (E) + V̂ (E)
1

E − Ĥ0
T̂ (E)

= V̂ (E) + V̂ (E)
1

E − Ĥ
V̂ (E), (31)

with the T -matrix operator T̂ , the free Hamiltonian Ĥ0,
and the full Hamiltonian Ĥ ≡ Ĥ0 + V̂ (E). I use the same
Ĥ , Ĥ0, and V̂ as in the previous subsection. From the
T -matrix operator T̂ , I can evaluate scattering amplitude
of the k(q) → j (q ′) scattering, where q(′) is the relative
three-momentum in the initial (final) state, as

Tjk(E; q ′, q) ≡ 〈q ′
j |T̂ (E)|qk〉. (32)

The scattering state |qj 〉 is again the same as in the previous
subsection. Because of the time-reversal invariance, the
scattering amplitude satisfies

Tjk(E; q ′, q) = Tkj (E; q, q ′), (33)

with an appropriate choice of phases of the states. The
scattering amplitude Tjk(E; q ′, q) is a solution of the
Lippmann-Schwinger equation in the following form:

Tjk(E; q ′, q)

= Ṽjk(E; q ′, q) +
∑

l

∫
d3k

(2π )3

Ṽj l(E; q ′, k)Tlk(E; k, q)

E − El(k)
,

(34)

where the interaction term Ṽjk was introduced in Eq. (10).
Next, let us decompose the scattering amplitude into partial

wave amplitudes, as in Eq. (18):

Tjk(E; q ′, q) =
∞∑

L=0

(2L+1)TL,jk(E; q ′, q)PL(q̂ ′ · q̂), (35)

TL,jk(E; q ′, q) = 1

2

∫ 1

−1
d(q̂ ′ · q̂)PL(q̂ ′ · q̂)Tjk(E; q ′, q).

(36)

Because the Legendre polynomials satisfy the following
relation,∫

d�kPL(q̂ ′ · k̂)PL′(k̂ · q̂) = 4π

2L + 1
δLL′PL(q̂ ′ · q̂), (37)

I can rewrite the Lippmann-Schwinger equation (34) as

TL,jk(E; q ′, q)

= VL,jk(E; q ′, q)

+
∑

l

∫ ∞

0

dk

2π2
k2 VL,jl(E; q ′, k)TL,lk(E; k, q)

E − El(k)
. (38)
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This is the final form of the scattering amplitude to be solved
for stable bound states. For resonance states I employ the
complex scaling method explained in Sec. II E to calculate
the scattering amplitude. In the numerical calculations of the
integral equation (38), I discretize the momentum so as to
replace the integral with a summation.

Here I comment on the relation between the energy E and
momenta q and q ′. In the physical scattering, the initial and
final states should be on their mass shell and their energy
should be fixed as E = Ej (q ′) = Ek(q). I call the scattering
amplitude in this condition as the on-shell amplitude. An
important feature is that, for open channels, the on-shell
scattering amplitude is in general observable and can be
determined model independently in a partial wave analysis.
The on-shell scattering amplitude in each partial wave satisfies
the optical theorem from the unitarity of the S matrix, and in
my formulation its expression is

Im TL,jj (E)on-shell = −
∑

k

ρk(E)

2
|TL,jk(E)on-shell|2, (39)

where the sum runs over the open channels and ρj (E) is the
phase space in channel j , whose expression is

ρj (E) ≡ μjkj (E)

π
, kj (E) ≡ √

2μj (E − mj − Mj ), (40)

for the nonrelativistic case (3), and

ρj (E) ≡
√

kj (E)2 + m2
j

√
kj (E)2 + M2

j

kj (E)

πE
, (41)

kj (E) ≡ λ1/2
(
E2,m2

j ,M
2
j

)
2E

, (42)

for the semirelativistic case (4) with the Källen function
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.

Furthermore, one can perform the analytic continuation of
the on-shell amplitude to the complex energy and to the pole
position for the bound state, keeping the relation E = Ej (q ′) =
Ek(q) with complex momenta q and q ′. Therefore, the pole
position Epole and residue of the on-shell amplitude at this
pole are in principle determined only with the experimental
quantities in a model-independent manner.

However, in contrast to the on-shell amplitude, one can
mathematically treat the scattering amplitude TL,jk(E; q ′, q)
as a function of three independent variables E, q ′, and q as an
off-shell amplitude. In particular, one can perform the analytic
continuation of the scattering amplitude by taking complex
value of the energy E but keeping the momenta q and q ′ real
and positive, with which the relation E = Ej (q ′) = Ek(q) is no
longer satisfied. This condition of the complex energy E but
real and positive momenta q and q ′ will be essential to extract
the wave function from the scattering amplitude at the pole
position of the bound state in the complex energy plane.

I now explain the way to extract the two-body wave function
and compositeness from the off-shell scattering amplitude
obtained by the analytic continuation for the energy. The
key is the factor 1/(E − Ĥ ) in the Lippmann-Schwinger
equation (31). I start with the fact that the off-shell scattering
amplitude as well as the on-shell one has the bound state pole
at E = Epole. Actually, near the pole, the off-shell scattering

amplitude is dominated by the pole term in the expansion by
the eigenstates of the full Hamiltonian, and hence I have

T̂ (E) ≈
L∑

M=−L

V̂ (Epole)|ψLM〉 1

E − Epole
〈ψ̃LM |V̂ (Epole),

(43)

where I have summed up the possible azimuthal component M .
In this expression, the operator |ψLM〉〈ψ̃LM | coincides with a
projector of rank 1 attached to the resonance pole in Ref. [24].
This fact indicates the proper normalization of the bound-state
wave function 〈ψ̃LM |ψLM〉 = 1.1 Then, it is important that the
wave function |ψLM〉 appears in the residue of the scattering
amplitude at the pole. Evaluating the matrix element of this
T -matrix operator, I obtain

Tjk(E; q ′, q)

≈
L∑

M=−L

〈q ′
j |V̂ (Epole)|ψLM〉〈ψ̃LM |V̂ (Epole)|qk〉

E − Epole
. (45)

The matrix elements in the numerator of the above expression,
〈q ′

j |V̂ (Epole)|ψLM〉 and 〈ψ̃LM |V̂ (Epole)|qk〉, can be calculated
as follows. By using the Schrödinger equation (13), the former
matrix element is calculated as

〈qj |V̂ (Epole)|ψLM〉 = 〈qj |(Ĥ − Ĥ0)|ψLM〉
= [Epole − Ej (q)]〈qj |ψLM〉, (46)

and from Eq. (21) I obtain

〈qj |V̂ (Epole)|ψLM〉 =
√

4πγj (q)YLM (q̂), (47)

where I have defined γj (q) as

γj (q) ≡ 1√
4π

[Epole − Ej (q)]Rj (q). (48)

In a similar manner I can calculate the latter matrix element as

〈ψ̃LM |V̂ (Epole)|qj 〉 =
√

4πγj (q)Y ∗
LM (q̂). (49)

Therefore, by using the above matrix elements, I can rewrite
the scattering amplitude near the pole as

Tjk(E; q ′, q) ≈ γj (q ′)γk(q)

E − Epole
× 4π

L∑
M=−L

YLM (q̂ ′)Y ∗
LM (q̂)

= (2L + 1)
γj (q ′)γk(q)

E − Epole
PL(q̂ ′ · q̂), (50)

1In terms of the propagator for the bound state, the normalization of
the bound state vector, 〈ψ̃LM |ψLM〉 = 1, is guaranteed by the relation

1

E − Ĥ (E)
≈ |ψLM〉 1

E − Epole
〈ψ̃LM |, (44)

around the pole position E = Epole, which is the basis of Eq. (43).
Actually, in the right-hand side of the above equation, the field-
renormalization constant for the bound state, which coincides with
the residue of the bound-state propagator, is chosen to be exactly
unity.
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where I have used the formula in Eq. (24). Because the
amplitude in Eq. (50) is nothing but the L-wave component,
I can show that indeed the L-wave partial wave amplitude
contains the pole:

TL,jk(E; q ′, q) = γj (q ′)γk(q)

E − Epole
+ (regular at E = Epole).

(51)
Then, interestingly, the residue of the partial wave am-

plitude γj (q) contains information on the two-body wave
function as in Eq. (48). Actually, I can calculate the j th channel
compositeness Xj by using the residue γj (q) as

Xj =
∫ ∞

0
dq Pj (q),

Pj (q) ≡ q2

(2π )3

[ √
4πγj (q)

Epole − Ej (q)

]2

= q2

2π2

[
γj (q)

Epole − Ej (q)

]2

.

(52)

This is the formula to evaluate the j th channel compositeness
Xj from the residue of the partial wave amplitude TL at the
pole. The residue γj (q) is extracted as a function of the real
and positive momentum q from the off-shell amplitude with
complex energy E → Epole.

I emphasize that the scattering amplitude, and hence its
residue γj (q), is obtained from the Lippmann-Schwinger
equation without introducing any extra factor to scale the value
of the compositeness Xj , because the Lippmann-Schwinger
equation is an inhomogeneous integral equation. This means
that the value of the compositeness in Eq. (52) as well as that
of the two-body wave function is automatically fixed without
any scaling factor when I calculate it from the residue of
the scattering amplitude. In other words, the compositeness
from the scattering amplitude is uniquely determined once
one fixes the model space, form of the kinetic energy Ej (q),
and interaction.

The fact that the value of the compositeness in Eq. (52) is
automatically fixed leads to the question on the normalization
of the compositeness. Actually, a single-channel problem
with an energy-independent interaction in a general form was
discussed in Ref. [9] and the authors found that the norm of
the two-body wave function from the scattering amplitude is
exactly unity in this case. However, in general the sum of the
compositeness from the scattering amplitude may deviate from
unity. Therefore, I can define the rest part of the normalization
of the total wave function (14) Z as

Z ≡ 1 −
∑

j

Xj . (53)

Because the compositeness Xj is defined as the norm of
the two-body wave function, Z can be interpreted as the
missing-channel contribution. In Sec. III I will see that the
missing-channel contribution Z is exactly zero for the energy-
independent interaction, but Z becomes nonzero if I switch on
the energy dependence of the interaction.

Finally I comment on the probabilistic interpretation of
the compositeness for resonances. As I have discussed,
for resonances the compositeness from each channel is in
general complex. This means that, strictly speaking, one

cannot interpret them as the probability to find each channel
component inside the resonance state. To cure this point, I
would like to introduce quantities X̃j and Z̃ by following the
discussion in Ref. [22] as

X̃j ≡ |Xj |
1 + U

, Z̃ ≡ |Z|
1 + U

, (54)

with

U ≡
∑

j

|Xj | + |Z| − 1. (55)

The quantities X̃j and Z̃ are real, bound in the range [0, 1],
and automatically satisfy the sum rule:∑

j

X̃j + Z̃ = 1. (56)

The quantity U measures how much the imaginary part of
the compositeness Xj or missing-channel contribution Z is
nonnegligible and/or their real part is largely negative. In
particular, with U � 1 one can expect a similarity between
the resonance state considered and a wave function of a stable
bound state. In this sense, if and only if U � 1, one can
interpret X̃j (Z̃) as the probability of finding the composite
(missing) part.

In addition, there are several ways to interpret the complex
compositeness such as taking Re X [17], |X| [14,23,24], and
(1 + |X| − |Z|)/2 [6,7]. In principle these quantities may
deviate from X̃, but, in practice, when one treats narrow
resonances, one can expect U � 1, with which one will obtain
similar results in any approaches: Re X � |X| � (1 + |X| −
|Z|)/2 � X̃.

D. Model dependence of the compositeness

Here I discuss the model dependence of the compositeness.
First, as we know, the wave function ψ̃j (q) and two-body

interaction are not observable and hence model-dependent
quantities. In the present approach, the model dependence of
the wave function can be understood with the property of the
residue γj (q), which becomes a factor of the wave function as
in Eq. (48). Namely, while the on-shell scattering amplitude,
including its analytic property for the complex energy, is
in principle determined in a model-independent manner, the
off-shell amplitude is not observable. Therefore, to evaluate the
residue γj (q) of the off-shell amplitude with real momentum
q and complex energy E = Epole, some model which fixes
Ṽjk(E; q ′, q) as a function of three independent variables E,
q ′, and q is in general necessary.

One may expect that the integrated quantity of the wave
function, i.e., the compositeness, is model independent. How-
ever, as demonstrated in Ref. [19], the compositeness X is
also not observable even for stable bound states because the
field renormalization constant for the bound state Z = 1 − X
is not a physical observable. This situation is similar to that
of the deuteron d-wave probability PD , which is known as not
observable [31].

However, when the pole exists very close to the threshold
of interest, one can express the compositeness only with the
observable quantities in a model-independent manner, as done
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in Refs. [1–7]. In this case, one can expand quantities in powers
of (E − Epole)/Etyp, where Etyp is a typical energy scale of the
system, around E = Epole. In particular, assuming that the pole
position of an s-wave bound state of the j th channel is very
close to its threshold, one has [1]

〈qj |V̂ (E)|ψ00〉 = 〈ψ̃00|V̂ (E)|qj 〉 = g0 + O
(

E − Epole

Etyp

)
,

(57)

where g0 is a constant. Then, through the constant g0, one
can directly relate the compositeness and threshold parameters
in the scattering amplitude such as the scattering length and
effective range regardless of the details of the interaction [1].

On the other hand, in a certain model the wave function
and compositeness can be determined only with quantities of
the on-shell amplitude. Actually, one may consider a separable
interaction that is a function only of the energy E in momentum
space,

〈q ′
j |V̂ (E)|qk〉 = Vjk(E), (58)

which is valid, e.g., if the interaction range is negligible
compared to the typical length of the system. For this
interaction, the scattering amplitude can be evaluated in an
algebraic equation as

T (E) = [V(E)−1 − G(E)]−1, (59)

with the two-body loop function,2

Gj (E) =
∫

d3k

(2π )3

1

E − Ej (k)
. (60)

An important feature in this prescription is that the off-shell
scattering amplitude coincides with the on-shell one. There-
fore, one can evaluate the residue of the off-shell scattering
amplitude at the pole position from the analytic continuation
of the on-shell scattering amplitude.3 This fact indicates that
with the interaction (58) one can describe compositeness
only with empirical quantities of the on-shell amplitude.
However, I should emphasize that, although the compositeness
is expressed only with model-independent quantities, this
does not mean that the compositeness is a model-independent
quantity. Indeed, employing the separable interaction (58) is
nothing but choosing one model for the interaction.

E. Formulas in the complex scaling method for resonances

In numerical calculations of the two-body wave function for
resonance states, one has to treat the complex eigenvalue Epole

both in the Schrödinger equation and Lippmann-Schwinger

2Regularization is necessary to tame the ultraviolet divergence of
the integral in G.

3The residue of the on-shell scattering amplitude γ ′
j , often called the

coupling constant, is related to the residue of the off-shell amplitude
γj (q) as

γ ′
j = γj (kon), (61)

with the “on-shell” momentum kon determined with Eqs. (40) or (42)
with the energy E = Epole.

equation. In particular, the complex eigenvalue Epole exists in
the second (unphysical) Riemann sheet of the complex energy
plane. To perform the numerical calculation in this condition,
I employ the complex scaling method in this study. The details
of the complex scaling method are given in, e.g., Ref. [25].
In this subsection, I briefly show the formulas of the wave
function, compositeness, and so on in the complex scaling
method.

In the complex scaling method, one transforms the relative
coordinate r and relative momenta q into the complex-scaled
value in the following manner:

r → reiθ , q → qe−iθ , (62)

with a certain positive angle θ . An important fact is that, with
the complex scaling for the momentum, one can reach the
second Riemann sheet of the complex energy plane. In this
sense, the angle θ should be large enough to go to the resonance
pole position Epole. I also note that the angle θ has an upper
limit to maintain the convergence of integrals with a complex
variable.

With this transformation, the scattering state |qj 〉 becomes
|qj e

−iθ 〉, and hence the eigenvalue of the free Hamiltonian Ĥ0

and the wave function 〈qj |ψLM〉 become

Ĥ0|qj e
−iθ 〉 = Ej (qe−iθ )|qj e

−iθ 〉,
〈qj e

−iθ |Ĥ0 = Ej (qe−iθ )〈qj e
−iθ |, (63)

and

〈qj e
−iθ |ψLM〉 = Rj (qe−iθ )YLM (q̂),

〈ψ̃LM |qj e
−iθ 〉 = Rj (qe−iθ )Y ∗

LM (q̂), (64)

respectively, where I note that the spherical harmonics stays
unchanged, because only the behavior of the radial part is
relevant to the convergence of the resonance wave function.

Then the complex-scaled Schrödinger equation (23) can be
expressed as

Ej (qe−iθ )Rj (qe−iθ )

+e−3iθ
∑

k

∫ ∞

0

dq ′

2π2
q ′2VL,jk(E; qe−iθ , q ′e−iθ )Rk(q ′e−iθ )

= EpoleRj (qe−iθ ). (65)

Here I emphasize that the eigenenergy Epole is stable with
respect to the change of the angle θ , which is in contrast to
the scattering state, which scales with the qe−iθ dependence
for the momentum q. The norm of the wave function can be
calculated by

Xj =
∫ ∞

0
dq Pj (q), (66)

with the complex-scaled density distribution,

Pj (q) ≡ e−3iθ q2

(2π )3
[Rj (qe−iθ )]2, (67)

where the factor e−3iθ was introduced to the density distribu-
tion Pj (q) so as to reproduce the original formula in Eq. (27)
when one changes the integral variable as q ′ ≡ qe−iθ .
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In a similar manner, the Lippmann-Schwinger equation (38)
becomes

TL,jk(E; q ′e−iθ , qe−iθ )

= VL,jk(E; q ′e−iθ , qe−iθ )

+ e−3iθ
∑

l

∫ ∞

0

dk

2π2
k2 VL,jl(E; q ′e−iθ , ke−iθ )

E − El(ke−iθ )

× TL,lk(E; ke−iθ , qe−iθ ), (68)

where I have taken the matrix element of the T -matrix
operator as 〈q ′

j e
−iθ |T̂ (E)|qke

−iθ 〉. The scattering amplitude
TL,jk(E; q ′e−iθ , qe−iθ ) has a resonance pole at E = Epole,
whose position is again stable with respect to the change of the
angle θ . Around the resonance pole, the scattering amplitude
is represented as

TL,jk(E; q ′e−iθ , qe−iθ )

= γj (q ′e−iθ )γk(qe−iθ )

E − Epole
+ (regular at E = Epole). (69)

The residue γj (qe−iθ ) can be evaluated in the same manner as
the previous subsection as

γj (qe−iθ ) ≡ 1√
4π

[Epole − Ej (qe−iθ )]Rj (qe−iθ ), (70)

where I have used the following formulas in the complex
scaling method,

〈qj e
−iθ |V̂ (Epole)|ψLM〉 =〈qj e

−iθ |(Ĥ − Ĥ0)|ψLM〉
=

√
4πγj (qe−iθ )YLM (q̂), (71)

〈ψ̃LM |V̂ (Epole)|qj e
−iθ 〉 =

√
4πγj (qe−iθ )Y ∗

LM (q̂). (72)

Now I can calculate the compositeness from the residue of
the scattering amplitude at the resonance pole Epole. Actually,
taking into account the complex-scaled quantities above, I have
the density distribution as

Pj (q) ≡ e−3iθ q2

2π2

[
γj (qe−iθ )

Epole − Ej (qe−iθ )

]2

, (73)

where the factor e−3iθ was introduced to the density distribu-
tion Pj (q) again as in Eq. (67).

III. TWO-BODY WAVE FUNCTIONS AND
COMPOSITENESS IN SCHEMATIC MODELS

Let us now give the numerical results on the two-body wave
functions and compositeness, i.e., the norm of the two-body
wave function, extracted from the scattering amplitude. For
this purpose, I employ four schematic models. The first one
is a single-channel problem to generate stable bound states in
Sec. III A. With this model I examine my scheme and check
the normalization of the wave functions of the bound states
from the scattering amplitude. I also discuss how the energy
dependence of the interaction affects the wave functions and
compositeness. Then, the second model is a single-channel
problem to generate a resonance state in Sec. III B, where
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FIG. 1. Interaction (74) as a function of the radial coordinate
r with its strength v0 = −35 MeV and v1 = 0. I also show the
binding energies of the bound states BE ≡ m + M − Epole: BE(0s) =
23.2 MeV, BE(0p) = 13.1 MeV, BE(0d) = 2.6 MeV, and BE(1s) =
2.1 MeV.

I check that my scheme is valid even for the resonance state.
As the third model, in Sec. III C I consider a two-channels
problem to generate a bound state in the higher channel which
decays into the lower channel. Finally I employ a model of an
unstable “bound state” composed of an unstable particle and
a stable particle in Sec. III D and show the properties of the
“bound state” in terms of the wave function and compositeness
extracted from the scattering amplitude.

A. Bound states in a single-channel case

In this subsection I consider bound states in a single-
channel case. The masses of two particles are fixed as m =
1115.7 MeV and M = 35m, and the interaction is taken to be
a local one:

V (E; r) = v(E)

1 + exp[(r − R)/a]
, (74)

where a and R are parameters to fix the range of the interaction
and v(E) controls the strength of the interaction. In this study I
fix the parameters as a = 0.5 fm and R = 3.6 fm, and employ
the following expression of the energy-dependent part as

v(E) = v0 + v1(E − E0), (75)

with constants v0 and v1 and a certain energy scale E0 to
be determined later. In this study I fix v0 = −35 MeV and
v1 is allowed to shift in a certain range so as to produce
the energy dependence of the interaction. I note that in this
construction the difference between the nonrelativistic and
semirelativistic cases are tiny. In this subsection I only consider
the nonrelativistic case.

I first fix v1 = 0 and solve the Schrödinger equation (23)
and Lippmann-Schwinger equation (38). The interaction V (r)
is plotted as a function of the radial coordinate r in Fig. 1. With
this interaction, I obtain four bound states 0s, 0p, 0d, and 1s
as discrete eigenstates, whose binding energies, BE ≡ m +
M − Epole, are BE(0s) = 23.2 MeV, BE(0p) = 13.1 MeV,
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FIG. 2. Density distributions P(q) obtained from the Schrödinger
equation (Schr) and from the Lippmann-Schwinger equation (LS)
with the interaction strength v0 = −35 MeV and v1 = 0. The solu-
tions of the Schrödinger equation are normalized by hand, while those
of the Lippmann-Schwinger equation are automatically scaled.

BE(0d) = 2.6 MeV, and BE(1s) = 2.1 MeV. These levels are
shown in Fig. 1 as well. For these four states, I compare the
wave functions from the Schrödinger equation in a usual man-
ner and from the Lippmann-Schwinger equation in my scheme
developed in Sec. II C. The density distributions from the wave
functions are shown in Fig. 2. Here I note that, while the wave
functions from the Schrödinger equation are normalized by
hand so that their compositeness is exactly unity, those from
the Lippmann-Schwinger equation are automatically scaled
when solving the equation. As one can see from Fig. 2,
the wave function from the Lippmann-Schwinger equation
coincides with the normalized one from the Schrödinger
equation in all values of q for each bound state. Therefore,
the compositeness X evaluated from the residue of scattering
amplitude is automatically unity for every bound state. Here I
mention that the normalization of the wave function from the
residue of the scattering amplitude was already discussed in
Ref. [9], in which it was proved that an energy-independent
interaction exactly gives X = 1.

Next I change the value of v1 and observe the response of
the wave function. In the calculation of each bound state, I
take E0 = Epole so that the eigenenergy does not change [see
Eq. (75)]. In Fig. 3 I show the density distributions P(q) for
the 0s state obtained from the Lippmann-Schwinger equation
for energy-dependent interactions with several values of v1.
In the figure, although the shape is the same for the density
distributions with various values of v1, their peak heights
become larger as v1 increases. Because the compositeness of
the wave function with v1 = 0 is unity, when the interaction
depends on the energy, the compositeness from the scattering
amplitude, which is automatically scaled, deviates from unity.
From the figure, one can see that the compositeness from the
scattering amplitude becomes more (less) than unity for v1 > 0
(v1 < 0).

One can interpret the behavior that the compositeness is
smaller than unity for v1 < 0 as the effect of the missing-
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FIG. 3. Density distributions P(q) for the 0s state obtained from
the Lippmann-Schwinger equation (LS) with several values of v1.

channel contributions. To see this, I here consider a one-body
bare state as the missing channel for simplicity; an extension to
more than one-body systems will be similar. On the one hand,
if there exists a missing channel, its contribution Z in Eq. (29)
should be positive, Z > 0, and hence one should have X < 1
according to Eq. (30). On the other hand, because the practical
model space is a single two-body state only, this missing
channel should be implemented into the interaction, which
inevitably introduces the energy dependence to the interaction
(see Ref. [20]). Actually, for the one-body bare state, its energy
dependence is of the form of

Ṽbare(E; q ′, q) = g2
0

E − M0
, (76)

in momentum space, with a real coupling constant g0 and the
mass M0 for the one-body bare state. This Ṽbare is added to
the usual energy-independent interaction. As a result, because
one has dṼbare/dE(Epole) < 0 regardless of the values of Epole,
g0, and M0, one has dv/dE(Epole) < 0 for the interaction into
which the missing channel is implemented. This explains why
I obtain compositeness smaller than unity, X < 1, for v1 < 0.

I can discuss the relation between the compositeness from
the scattering amplitude and the energy-dependent interaction
in a different way by evaluating the compositeness X as
a function of v1. First, in Fig. 4 I show the behavior for
the compositeness from the scattering amplitude as lines.
The compositeness X decreases when v1 takes negatively
larger values, which can be interpreted as a larger missing-
channel contribution. Next, I calculate the compositeness by
the method developed for an energy-dependent interaction.
Actually, according to a discussion on an energy-dependent
interaction in, e.g., Refs. [32,33], the norm for the total wave
function, as an integral of the density with respect to the whole
coordinate space, should be modified as [33]

N =
∫

d3rψ∗(r)

[
1 − ∂V

∂E
(Epole; r)

]
ψ(r), (77)

where ψ(r) is the two-body wave function. In the right-
hand side of the above equation, the first term is the norm
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FIG. 4. Compositeness X as a function of v1. Lines and points
are obtained from the formulas in Eqs. (52) and (79), respectively,
with the wave function from the scattering amplitude.

of the two-body wave function, which is nothing but the
compositeness. I express this first term as X∂V/∂E . The second
term containing the derivative ∂V/∂E is an additional term
so that the continuity equation from the wave function can
hold.4 Because the present model space is only a single
two-body channel, the second term can be interpreted as the
missing-channel contribution, which is not explicit degrees of
freedom. Then, taking the norm for the total wave function as
N = 1, I can calculate X∂V/∂E as

X∂V/∂E = 1 +
∫

d3rψ∗(r)
∂V

∂E
(Epole; r)ψ(r). (78)

In terms of the wave function in momentum space, I can rewrite
this as

X∂V/∂E = 1 +
∫

d3q

(2π )3
R(q)Y ∗

LM (q̂)
∫

d3q ′

(2π )3
R(q ′)YLM (q̂ ′)

×
∞∑

L′=0

∂VL′

∂E
(Epole; q, q ′)(2L′ + 1)PL′(q̂ ′ · q̂)

= 1 + 4π

∫ ∞

0
dq

q2

(2π )3
R(q)

∫ ∞

0
dq ′ q ′ 2

(2π )3
R(q ′)

×∂VL

∂E
(Epole; q, q ′), (79)

where I have performed the integral with respect to the
solid angles by using the relations in Eqs. (22) and (24).
I evaluate X∂V/∂E by using the wave function from the
scattering amplitude, and show in Fig. 4 the behavior for the
compositeness from the formula (79) as points. As one can
see, the points exactly lie on the line for each bound state.
Therefore, the two-body wave function from the scattering
amplitude correctly takes into account the effect of the

4The appearance of the derivative ∂V/∂E in the sum rule (77) was
pointed out also in Ref. [34] in terms of the conservation of a quantum
number in the system.

additional term in Eq. (79), which can be interpreted as the
missing-channel contribution for the system.

Here I emphasize that one will not obtain such an automat-
ically scaled wave function when one solves the Schrödinger
equation with an energy-dependent interaction and normalize
the wave function naı̈vely within the explicit model space.
In this sense, solving the Lippmann-Schwinger equation at
the bound state pole is equivalent to evaluating the two-body
wave function of the bound state, where the effect of an
energy-dependent interaction is also taken into account.

The above results are obtained with the nonrelativistic form
for the energy of the two-body state (3). Here I note that with
the semirelativistic form (4) I obtain the almost same results
for the wave functions and compositeness compared to the
nonrelativistic case above. In particular, the compositeness is
unity for v1 = 0 but becomes less than unity for v1 < 0 also
in the semirelativistic case.

In summary, I can extract the two-body wave function from
the scattering amplitude as the residue of the amplitude at
the pole position of the bound state. The scattering amplitude
is a solution of the Lippmann-Schwinger equation, and the
two-body wave function from the amplitude is automatically
scaled. In particular, for the two-body wave functions from the
amplitude, the compositeness deviates from unity when the
interaction depends on the energy, which can be interpreted
as the missing-channel contributions. The present results
indicate that one can elucidate the hadron structure in terms
of the hadronic molecules from the hadron-hadron scattering
amplitude, assuming that the energy dependence of the hadron-
hadron interaction originates from missing channels which are
not taken into account as explicit degrees of freedom. However,
almost all of the interesting hadrons are unstable in strong
interaction. Therefore I have to consider cases of resonance
states in detail and have to clarify the relation between the
wave functions from the Schrödinger equation and from the
Lippmann-Schwinger equation, which is the subject in the
following subsections.

B. A resonance state in a single-channel case

Next I consider a resonance state in a single-channel
problem. I fix the masses of two particles as m = M =
938.9 MeV, and construct the interaction between them in
the form:

V (r; E) = v(E)
(
2e−r2/b2

1 − e−r2/b2
2
)
, (80)

where b1 and b2 are parameters to fix the interaction range and
v(E) controls the strength of the interaction. This interaction
has an attractive core and a penetration barrier if 0 < b1 < b2

and v(E) < 0. In this study I fix the interaction range as b1 =
2.5 fm and b2 = 5.0 fm, and employ the interaction strength
v(E) in Eq. (75). The constants v0 and v1 and a certain energy
scale E0 in v(E) are determined later. In this subsection I
consider only the nonrelativistic case. The calculation for a
resonance state is done in the complex scaling method. I take
the angle of the complex scaling as θ = 20◦ unless explicitly
mentioned, but the resonance pole position and compositeness
from the scattering amplitude do not depend on θ .
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FIG. 5. Interaction V (80) as a function of the radial coordinate
r with its parameters v0 = −50 MeV, v1 = 0, b1 = 2.5 fm, and b2 =
5.0 fm. I also show the eigenenergy of the discrete resonance state
measured from the threshold, m + M − Re Epole.

First I consider the case of an energy-independent interac-
tion with v1 = 0. If the interaction strength v0 is negatively
large enough, the interaction generates a stable bound state.
However, if v0 is not so negatively large, this could generate an
unstable resonance state. Actually, when I fix v0 = −50 MeV,
I obtain a resonance state at the pole position Epole =
1884.0 − 0.1i MeV in the second Riemann sheet, 6.2 MeV
above the threshold m + M = 1877.8 MeV. The behavior of
the interaction in coordinate space is shown in Fig. 5 together
with the eigenenergy of the resonance state.

For this resonance state, I calculate the wave function in two
approaches; one is solving the Schrödinger equation (65) with
its normalization by hand to be unity in terms of Eqs. (66) and
(67), and the other one is solving the Lippmann-Schwinger
equation (68) at the resonance pole position, which cannot
require any artificial scaling of the wave function. I numerically
calculate the wave function in both approaches with the
complex-scaling angles θ = 10◦, 20◦, and 30◦, and show the
density distribution P(q) (73) for the resonance in Fig. 6.
Because the density distribution for the resonance inevitably
has an imaginary part, I plot both the real and imaginary
parts in Fig. 6.5 Interestingly, the density distributions for the
resonance in two approaches coincide with each other for every
value of the angle θ . This means that one can obtain the cor-
rectly normalized two-body wave function from the scattering
amplitude even for a resonance state, as discussed in Ref. [9].

Here I note that, in general, the density distribution as
well as the wave function depends on the angle of the
complex scaling θ , as shown in Fig. 6. In particular, for

5In the complex scaling method with finite θ , the density distribution
P(q) becomes complex even for a stable bound state, because one has
to calculate P(q) with the complex-number-squared wave function in
the complex scaling method. However, for the stable bound state one
can make the density distribution a real number by taking θ = 0◦,
which cannot be taken for resonance states.
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FIG. 6. (a) Real and (b) imaginary parts of the density distri-
butions P(q) obtained from the Schrödinger equation (Schr) and
Lippmann-Schwinger equation (LS). The scaling angle is θ = 10◦,
20◦, and 30◦.

smaller θ the density distribution shows a peak structure at
q ∼ 75 MeV. This can be understood with the expression
in Eq. (73). Namely, for smaller θ , the denominator of the
density distribution, [Epole − E(qe−iθ )]2, becomes almost zero
at q ∼ 75 MeV, which is nothing but the relative momentum
of two daughter particles from the decay of the resonance. This
almost-zero denominator [Epole − E(qe−iθ )]2 brings the peak
structure in the density distribution.

I emphasize that, although the wave function depends
on the angle θ , the compositeness as the integral of the
density distribution does not depend on θ . In the present
case, the compositeness is exactly unity for every value of
θ . I can explain this fact by interpreting the complex-scaled
momentum qe−iθ as the change of the contour for the
momentum integral of the range [0,∞) to the rotated one
with the angle −θ . In this sense, when one calculates a matrix
element of a certain operator with the resonance wave function
in the complex scaling method, the matrix element does not
depend on the angle θ as long as the operator is properly
complex scaled.

Finally I introduce the energy dependence to the interaction.
As in the previous subsection, I take E0 = Epole so that the
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FIG. 7. Compositeness X as a function of v1. Lines and points
are obtained from the formulas in Eqs. (73) and (81), respectively,
with the wave function from the scattering amplitude.

pole position does not change. Then, one expects that the
compositeness from the scattering amplitude will deviate from
unity, as discussed in the previous subsection. Actually, as
shown in Fig. 7, where I plot the compositeness from the
scattering amplitude (73) for v1 < 0 as lines, the composite-
ness behaves similarly to the case of stable bound states in
Fig. 4. The behavior implies that missing states rather than
the explicit two-body state compose the resonance state more
dominantly for larger v1. I also note that, because the present
state is an unstable resonance, the compositeness in Fig. 7 has
an imaginary part, although the imaginary part is negligible
compared to the real part.

I then compare the compositeness of Eq. (73) in Fig. 7
with that from the continuity equation in the energy-dependent
interaction [32,33]. The extension of Eq. (77) to a resonance
state was done in Ref. [33], and the compositeness from the
continuity equation, X∂V/∂E , for the resonance becomes

X∂V/∂E = 1 + 4πe−6iθ

∫ ∞

0
dq

q2

(2π )3
R(qe−iθ )

∫ ∞

0
dq ′ q ′ 2

(2π )3

×R(q ′e−iθ )
∂VL

∂E
(Epole; qe−iθ , q ′e−iθ ), (81)

where I have performed the complex scaling. The result of
X∂V/∂E with the wave function from the scattering amplitude
is shown in Fig. 7 as points. As one can see, the points exactly
lie on the lines both in the real and imaginary parts. Therefore,
the present result indeed indicates that the wave function from
the scattering amplitude correctly takes into account the effect
of the energy-dependent interaction as the additional term
containing the derivative in Eq. (81).

In summary, even for a resonance state in a single-channel
problem, its automatically scaled two-body wave function
is obtained from the residue of the scattering amplitude at
the pole position. Although the wave function itself depends
on the scaling angle θ in the complex scaling method, the
compositeness as the integral of the wave function squared
does not depend on θ . The compositeness for the resonance
state from the scattering amplitude deviates from unity
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FIG. 8. Interaction V11 (82) as a function of the radial coordinate r

with its strength v0 = −650 MeV and v1 = 0. I also show the binding
energies of the discrete bound states BE ≡ m1 + M1 − Re Epole with
x = 0 and x = 0.5. The shaded band for x = 0.5 indicates the range
of BE ± Im Epole.

when one takes into account the energy dependence of the
interaction, which can be interpreted as the implementation of
missing-channel contributions, as in the case of stable bound
states.

C. A resonance state in a coupled-channels case

In this subsection I extend my discussion to a resonance
state in a two-channels case. The masses of the system are fixed
as m1 = 495.7 MeV, M1 = 938.9 MeV, m2 = 138.0 MeV,
and M2 = 1193.1 MeV. The interaction is fixed in the form,

Vjk(r; E) = v(E)Cjke
−r2/b2

, (82)

where b is the range parameter of the interaction and v(E) and
Cjk , respectively, control the strength of the interaction and
transition between different channels. The expression of v(E)
is given in Eq. (75) and Cjk is

Cjk =
(

1 x
x 0

)
, (83)

with a parameter x. In this study I fix b = 0.5 fm and
v0 = −650 MeV in v(E), while x is allowed to shift in a
certain range. Throughout this subsection I take the angle of the
complex scaling as θ = 20◦ in treating the resonance state. In
this subsection I consider only the semirelativistic case; I have
checked that the nonrelativistic case gives similar behavior for
the wave function from the Lippmann-Schwinger equation.

I first fix v1 = 0 and x = 0, and solve the Lippmann-
Schwinger equation (38) by taking into account only channel
1. The interaction V11(r) is plotted as a function of the radial
coordinate r in Fig. 8. In this condition I have a 0s bound state
at the eigenvalue Epole = 1431.1 MeV with the binding energy
BE ≡ m1 + M1 − Epole = 3.5 MeV. For this bound state, I
have checked that I can extract the two-body wave function as
the residue of the scattering amplitude at the pole of the bound
state, with the compositeness exactly unity.
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TABLE I. Properties of the resonance state
in the coupled-channels interaction (82). The
parameters are fixed as b = 0.5 fm, v0 =
−650 MeV, v1 = 0, x = 0.5, and θ = 20◦.
The binding energy BE and width � are de-
fined as BE ≡ m1 + M1 − Re Epole and � ≡
−2 Im Epole, respectively.

BE (MeV) 22.6
� (MeV) 14.7
X1 0.99 − 0.08i

X2 0.01 + 0.08i

X1 + X2 1.00 + 0.00i

U 0.07
X̃1 0.93
X̃2 0.07

Now let us switch on the coupling with nonzero x. I here
take x = 0.5, with which the 0s bound state in channel 1
becomes a resonance state. The eigenenergy Epole is 1412.0 −
7.3 MeV, which is also shown in Fig. 8. The properties of
this resonance state is listed in Table I. In Fig. 9, I show
the density distributions from the Schrödinger equation (65)
and Lippmann-Schwinger equation (68). I note that, while the
wave function from the Schrödinger equation is normalized by
hand so that the sum of the compositeness in two channels is
exactly unity, that from the Lippmann-Schwinger equation is
automatically scaled. Amazingly, the wave functions from two
equations coincide with each other. In particular, because the
wave function from the Schrödinger equation is normalized,
one can see that the wave function from the Lippmann-
Schwinger equation is also correctly normalized. This result
indicates that even for a resonance state in a coupled-channels
problem one can extract the wave function from the scattering
amplitude at the pole position. In Table I, I also list the
value of the compositeness from the Lippmann-Schwinger
equation. From the result, the compositeness in channel 1,
X1, dominates the normalization X1 + X2 = 1, which implies
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that this resonance state is a bound state of two particles in
channel 1 with a coupling to the decaying channel 2. I have
checked that the normalization X1 + X2 = 1 is obtained for
resonance wave functions from the scattering amplitude with
any different value of the parameter x.

To interpret the complex compositeness of each channel
X1,2, I calculate X̃1,2 together with U in Eqs. (54) and (55).
The values of these quantities for the present resonance state
are listed in Table I. Because the present state gives U =
0.07 � 1, according to the discussion given after Eq. (56)
I can safely interpret X̃1 (X̃2) as the probability to find the
two-body component of channel 1 (2). From the numerical
result, I can conclude that this resonance is indeed a bound
state of two particles in channel 1.

Next I change the value of v1 so as to introduce the energy
dependence of the interaction. I take E0 = Epole so that the pole
position does not change. The wave function is calculated from
the scattering amplitude. The behavior of the compositeness
in channel 1 and the sum X1 + X2 are shown in Fig. 10.
As one can see, the real part of X1 + X2 as well as that of
X1 decreases when v1 takes negatively larger values, which
implies that the contribution form missing states becomes
important in this condition. This result is consistent with that
in the previous subsections. In addition, I note that, while sum
X1 + X2 becomes unity for v1 = 0, it becomes complex for
v1 �= 0.

The value of the compositeness is compared with that from
the continuity equation in the energy-dependent interaction.
Actually, for a resonance state in a coupled-channels problem,
one can straightforwardly extend the formula (81), which result
in

X∂V/∂E

= 1 + 4πe−6iθ
∑
j,k

∫ ∞

0
dq

q2

(2π )3
Rj (qe−iθ )

×
∫ ∞

0
dq ′ q ′ 2

(2π )3
Rk(q ′e−iθ )

∂VL,jk

∂E
(Epole; qe−iθ , q ′e−iθ ).

(84)
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The result of X∂V/∂E with the wave function from the scattering
amplitude is shown in Fig. 10 as points. From the figure,
the points exactly lie on the lines of X1 + X2, which means
that the sum X1 + X2 correctly reproduces the effect of the
energy-dependent interaction in Eq. (84).

In summary, even for an unstable resonance state in
a coupled-channels case, I can extract its two-body wave
function from the scattering amplitude as the residue of
the scattering amplitude at the resonance pole. The wave
function from the scattering amplitude is automatically scaled
in calculating the Lippmann-Schwinger equation at the res-
onance pole. In particular, the sum of the compositeness
is exactly unity for the energy-independent interaction, but
it deviates from unity for the energy-dependent interaction,
which can be interpreted as the missing-channel contribution.
This result indicates that my scheme is valid even for an
unstable resonance state in a coupled-channels problem, which
will be essential when one investigates the hadronic molecular
components for hadronic resonances in a coupled-channels
approach.

D. A “bound state” of an unstable constituent

Finally I consider a “bound state” which contains an
unstable constituent. This bound state is intrinsically unstable
because of the decay of the unstable constituent particle. An
example is a bound state of the σ meson and nucleon, if it
existed, because the σ meson decays into ππ in the σN bound
state as well as in free space. I evaluate the scattering amplitude
of the unstable particle A and stable particle B by introducing
the self-energy for A in a method developed in Ref. [35]. Then,
I extract the two-body wave function of the AB bound state
from the scattering amplitude. In this subsection I take the
semirelativistic formulation.

To calculate the two-body wave function of the AB bound
state, I first describe the unstable constituent A. In this study
I consider a case that a bare particle of mass mbare couples to
a two-body decay channel in the s wave to be a physical A.
I assume that the two particles in the decay channel have the
same mass md , which should satisfy 2md < mbare so that A
decays.

Suppose that the coupling of the bare particle for A and the
decay channel is controlled by

f (q) = αλ2

q2 + λ2
, (85)

with the magnitude of the relative momentum in the decay
channel q, a coupling constant α, and a cutoff λ. Because of
this coupling, the bare particle becomes an unstable physical
state A in the two-body system of the decay channel. Actually,
the physical state A appears as the pole of the scattering
amplitude for the decay channel, which can be described by
the Lippmann-Schwinger equation (see Fig. 11):

T (E2; q ′, q) =V(E2; q ′, q)

+
∫

d3k

(2π )3

V(E2; q ′, k)T (E2; k, q)

E2 − Ed (k)
, (86)

= +

FIG. 11. Diagram for the description of the physical unstable
particle A. Double and dashed lines represent the bare particle and
decay channel for A, respectively.

with the total energy of the bare particle-decay channel
system E2, the energy of the on-shell particles in the decay
channel Ed (q) ≡ 2

√
q2 + m2

d , and the “interaction” between
two particles in the decay channel via the bare particle V:

V(E2; q ′, q) ≡ f (q ′)f (q)

E2 − mbare
. (87)

After a simple algebra with ansatz T ∝ f (q ′)f (q), I can
solve the Lippmann-Schwinger equation (86) and obtain the
equation for the physical mass of the unstable particle A, mphys,
from its bare mass mbare:

mphys = mbare +
∫

d3k

(2π )3

f (k)2

mphys − Ed (k)
. (88)

I note that mphys has an imaginary part when 2md < mbare.
Let us fix the parameters mbare = 600 MeV, md =

138.0 MeV, α = 0.15 MeV−1/2, and λ = 600 MeV. In this
condition I obtain the physical mass (88) as mphys = 422.7 −
52.0i MeV. Interestingly, one can calculate the compositeness
of the decay channel for this physical unstable particle A
from the scattering amplitude (86) in my scheme, which
results in Xd = 0.10 + 0.29i. This indicates that one sees only
subdominant component of the decay channel inside A because
its absolute value, |Xd | = 0.31, is negligible compared to
unity.

Now I consider the Schrödinger equation and Lippmann-
Schwinger equation for the two-body system of this unstable
particle A and the stable particle B of mass M . Because the
unstable particle A decays and its physical mass mphys has
an imaginary part, I should rewrite both the equations in an
appropriate way. This can be done by introducing the self-
energy for the unstable particle �(E3; q), where E3 is the
eigenenergy of the whole system and q is the magnitude of
the relative momenta between A and B (see a diagram for the
self-energy in Fig. 12). I employ the approach developed in

A

B

FIG. 12. Diagram for the self-energy of an unstable particle A in
the AB propagator. Dashed lines represent the decay channel for A.
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Ref. [35] and formulate the self-energy as

�(E3; q) = mbare√
q2 + m2

bare

∫
d3k

(2π )3

Ed (k)√
Ed (k)2 + q2

× f (k)2

E3 −
√

q2 + M2 −
√
Ed (k)2 + q2

. (89)

By using this self-energy, I have to replace the two-body energy
E(q) in the left-hand side of the Schrödinger equation (23) with

E�(E3; q) =
√

q2 + m2
bare + �(E3; q) +

√
q2 + M2. (90)

In a similar manner, the two-body energy E(q) in the
Lippmann-Schwinger equation (38) and in the compositeness
formulation (52) should be replaced with the above E�(E3; q).
Then, momenta in every equation are transformed into the
complex-scaled values in the complex scaling method so as to
solve these equations for a resonance state.

For the interaction between A and B, I employ the Yukawa
function:

V (r) = β
e−μr

r
, (91)

with the coupling constant β and the interaction range μ. The
Fourier transformation of this interaction is

Ṽ (q) =
∫

d3r V (r)e−iq·r = 4πβ

q2 + μ2
, (92)

However, in the semirelativistic case the Yukawa interaction
leads to an ultraviolet divergence for integrals. To tame the
divergence, I introduce a form factor �2/(q2 + �2) with a
cutoff � as

Ṽ (q) = 4πβ

q2 + μ2

�2

q2 + �2
. (93)

Then, I consider a bound state of the unstable A and stable
B. I fix the parameters as M = 938.9 MeV, β = −2.0, μ =
450 MeV, and � = 1.0 GeV. The parameters for the unstable
A are the same: mbare = 600 MeV, md = 138.0 MeV, α =
0.15 MeV−1/2, and λ = 600 MeV. As a result, I obtain an
s-wave bound state of the unstable A and stable B at its pole
position 1363.8 − 32.2i MeV.

I now solve the Schrödinger and Lippmann-Schwinger
equations to obtain the two-body wave function of the AB
bound state. I show in Fig. 13 the density distribution P(q)
calculated from the wave function in two equations. The one
in the Schrödinger equation is normalized to be unity by
hand, while the one in the Lippmann-Schwinger equation
is extracted from the residue of the scattering amplitude
without the scaling factor. I note that the density distribution
as well as the wave function becomes complex because the
bound state is intrinsically resonance because of the unstable
constituent.

As one can see, the density distributions from two equations
do not coincide with each other. Both the real and imaginary
parts from the Lippmann-Schwinger equation are smaller
than those from the Schrödinger equation. Actually, the
compositeness from the scattering amplitude is evaluated as
X = 0.90 − 0.21i, which is unity for the wave function from
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FIG. 13. Density distribution P(q) obtained from the Schrödinger
equation (Schr) and Lippmann-Schwinger equation (LS) for the
bound state of unstable and stable particles. The scaling angle is
θ = 20◦.

the Schrödinger equation. This fact can be interpreted as the
effect of missing-channel contributions, in this case the decay
channel of the unstable constituent A. In the present condition,
this missing-channel contribution is implemented as the energy
dependence of the self-energy � for the unstable A rather than
the interaction.

Here I note that the compositeness X = 0.90 − 0.21i is
slightly different from the value which satisfies the sum rule
with Xd , i.e., one has X + Xd = 1.00 + 0.08i �= 1. This is
because, in the present formulation, if A is inside the bound
state, the field renormalization constant for A may change
from the value in free space, which is nothing but 1 − Xd .
This is caused by the fact that the self-energy for the particle
A inside the bound state depends on the whole energy E3

and the relative momentum between A and B, q. Indeed,
in free space the self-energy for A is �(mphys + M; q = 0),
but this becomes �(Epole; q) inside the bound state, which
can change the field renormalization constant for A inside
the bound state. Actually, I find that, when I neglect q
dependence of the self-energy � and fix parameters so that
Epole ≈ mphys + M , the sum rule X + Xd = 1 returns to be
satisfied.

In summary, from the scattering amplitude I can extract the
resonance wave function for a bound state which contains an
unstable constituent. The compositeness deviates from unity
because of the decay channel for the unstable constituent
as a missing contribution, although the sum rule of the
compositeness is broken slightly by the shift of the field
renormalization constant for the unstable constituent from the
value in free space. This discussion will help us investigate,
e.g., the σN and ρN components inside the N∗ and �∗
resonances in a forthcoming paper [26].

IV. SUMMARY

In this study I have established a way to evaluate the
two-body wave functions of bound states, both in the stable and
decaying cases, from the residue of the scattering amplitude
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at the pole position. An important finding is that the two-body
wave functions of the bound states are automatically scaled
when evaluated from the scattering amplitude. In particular,
while the compositeness, defined as the norm of the two-body
wave function, is unity for energy-independent interactions, it
deviates from unity for energy-dependent interactions, which
can be interpreted as missing-channel contributions. I have
checked that my scheme works correctly by considering
bound states in a single-channel problem and resonances in
three cases: single-channel, coupled-channels, and unstable
constituent cases.

I emphasize that the compositeness Xj is not observable
and hence in general a model-dependent quantity. However,
one can uniquely determine it from the scattering amplitude
once one fixes the model space, form of the kinetic energy
Ej (q), and interaction. I also note that, while the resonance
wave function depends on the scaling angle θ in the complex
scaling method, the compositeness, or in general quantities
as the integral of the wave function squared, is independent
of the scaling angle because the complex-scaled momentum
qe−iθ can be interpreted as the change of the contour for the
momentum integral of the range [0,∞) to the rotated one with
the angle −θ .

An important application of the scheme developed here is
to investigate the internal structure of candidates of hadronic
molecules. Actually, one can discuss the hadronic molecular
component of hadronic resonances in terms of the composite-
ness, by constructing hadron-hadron scattering amplitudes in
an effective model and extracting the two-body wave function
from the amplitudes. In a forthcoming paper [26], I will apply
my present scheme to the physical N∗ and �∗ resonances
in a precise πN scattering amplitude, and discuss the meson-
baryon components for these resonances by the compositeness
from the scattering amplitude. Finally I emphasize that, in
general, the present scheme can be applied to resonances in any
other models, such as N∗ and �∗ resonances in the dynamical
approaches of ANL-Osaka [36] and Jülich [37], as long as they
fully solve the Lippmann-Schwinger equation.
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