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Influence of mesh non-orthogonality on numerical
simulation of buoyant jet flows
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aJapan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195,
Japan

Abstract

In the present research, we discuss the influence of mesh non-orthogonality on

numerical solution of a type of buoyant flow. Buoyant jet flows are simulated

numerically with hexahedral and prismatic mesh elements in an open source

Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet

instability obtained with the prismatic meshes may be overestimated compared

to that obtained with the hexahedral meshes when non-orthogonal correction

is not applied in the code. Although the non-orthogonal correction method can

improve the instability generated by mesh non-orthogonality, it may increase

computation time required to reach a convergent solution. Thus, we propose

modified solvers that can reduce the influence of mesh non-orthogonality and

reduce the computation time compared to the existing solvers in OpenFOAM.

It is demonstrated that calculations for a buoyant jet with a large temperature

difference are performed faster by the modified solver.

Keywords: buoyant flow, prismatic and hexahedral mesh, mesh

non-orthogonality, finite volume method, OpenFOAM
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• Buoyant jet flows are simulated with hexahedral and prismatic meshes.

• Jet instability with prismatic meshes may be overestimated compared to

that with hexahedral meshes.

• Modified solvers that can reduce the influence of mesh non-orthogonality

and reduce computation time are proposed.

1. Introduction

After the Fukushima Dai-ichi nuclear power plant accident in March 2011

Japan Atomic Energy Agency (JAEA) started a new project called “ROSA-

SA” (Yonomoto et al., 2015), which focuses on thermal-hydraulics behavior in

a containment vessel (CV) of a nuclear power plant during severe accidents.

This project aims to contribute to new regulatory standards and continuous

improvement of safety in nuclear power plants. During a severe accident, water-

zirconium reaction occurs in the core, which generates hydrogen gas. Then,

hydrogen combustion may arise in a CV. Therefore, it is necessary to under-

stand the gaseous behavior and distribution of hydrogen for reducing the hy-

drogen risk and improving safety. Since a CV has a large volume in which

complex three-dimensional thermal hydraulic behaviors can be seen, Computa-

tional Fluid Dynamics (CFD) analysis is used for detailed evaluations.

In 2014, the “International Benchmark Exercise: IBE-3” on CFD analy-

sis of CVs was performed to contribute toward improvement of CFD analysis

by using the large CV test facility PANDA at Paul Scherrer Institute (PSI)

(Andreani et al., 2014). Jet impingement upon density stratification formed

by air and helium gas mixture was investigated as the target experiment in

the benchmark test. Blind analyses of this experiment were performed by the

participants where they knew only the initial and the boundary conditions. Af-

ter the experimental results were opened to the participants, post-test analyses

were performed. We participated in the blind and the post-test analyses, and

employed an open source CFD code called OpenFOAM (OpenFOAM, 2004).
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OpenFOAM is based on finite volume method. In our blind analysis, we em-

ployed tetrahedral meshes instead of hexahedral meshes for simplicity, because

the PANDA facility had complex geometry and mesh generation using tetrahe-

dral meshes was simpler compared to that using hexahedral meshes. The results

of our blind analysis were considerably different from the experimental results.

To resolve this discrepancy in the numerical results, we used hexahedral meshes

in our post-test analysis. Although the same solver and the same turbulence

model were used in both analyses, the results obtained by using the hexahedral

meshes were drastically different from the results of the blind analysis, and they

showed considerably better agreement with the experimental results (Abe et al.,

2015).

This problem seems to be well known among the researchers working on

containment thermal hydraulic safety. For example, in the appendix of the

final summary report of the OECD/SETH-2 project (OECD/NEA, 2012), it

is mentioned that “Users reported that unstructured meshes are unusable for

simulating stratification”.

These results indicate that differences in mesh cell shapes have a large influ-

ence on numerical solutions of density stratified flows or buoyant flows. These

flows are dominated by buoyancy. Generally, the generation of hexahedral

meshes for complex geometry is more difficult than the generation of tetra-

hedral meshes, and the use of tetrahedral meshes cannot be avoided in some

cases. Therefore, it is important to investigate the influence of cell shape on

numerical simulations of flows dominated by buoyancy.

Here, we focus on buoyant flow, and studies involving numerical simulations

of buoyant flows are reviewed. Generally, a greater number of studies using

hexahedral meshes (structured meshes) have been reported than those using

tetrahedral meshes (unstructured meshes). For studies of buoyant flows driven

by temperature difference in a cavity, many researchers have used hexahedral

meshes, e.g., Dixit and Babu (2006), Oliveira and Issa (2001), and de Vahl Davis

(1983), and so on. In addition, for analyses of buoyant jets, e.g., Nam and Bill, Jr

(1993), Yan and Holmstedt (1999), Kumar and Dewan (2014) and Beccantini
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et al. (2008) used hexahedral meshes. In these studies, the influence of cell

shape was not focused on. On the other hand, Boivin et al. (2000) developed

a numerical scheme of the finite volume method for unstructured meshes and

they analyzed buoyant flow in a cavity as a benchmark test. Zitzmann et al.

(2005) simulated thermal convection with tetrahedral meshes. However, they

did not discuss the sensitivity of numerical solution to mesh cell shape. To the

best of the authors’ knowledge, few studies focus on the influence of cell shape

on buoyant flows.

Accordingly, we analyze buoyant flows with hexahedral and tetrahedral

meshes to discuss the influence of cell shapes on numerical simulations of buoy-

ant flows in this study. For the numerical analysis, we use OpenFOAM 2.1.x in

the same way as it was used in the IBE-3 test analyses. We focus on the influence

of mesh non-orthogonality. Because non-orthogonality of tetrahedral meshes is

generally much higher than that of hexahedral meshes, mesh non-orthogonality

may have a great influence on the numerical results. Non-orthogonal correction

methods for relaxation of the influence of mesh non-orthogonality have been

proposed by Muzaferija (1994), Ferziger and Perić (1997), and Jasak (1996).

Non-orthogonal correction is implemented in OpenFOAM. The influence of non-

orthogonal correction on buoyant flow simulation is also discussed here.

In Section 2 procedure of the non-orthogonal correction implemented in

OpenFOAM is described. We investigate two types of the thermal flow so-

lutions; one is based on the Boussinesq approximation and the other is the low

Mach number weakly compressible formulation. The Boussinesq approximation

is discussed as the basic solution related to thermal flows. Solution methods of

the solvers implemented in OpenFOAM for thermal flows are described in Sec-

tions 3 and 4. The solver based on the Boussinesq approximation is described

in Section 3, and the solver based on the low Mach number weakly compressible

formulation is described in Section 4. Increasing computation time to reach

a convergent solution is expected generally by non-orthogonal correction, be-

cause correction requires face flux to be solved implicitly. (Details are discussed

in Section 2.) Therefore, a new solver that can reduce the influence of mesh
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non-orthogonality and computation time is desired. Accordingly, modified nu-

merical solutions for thermal flow simulations are proposed in Sections 3 and

4. A few test analyses of buoyant flows are discussed in Sections 5 and 6. In

these test analyses, the effect of the non-orthogonal correction and performance

of the modified solvers are discussed.

2. Non-orthogonal correction

Mesh non-orthogonality is defined as an angle between a line connecting two

cell centers in a mesh and a face normal vector. According to the the Open-

FOAM user guide (OpenFOAM, 2016), the use of non-orthogonal correction

is generally recommended. On the other hand, non-orthogonal correction is

not necessary for a mesh with very low non-orthogonality (e.g., the maximum

non-orthogonality lower than 5 degrees). For non-orthogonality greater than 80

degrees, it is generally hard to obtain a convergent solution. Non-orthogonal

correction is formulated in OpenFOAM, and this method is called the “over-

relaxed approach”, as shown by Jasak (1996). In this section, a brief overview

of non-orthogonal correction is given according to Jasak (1996).

The non-orthogonal correction is applied to the Laplacian term expressed

as (1). Equation (1) also expresses a discretized formulation of the integrated

Laplacian term of any scalar φ in a given mesh cell. The suffix f refers to

the value of the cell interface of the mesh and Sf denotes a face area vector

orthogonal to the cell interface. Γ is the diffusion coefficient of the scalar φ.

∫
V

∇ · (Γ∇φ)dV =

∫
S

Γ∇φ · dS

≈
∑
f

Γf∇φf · Sf (1)

Figure 1 shows the vector relationship between the cell centers P and N.1

1Calculation procedure of the cell center position in OpenFOAM is summarized in Ap-

pendix A.
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φ is defined for each cell center. If a mesh is orthogonal, the vectors d =
−−→
PN

and Sf are parallel. By application of central differencing to the gradient term

(Versteeg and Malalasekera (2007), etc), the following expression for cell P is

obtained.

∇φf · Sf =
φN − φP
|d| |Sf | (2)

This equation also corresponds to the flux expression used in the classical form

of the Two-Point Flux Approximation scheme (TPFA scheme). (See Fuhrmann

et al. (2014), etc., for example.)

In the case that a mesh is non-orthogonal, as shown in Fig.1, that is, d and

Sf are not parallel, Sf is split into two components Sf = ∆ + k. Here k is

defined so that it satisfies the relationship Sf · k = 0. ∆ is defined as below.

∆ =
|Sf |2
d · Sf

d (3)

From the above relationship, the following equation (4) is obtained.

∇φf · Sf = ∇φf ·∆ +∇φf · k

=
φN − φP
|d| |∆|+∇φf · k (4)

The second term on the right hand side in (4) is calculated implicitly as the

non-orthogonal correction. The value of the gradient at the interface in the

second term is obtained by interpolation of the gradient values at cell centers P

and N, and it is expressed as follows:

∇φf = fx∇φP + (1− fx)∇φN (5)

where fx is the interpolation factor. The gradient at the cell center is calculated

by ∇φP =
∑

f Sfφf/VP, and VP is the cell volume. φf at each face is calculated

by interpolation from the cell center values of the adjacent cells. This correction

generally requires iterative calculations because the second term on the right

hand side in (4) is calculated implicitly, and it is necessary to update this term

iteratively.
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Buoyant flow solvers implemented in OpenFOAM are based on the PISO

method proposed by Issa (1985), and the details of the solutions are shown in the

following sections. Based on the PISO method, the pressure equation includes

a Laplacian term of pressure, and pressure is corrected by iterative calculations.

The solution flow of pressure correction is shown in Fig.2. The iteration loop of

pressure correction includes an iteration loop of the non-orthogonal correction.

Generally, the non-orthogonal correction loop is executed once or twice accord-

ing to the user guide (OpenFOAM, 2016). This means that computation time

for convergence may be increased by the non-orthogonal correction, because the

correction requires the face flux to be solved implicitly.

f cell interface

P
N

Sf k

�d =
���
PN

Figure 1: Schematic sketch of non-orthogonal cells P and N

3. Numerical solver using Boussinesq approximation

Two types of solvers for buoyant flow analyses are implemented in Open-

FOAM. One is based on the Boussinesq approximation. The other is based on

the low Mach number weakly compressible formulation by Zhou et al. (2001).

In this section, the solver based on the Boussinesq approximation “buoyant-

BoussinesqPimpleFoam” is discussed. The source code of this solver is available

in reference (Github, 2011).
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loop of pressure 
correction	

calculation of 
pressure equation	

loop of non-orthogonal 
correction	

correction of velocity	

Figure 2: Solution flow of pressure correction

3.1. Numerical solution method of “buoyantBoussinesqPimpleFoam” solver im-

plemented in OpenFOAM

The basic equations are mass and momentum equations, which are (6), (7),

and the transport equation of temperature (8).

∇ · u = 0 (6)

ρref

(
∂u

∂t
+∇ · (uu)

)
= −∇p+ µ∇2u + ρg (7)

∂T

∂t
+∇ · (uT ) = κ∇2T (8)

where u is the velocity vector, p is the pressure, ρ is the density of gas, ρref is

the reference density, and T is the gas temperature. µ and κ are the viscosity

coefficient and the thermal diffusivity coefficient, respectively. g is gravitational

acceleration. Based on the Boussinesq approximation, (7) is modified to obtain

the following equation (9).

∂u

∂t
+∇ · (uu) =−∇

(
p

ρref

)
+ ν∇2u

+ [1− β(T − Tref )]g (9)

Here, ρk is defined as ρk = 1 − β(T − Tref ). ν is the kinematic viscosity

coefficient. β is the thermal expansion coefficient. p/ρref is rewritten as p. (9)
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can be modified as

∂u

∂t
+∇ · (uu) = −∇ (p− ρkg · x) + ν∇2u− (g · x)∇ρk (10)

where x is the position vector. This modification can improve accuracy of the

pressure solution.

The Boussinesq approximation solver is based on the PISO method, and

the equations (6) and (10) are solved as the basic equations. Hereafter, the

numerical solution method is explained.

The terms related to velocity in (10) are discretized. The equation related

to the velocity component ui is expressed below.

APui,P +
∑
N

ANui,N = −
(
δprgh
δxi

)
P

− (g · x)

(
δρk
δxi

)
P

(11)

where the suffix i shows the i th component, and δ/δxi is the discretized operator

of the space derivative. A is a coefficient, and its value varies depending on cell

position and time step. ρk also varies depending on cell position and time

step. The suffixes P and N indicate the focused cell and the neighboring cells,

respectively. prgh is equal to p− ρkg · x. (11) is modified as below.

ui,P =
H

AP
− 1

AP

(
δprgh
δxi

)
P

− 1

AP
(g · x)

(
δρk
δxi

)
P

(12)

where H = −∑NANui,N. From (12) and (6), the discretized Poisson equation

of pressure expressed as (13) is obtained.

δ

δxi

[
1

AP

(
δprgh
δxi

)
P

]
=

δ

δxi

[
H

AP
− 1

AP
(g · x)

(
δρk
δxi

)
P

]
(13)

Here, the Einstein notation is applied. The suffix i appears twice in the same

term, which means the summation of each component.

In OpenFOAM, predicted velocity u∗i is calculated by using the values of

the previous iteration in (12). Predicted temperature T ∗ is calculated by (8).

Then, ũi,P = H/AP is obtained by using the predicted velocity u∗i . Pressure

is then calculated by (13) with ũi and T ∗. After pressure is determined, cor-

rected velocity is obtained by using (12). These calculations are iterated until

a convergent solution is obtained.
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3.2. Modification of solver

According to our preliminary analysis, the influence of mesh non-orthogonality

on numerical solution of jet flows is hardly observed when buoyancy is non-

existent. This point is discussed in Section 5 in detail. Thus, we focus on the

buoyancy term included in the equations of the solution for buoyant flows.

On the right hand side of (13), the Laplacian of density is included. The

buoyant force term can strongly affect buoyant flow. Therefore, it is necessary to

calculate the Laplacian of density precisely. In the case that the maximum mesh

non-orthogonality is higher than, for example, 5 degrees, the computation accu-

racy of this Laplacian term may decrease (OpenFOAM, 2016). Non-orthogonal

correction for the Laplacian term has been implemented in OpenFOAM, as

shown in Section 2. However, non-orthogonal correction may increase the com-

putation time. A solver that can reduce the influence of mesh non-orthogonality

without increasing computation time is desired. We show that the modified

solver eliminates the influence of the Laplacian of density while solving the Pois-

son equation of pressure more accurately even when a mesh with the maximum

mesh non-orthogonality greater than 5 degrees is employed.

The reference position and dynamic pressure are defined as xref and p′.

Pressure p is rewritten as below.

p = p′ + ρrefg · (x− xref ) (14)

∇p = ∇p′ + ρrefg (15)

From (15) and (7), (16) is obtained.

ρref

(
∂u

∂t
+∇ · (uu)

)
= −∇p′ + µ∇2u + (ρ− ρref )g (16)

To this equation, the Boussinesq approximation is applied.

∂u

∂t
+∇ · (uu) = −∇p′ + ν∇2u− β(T − Tref )g (17)

where p′ ≡ p′/ρref . In a similar way as the described formulation, the new

discretized Poisson equation for dynamic pressure is obtained in (18).

δ

δxi

[
1

AP

(
δp′

δxi

)
P

]
=

δ

δxi

[
(ρkgi)P −

∑
NANui,N

AP

]
(18)
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where ρk = −β(T − Tref ). In this equation, the Laplacian term of density is

not included. We construct a new solver by using this pressure equation, and

compare the numerical solutions with those obtained by using the existing solver

in OpenFOAM.

4. Numerical solver using low Mach number weakly compressible for-

mulation

The Boussinesq approximation cannot be applied when the change in density

is large. Then, the low Mach number weakly compressible formulation by Zhou

et al. (2001) is applied when the change in density is large and the characteristic

speed is very small compared to the acoustic speed. Here, the solver using this

formulation “buoyantPimpleFoam” is discussed. The summary of this solver is

explained by Kumar and Dewan (2014).

4.1. Numerical solution method of “buoyantPimpleFoam” solver in OpenFOAM

The basic equations are the mass, momentum and energy equations (19)–

(21), and the equation of state of the fluid.

∂ρ

∂t
+∇ · (ρu) = 0 (19)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∇2u +

1

3
µ∇D + ρg (20)

∂ρh

∂t
+∇ · (ρhu) = ∇ ·

( µ

Pr
∇h
)

+
∂p

∂t
(21)

where h is enthalpy of the fluid and D is D = ∇ · u. Pr is Prandtl number. In

a similar way as (10), (20) is modified as (22).

∂ρu

∂t
+∇ · (ρuu) =−∇ (p− ρg · x) + µ∇2u

+
1

3
µ∇D − (g · x)∇ρ (22)
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The solver using the low Mach number weakly compressible formulation is also

based on the PISO method. The terms related to velocity are discretized.

AP

ρP
ρPui,P +

∑
N

ANui,N = −
(
δprgh
δxi

)
P

− (g · x)

(
δρ

δxi

)
P

⇔ ρPui,P = ρP
H

AP
− ρP
AP

(
δprgh
δxi

)
P

− ρP
AP

(g · x)

(
δρ

δxi

)
P

(23)

where H = −∑NANui,N and prgh = p − ρg · x. A is a coefficient and it

is variable in the same manner as (11). From (19) and (23), the discretized

pressure equation (24) is obtained.

δ

δxi

[
ρP
AP

(
δprgh
δxi

)
P

]
=

δ

δxi

[
ρP

H

AP
− ρP
AP

(g · x)

(
δρ

δxi

)
P

]
+
∂ρP
∂t

(24)

Predicted velocity u∗i is calculated by using the values of the previous iter-

ation in (23). Predicted enthalpy h∗ is calculated by using (21), and predicted

density ρ∗ is calculated with the equation of state of a gas. ũi,P = H/AP is

calculated by using the predicted velocity u∗i . Pressure is obtained by using ũi,

ρ∗ and the known values of density in (24). After pressure is obtained, corrected

velocity is calculated by using (23). The calculations are iterated until a con-

vergent solution is obtained. In addition, density is corrected by the equation

of state.

4.2. Modification of solver

On the right hand side of (24), the Laplacian of density is also included

in the solver based on the low Mach number weakly compressible formulation.

Here, we also consider elimination of the Laplacian of density from the pressure

equation. Pressure p is expressed in terms of dynamic pressure p′ and spatially

homogeneous density ρc.

p = p′ + ρcg · x (25)

The value of ρc relates to the boundary condition of pressure at inlet. Consid-

ering the sign of the pressure gradient at the inlet, it is necessary to determine

the value of ρc. The minimum value of density of the fluid is used as the value
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of ρc in this study. Detail pertaining to the determination of ρc is discussed in

Section 6. (25) is inserted into (20).

∂ρu

∂t
+∇ · (ρuu) = −∇p′ + µ∇2u +

1

3
µ∇D + (ρ− ρc)g (26)

The velocity term is discretized in the above equation.

AP

ρP
ρPui,P +

∑
N

ANui,N = −
(
δp′

δxi

)
P

+ (ρP − ρc)gi

⇔ ρPui,P = ρP
H

AP
− ρP
AP

(
δp′

δxi

)
P

(27)

where H = (ρP − ρc)gi −
∑

NANui,N. From this equation, a new discretized

pressure equation expressed as (28) is obtained. We construct a new solver using

this pressure equation.

δ

δxi

[
ρP
AP

(
δp′

δxi

)
P

]
=

δ

δxi

[
ρP

H

AP

]
+
∂ρP
∂t

(28)

In this study, OpenFOAM version 2.1.x is used. OpenFOAM version 4.0 has

been released. The fundamental process of solution of buoyantPimpleFoam in

version 4.0 is the same as that in version 2.1.x. Therefore, the above modification

to the solver can be applied to the newer version of OpenFOAM. In the same

manner, modification of buoyantBoussinesqPimpleFoam can be applied to the

newer version of OpenFOAM.

5. Test analysis 1: buoyant jet with small temperature difference

5.1. Problem description and numerical simulation

The first test case is a vertical buoyant jet with a small temperature differ-

ence injecting into a 2D rectangular region. Figure 3 depicts a schematic sketch

of the problem for test analysis. The x and y directions indicate the horizontal

and the vertical directions, respectively. Gravitational acceleration g is along

the −y direction and |g| = 9.81 m/s2. The width and height of the rectangular

region are L = 7 m and H = 14 m, respectively. The inlet and the outlets are

located at the center and both sides of the container bottom, and the widths of

the inlet and the outlets are l = 1 m.
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Initial temperature T0 was homogeneous, and its value was 300 K. Initial

state was quiescent. The fluid was injected homogeneously. Injection velocity

was Uin = 0.1 m/s, and temperature of the injected fluid was Tin = 310 K.

The kinematic viscosity coefficient ν was set to ν = 10−4 m2/s. The thermal

expansion coefficient β was set to β = 3× 10−3 K−1. Prandtl number was 0.7.

The fluid was assumed to be an ideal gas. Reynolds number defined by the

injection velocity and the inlet width was Re = Uinl/ν = 1000. Richardson

number Ri was defined by the temperature difference ∆T = Tin − T0, the

injection velocity and the region height, as expressed below.

Ri =
−gβ∆TH

U2
in

≈ −410 (29)

The absolute value of Ri was much higher than unity, and its sign was negative.

This flow was dominated by buoyancy, and it was unstable.

Non-slip and adiabatic conditions were applied on the wall as the boundary

conditions. Considering buoyant force, the pressure boundary condition on the

wall was ∇p · n = ρkg · n, where n was a unit vector normal to the wall. At

the inlet boundary, velocity was equal to Uin, and the boundary condition of

pressure was ∇p ·n = ρkg ·n. The pressure was fixed, and the velocity gradient

was fixed to zero at the outlet boundary.

The numerical simulations were performed by using the solver based on the

Boussinesq approximation because the temperature difference in this test prob-

lem was small. No turbulence model was applied. In this study, we focused

on the influence of mesh non-orthogonality rather than that of the numerical

scheme. Therefore, we applied the numerical schemes commonly used for sim-

ulation in OpenFOAM (OpenFOAM, 2016). The Euler implicit method was

employed for time marching. The gradient term was discretized by using the

Gauss linear scheme. For the gradient term, standard finite volume discretiza-

tion was used for the integrated term with the Gauss divergence theorem, which

is based on summing values on cell faces and requires interpolation of the values

from the cell centers to the face center. We employed linear interpolation (cen-

tral differencing). The divergent terms of velocity and temperature equations
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were discretized by using the Gauss limited linear scheme. For the divergent

terms, standard finite volume discretization was used, and interpolation was

performed by using the limited linear scheme. The limited linear scheme is one

of the Total Variation Diminishing (TVD) schemes implemented in OpenFOAM

(The Open CAE Society of Japan, 2016), and the flux limiter function is defined

as ψ(r) = max(0,min( 2
k , 1)), where r is the consecutive gradient and k is the

input parameter (0 ≤ k ≤ 1). In this simulation, k = 1 was applied. Here,

application of the first order upwind scheme was avoid to decrease the influence

of numerical viscosity. The linear interpolation scheme was used to interpolate

the other terms.

The iteration number of the pressure corrector loop was set to 2, and the

time step was controlled to keep the maximum Courant number ≤ 0.3. We

also tested cases in which the iteration number of the pressure corrector loop

was set to 3 and the value of the maximum Courant number was less than

0.15, and we obtained almost the same results as the results obtained using

the original parameters. In addition, a limited scheme for the gradient term

was tested. However, a difference from the result obtained using the original

gradient scheme (Gauss linear scheme) was not observed.

For 2D simulations using OpenFOAM, the mesh was constructed from mul-

tiple cells in the width and height directions and one cell in the depth direction.

Then, the actual created meshes with rectangular elements and triangular ele-

ments were composed of hexahedral and prismatic elements with one cell in the

depth direction (z direction), respectively. Four types of meshes, namely, coarse

hexahedral mesh, coarse prismatic mesh, fine hexahedral mesh, and fine pris-

matic mesh were created by using GAMBIT developed by ANSYS and Gmsh

(Geuzaine and Remacle, 2009). Typical cell size of the coarse meshes was 0.02m,

and that of the fine meshes was 0.01m. In the prismatic meshes, the hexahe-

dral cells were constructed on the boundaries to avoid flow disturbance at the

inlet. Pictures of the coarse meshes around the inlet are shown in Figs. 4 and

5. The numbers of mesh cells and the values of mesh non-orthogonality are

given in Table 1. To check mesh quality, the values of non-orthogonality were
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calculated with the utility code implemented in OpenFOAM. The value of non-

orthogonality is defined as the angle between the line connecting two cell centers

and the normal of their common face. A non-orthogonality of 0.0 means the

mesh is perfectly orthogonal.

Table 1: Mesh characteristics

Mesh type Number of cells Non-orthogonality

maximum average

coarse hexahedral mesh 245k (350×700) 0.0 0.0

coarse prismatic mesh 545k 12.8 3.0

fine hexahedral mesh 980k (700×1400) 0.0 0.0

fine prismatic mesh 2570k 41.2 7.1

5.2. Results and discussion

First, numerical results pertaining to non-buoyant jet flows (g = 0) are

discussed to investigate the influence of buoyancy. Temperature fields obtained

using the coarse hexahedral mesh and the coarse prismatic mesh without non-

orthogonal correction (NO correction) at 200 s from the start of jet injection

are shown in Fig. 6 and 7, respectively. The unit of temperature is Kelvin (K).

The inlet conditions are the same as the conditions shown in 5.1. Although NO

correction was not applied, no difference in the temperature fields was observed.

Qualitatively the same tendency was observed even when the injection velocity

was increased to 13 times of the original injection velocity.

Second, we discuss the numerical results pertaining to buoyant jet flows. Fig-

ure 8 shows the temperature distributions obtained using the coarse hexahedral

mesh at 10 s and 20 s from start of jet injection. This simulation was performed

by using the existing solver buoyantBoussinesqPimpleFoam. Symmetrical tem-

perature distribution is observed at 20 s from the start of jet injection. Around

downstream of the jet edge, symmetrical vortices are observed. We compared

the results obtained using the fine hexahedral mesh with those obtained using
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Figure 3: Schematic sketch of geometry of buoyant jet with small temperature difference

Figure 4: Coarse hexahedral mesh around inlet
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Figure 5: Coarse prismatic mesh around inlet

the coarse hexahedral mesh. Figure 9 shows the temperature distributions sim-

ulated using the fine hexahedral mesh. The temperature distributions obtained

with the coarse hexahedral mesh by using the existing solver shows good agree-

ment with those obtained with the fine hexahedral mesh. The coarse hexahedral

mesh has enough mesh resolution in this simulation.

Here, we discuss the numerical results obtained with the prismatic meshes.

The calculation conditions, used solver, and the number of applications of NO

correction in the cases using the coarse prismatic mesh are summarized in Table

2. These simulations were performed by using the existing solver buoyantBoussi-

nesqPimpleFoam and the modified solver. Figure 10 shows closeup views of the

temperature fields obtained with the coarse prismatic mesh. The temperature

fields obtained by using the existing solver without NO correction (condition 1a)

in Fig.10(1a) shows asymmetrical temperature distribution, and the flow field

is more unstable than that obtained using the coarse hexahedral mesh. This

result indicates that the simulation using the prismatic mesh without NO cor-

rection may overestimate flow instability compared to the simulation using the

hexahedral mesh. Moreover, the result obtained using the fine prismatic mesh

without NO correction shows more disturbed distribution than that obtained
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using the coarse prismatic mesh. This may be ascribed to the higher mesh

non-orthogonality of the fine prismatic mesh than that of the coarse prismatic

mesh.

Table 2: Calculation conditions using coarse prismatic mesh

Condition Solver
Number of applications

of NO correction

1a existing solver none

1b existing solver 1

1c existing solver 2

1d modified solver none

1e modified solver 1

Figures 10(1b) and (1c) show the temperature distributions obtained using

the coarse prismatic mesh by the existing solver with one and two applications

of NO correction (conditions 1b and 1c), respectively. NO correction should be

applied multiple times, as described in Section 2. Then, we discuss the number

of applications of NO correction. Asymmetrical temperature distributions are

observed under condition 1b. By contrast, the results obtained under condi-

tion 1c show good agreement with the results obtained using the hexahedral

mesh. These findings indicate that mesh non-orthogonality can strongly influ-

ence numerical solution of buoyant jets, and the numerical results are corrected

appropriately by NO correction even when the prismatic mesh is used.

Figures 10(1d) and (1e) show the temperature distributions calculated with

the modified solver using the coarse prismatic mesh without NO correction

and those obtained with one application of NO correction (conditions 1d and

1e), respectively. The temperature distributions obtained under condition 1d

show more symmetrical distributions than those obtained by using the existing

solver without NO correction, and the results obtained under condition 1e show

good agreement with those obtained using the coarse hexahedral mesh. The

solution of buoyant flow based on the PISO method is affected strongly by
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the Laplacian of density included in the pressure equation. The influence of

mesh non-orthogonality is reduced by using the modified solver, and the correct

solution can be obtained by fewer applications of NO correction.

Vertical temperature distributions at the center of the inlet (x = 0 m) are

plotted in Fig.11. The numerical results obtained using the coarse hexahedral

and the coarse prismatic meshes are shown. The time is 20 s from the start

of jet injection. The results obtained under conditions 1c and 1e show good

agreement with the results obtained using the coarse hexahedral mesh. Large

differences are observed between the results obtained using the hexahedral mesh

and the other results obtained using the coarse prismatic mesh (conditions 1a,

1b, and 1d).

Table 3 shows the averaged computation times (wall clock times) and stan-

dard deviations of the computation time in simulating flow fields until 20 s from

the beginning of jet injection with the coarse prismatic mesh. The computation

times under conditions 1a–1e are compared. For these calculations, 2 Intel Xeon

E5-2690v2 3.0GHz CPUs with 10 cores/CPU were used, and the number of par-

allel calculations was 20. The OpenFOAM code was built by the Intel compiler

bundled with C++ version 14.0.0. Intel MPI version 4.1.1.036 was used for

the parallel computations. The computation times were measured eight times

for each solver. Large differences in computation times were not observed be-

tween conditions (1a) and (1b) and between (1d) and (1e). The computation

times under conditions (1b) and (1c) were almost comparable, even after in-

creasing the number of applications of NO correction. Although the number of

times that the pressure equation was solved was increased by the NO correction,

the total computation time might not increase considerably because the time

taken to solve the pressure equation once might decrease. Because the standard

deviations in computation time were relatively large compared with difference

between the averaged computation times, the cases that the calculation under

the condition (1b) was much faster than that under the condition (1c) were

observed. The averaged computation time with the modified solver (1e) was

about 14% longer than that with the existing solver (1c). This result indicates
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that further improvement of the solver based on the Boussinesq approximation

is necessary.

Table 3: Comparison of computation times

Solver (condition) Computation time [s] Standard deviation [s]

existing solver (1a) 3010.0 195.1

existing solver (1b) 3022.5 218.0

existing solver (1c) 3050.8 11.0

modified solver (1d) 3645.4 118.3

modified solver (1e) 3587.9 187.7

Figure 6: Temperature field of jet g =

0 obtained using coarse hexahedral mesh

without non-orthogonal correction. The

field at 200s from the start of jet injection

is shown.

Figure 7: Temperature field of jet g =

0 obtained using coarse prismatic mesh

without non-orthogonal correction. The

field at 200s from the start of jet injection

is shown.
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Figure 8: Temperature field obtained using coarse hexahedral mesh by existing solver without

non-orthogonal correction. Left: field at 10s from the start of jet injection, right: field at 20s

from the start of jet injection.

Figure 9: Closeup view of temperature field obtained using fine hexahedral mesh by existing

solver without non-orthogonal correction. Left: field at 10s from the start of jet injection,

right: field at 20s from the start of jet injection. The color scale is the same as that in Fig.8.
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1a (10s) 1b (10s) 1c (10s) 1d (10s) 1e (10s)

1a (20s) 1b (20s) 1c (20s) 1d (20s) 1e (20s)

Figure 10: Closeup views of temperature fields obtained with coarse prismatic mesh under

conditions (1a)-(1e). Upper: fields at 10s from the start of jet injection, lower: fields at 20s

from the start of jet injection. The color scale is the same as that in Fig.8.
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Figure 11: Vertical distributions of temperature at center of inlet (x = 0 m). The time is 20s

from the start of injection. Solid line: result obtained with coarse hexahedral mesh, dashed

lines and symbols: results obtained with coarse prismatic mesh (1a)–(1e).
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6. Test analysis 2: buoyant jet with large temperature difference

6.1. Problem description and numerical simulation

Buoyant jets simulated by Beccantini et al. (2008) have been analyzed as

a test for buoyant flows with large temperature difference. They simulated a

vertical buoyant jet injecting into a 2D rectangular region. A schematic sketch

of the geometry is shown in Fig.12. Definitions of the axes are the same as those

in test analysis 1 in Section 5. The width and height of the region are L = 3 m

and H = 7 m, respectively. The inlet is located at the center of the container

bottom, and its width is l = 0.2 m. This container has no outlet. The origin of

the coordinate system is located at the center of the inlet.

The initial condition was the same as that in test analysis 1. Initial temper-

ature was T0 = 300 K and initial pressure was p0 = 105 Pa. Injection temper-

ature was Tin = 600 K. Injection velocity Uin was given by a parabolic profile

Uin = 6Um(l2/4− x2)/l2. The injection mass flow rate was ṁin = 1.0 kg/m2·s,
and the velocity Um at the center was about 1.7 m/s. Reynolds number Re was

defined by the injection mass flow rate, injection width and viscosity coefficient:

Re = ṁinl/µ. Re by Beccantini et al. was equal to 40. The viscosity coefficient

was µ = 5 × 10−3 Pa·s in this simulation. Richardson number was estimated

to be Ri ≈ −24. Temperature dependency of material properties was not con-

sidered by Beccantini et al. Therefore, material properties were assumed to be

constant in this simulation.

The temperature difference in this test problem was large. Therefore, the nu-

merical solver based on the low Mach number weakly compressible formulation

was applied. Non-slip and adiabatic conditions were applied as the boundary

conditions on the wall. Considering buoyant force, the pressure boundary con-

dition on the wall was ∇p · n = ρg · n. At the inlet boundary, the velocity was

fixed to Uin and the boundary condition of pressure was ∇p · n = ρg · n. This

boundary condition was rewritten by using the dynamic pressure p′ in (25) of

the modified solver, and ∇p′ · n = (ρ− ρc)g · n. In this analysis, the inlet was

located on the bottom of the container. Then, the boundary condition on p′
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was obtained as ∂p′

∂y = −(ρ− ρc)|g|. It is necessary to satisfy ρ− ρc ≥ 0 so that

the gradient of p′ is zero or negative along the flow direction for smooth injec-

tion. Therefore, the minimum value of density, namely, density at the maximum

temperature position, was used as ρc in this study.

In this simulation, no turbulence model was applied. We also applied the

commonly used numerical schemes in the same way as that in test analysis 1.

The Euler implicit method was used for time marching method. The gradi-

ent term was discretized by the Gauss linear scheme. Standard finite volume

discretization was used, and the gradient term was interpolated by using the

linear interpolation scheme. The divergent terms in the velocity and the en-

thalpy equations were discretized by using the Gauss linear scheme. Standard

finite volume discretization was used, and the divergent terms were interpo-

lated by using the linear scheme. The linear interpolation scheme was used for

interpolating the other terms.

The iteration number of the pressure corrector loop was set to 2, and the

time step was controlled to keep the maximum Courant number ≤ 0.3.

Beccantini et al. used a hexahedral mesh with 120×120 cells. In this simu-

lation, the same mesh size was used. A prismatic mesh was also created, and

the characteristic cell size was 3m/120=0.025m. The hexahedral cells were con-

structed on the boundaries of the prismatic mesh in the same way as that in test

analysis 1. The numbers of mesh cells and the values of mesh non-orthogonality

are given in Table 4.

Table 4: Mesh characteristics for buoyant jet with large temperature difference

Mesh type Number of cells Non-orthogonality

maximum average

hexahedral mesh 14.4k (120×120) 0.0 0.0

prismatic mesh 72.8k 12.1 3.2
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Figure 12: Schematic sketch of geometry of buoyant jet with large temperature difference

6.2. Results and discussion

Temperature distributions and contours after 6 s from the start of jet in-

jection are shown in Figs. 13 and 14. These figures show the results obtained

with the hexahedral mesh by the existing solver buoyantPimpleFoam and by

the modified solver, respectively. The temperature range is 329–582 K. Incre-

ments of the contours are 18 K. The results obtained in these simulations are

very similar and show good agreement with the results of Beccantini et al. The

solutions obtained by using the existing solver and the modified solver are valid

for buoyant jet flows with large temperature difference.

The calculation conditions associated with the prismatic mesh are given in

Table 5. The temperature contour obtained by the existing solver without NO

correction (condition 2a) is shown in Fig.15. Disturbed temperature distribution

is observed, and the jet bends to large extent. The temperature contour obtained

by the existing solver with one application of NO correction (condition 2b) is

shown in Fig.16. It shows almost symmetrical profile owing to NO correction.
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Table 5: Calculation conditions with prismatic mesh

Condition Solver
Number of applications

of NO correction

2a existing solver none

2b existing solver 1

2c modified solver none

2d modified solver 1

The temperature field obtained by the modified solver without NO correc-

tion (condition 2c) is shown in Fig.17. The numerical result is considerably

better than the result obtained by the existing solver without NO correction,

as shown in Fig.15, but it becomes slightly disturbed and shows asymmetrical

distribution. The temperature field obtained by the modified solver with one

application of NO correction (condition 2d) is shown in Fig.18. The result is

improved by the application of NO correction.

Figures 19 and 20 show the vertical distributions of vertical velocity uy at

x = 0 and −L/4. The symbols show the results of the simulation by Beccantini

et al. The red and green lines show the results obtained with the hexahedral

mesh by the modified solver and the existing solver, respectively. The orange

and blue lines show the results obtained with the prismatic mesh by the modified

solver and the existing solver with one application of NO correction, respectively.

The vertical velocity distributions obtained using the hexahedral mesh and the

prismatic mesh show good agreement with the results of Beccantini et al.

A comparison of the computation times and the standard deviations of the

computation times for different parallel numbers is given in Table 6. The com-

putation times under conditions 2b and 2d are compared. The computation

environment was the same as that in the previous section. The calculation

times were measured three times for each case. The calculations by the modi-

fied solver were about 20–30% faster than those by the existing solver for each

parallel number. This might be ascribe to improvement of convergence of the
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pressure equation. Moreover, these calculations show relatively good parallel

efficiency. More detailed analysis of the computation speed of these solvers is

necessary, for example, using a larger mesh.

We also analyzed 3D buoyant jet flows with large temperature difference

using tetrahedral mesh roughly. The same tendency as the numerical solutions

of 2D buoyant jet flows was observed in terms of the influence of non-orthogonal

correction. In the future, more detailed investigation of the influence on 3D

buoyant flows is necessary.

Table 6: Comparison of computation times and standard deviations for different parallel

numbers
Parallel
number Existing solver (2b) Modified solver (2d)

Computation
time [sec]

Standard
deviation [sec]

Computation
time [sec]

Standard
deviation [sec]

1 3293.7 203.9 2493.0 59.8

10 426.0 1.4 336.3 5.7

20 200.7 2.5 168.3 0.9
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Figure 13: Temperature contour and field

obtained using hexahedral mesh by exist-

ing solver without non-orthogonal correc-

tion

Figure 14: Temperature contour and field

obtained using hexahedral mesh by modi-

fied solver without non-orthogonal correc-

tion

Figure 15: Temperature contour and field

obtained using prismatic mesh by existing

solver without non-orthogonal correction

(condition 2a)

Figure 16: Temperature contour and field

obtained using prismatic mesh by exist-

ing solver with one application of non-

orthogonal correction (condition 2b)
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Figure 17: Temperature contour and field

obtained using prismatic mesh by modi-

fied solver without non-orthogonal correc-

tion (condition 2c)

Figure 18: Temperature contour and field

obtained using prismatic mesh by mod-

ified solver with one application of non-

orthogonal correction (condition 2d)
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Figure 19: Vertical distributions of vertical velocity obtained using hexahedral mesh
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Figure 20: Vertical distributions of vertical velocity obtained using prismatic mesh with one

application of non-orthogonal correction (conditions 2b and 2d)
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7. Conclusion

The influence of mesh non-orthogonality on the numerical solutions of 2D

buoyant jet flows with small and large temperature differences was analyzed by

using OpenFOAM in this study. Buoyant jet was affected strongly by mesh non-

orthogonality, while large influence occurred by the difference in mesh type was

hardly observed in the case of non-buoyant jets. The numerical result obtained

with the prismatic mesh indicated a tendency to overestimate flow instability

compared to that obtained with the hexahedral mesh when non-orthogonal cor-

rection was not applied. For accurate numerical simulation of buoyant jets, it

is necessary to focus on mesh non-orthogonality and non-orthogonal correction.

Modified solvers to reduce the influence of mesh non-orthogonality were

developed based on the Boussinesq approximation and the low Mach number

weakly compressible formulation. The influence of mesh non-orthogonality was

relaxed by the modified solvers. The modified solvers could calculate flow fields

with fewer or the same number of iterations of non-orthogonal correction as the

existing solvers. Especially, calculations by the modified solver based on the low

Mach number weakly compressible formulation were faster than those by the

existing solver.

In this study, we analyzed 2D buoyant jet flows. In the future, we would

discuss the detailed effect of 3D geometry on thermal flows, and analyze ther-

mal flows by using different types of meshes, for instance, meshes with higher

non-orthogonality or meshes with the same number of elements but different

non-orthogonality (e.g., parallelogram-type meshes), and so on. We discussed

the influence of mesh non-orthogonality by the non-orthogonal correction im-

plemented in OpenFOAM (over-relaxed approach), and it is necessary to study

alternative ways to correct the influence of mesh non-orthogonality. It would

be necessary to study the influence of mesh characteristics other than mesh

non-orthogonality, for instance, skewness or cell size for flows dominated by

buoyancy.
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Appendix A

Details of the computation procedure of the cell center in OpenFOAM were

described by Moukalled et al. (2015). A brief summary of this procedure is given

here. First, the location of the geometric center of the cell xG is computed, and

the cell element is decomposed into a number of polygonal pyramids. Figure 21

shows the cell element and the decomposed pyramid. Each polygonal pyramid

is formed of a geometric center xG as the apex and a polygonal face of the cell

element as the base.

xG =
1

k

k∑
i=1

xi (30)

where k is the number of the apex of the cell element, and xi is the position

vector of the apex.

Second, the center of the decomposed pyramid (xCE)pyramid is calculated.

The vector connecting xG and the center of the base face f : (xCE)f is defined

as dGf = (xCE)f − xG. The center of the face f : (xCE)f is calculated by

decomposing the base face into a number of triangles. (xCE)pyramid is calculated

as below.

(xCE)pyramid =
3(xCE)f + xG

4
(31)

The center of the cell element (xCE)C is computed as the volume-weighted

average of the centers of the decomposed pyramids.

Vpyramid =
dGf · Sf

3
, VC =

∑
sub−pyramids

Vpyramid (32)

(xCE)C =

∑
sub−pyramids(xCE)pyramidVpyramid

VC
(33)
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