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Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated
based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisot-
ropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic
scale given by the adiabatic response term in the HM equation. The former is determined by competi-
tion between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given
as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parame-
ters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is
found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence
or zonal flows, which give significantly different transport levels. Although the modulational instabil-
ity excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined
by the self-organization process. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4980005]

I. INTRODUCTION

Turbulence driven by the inhomogeneity of plasmas
such as the density and temperature gradients is considered
to be an important mechanism that induces anomalous trans-
port in magnetically confined plasmas.1 To achieve
improved confinement performance, it is crucial to under-
stand and control plasma turbulence. In this work, we inves-
tigate mechanisms of turbulent structure formations or self-
organization in the electron temperature gradient driven
(ETG) turbulence. Recent multi-scale gyrokinetic (GK) sim-
ulations involving both ion and electron scale fluctuations
showed that the ETG turbulence might be suppressed when
ion scale turbulence is strongly excited.2,3 On the contrary,
when ion scale turbulence is suppressed by strong E!B
shear flows, electron scale turbulence is dominated by the
streamer and thus becomes the main channel of the electron
heat losses.4 In fact, transport barriers5,6 and spherical toka-
maks7 are characterized by strong E!B shear flows and ion
heat transport at neoclassical levels, and the remaining
anomalous electron heat transport is often discussed based
on the ETG turbulence.

In positive magnetic shear regions, the toroidal ETG tur-
bulence typically shows radially elongated streamers, which
strongly enhance electron heat transport.8,9 On the other
hand, in weak or zero magnetic shear regions, turbulent
structures show slab like features, because toroidal mode
coupling becomes weak and turbulent fluctuations are char-
acterized by single helicity or two-dimensional (2D) struc-
tures.10 The slab ETG turbulence has been studied as a
simple model for such a situation, and it was pointed out that
electron anomalous heat transport is largely suppressed

when electron scale zonal flows are generated.11,12 The sup-
pression of electron heat transport by the electron scale zonal
flows is also confirmed in the toroidal ETG turbulence.13

The generation and saturation mechanisms of ETG
zonal flows have been discussed based on various secondary
and tertiary instabilities such as the modulational instability
driven by pump waves,14,15 and the Kelvin-Helmholtz-like
instabilities excited by shear flows in linear streamers8,16 and
in zonal flows.11 On the other hand, another mechanism to
determine ETG zonal flows was discussed based on the self-
organization in 2D rotating fluid turbulence.17 Here, the self-
organization denotes turbulent structure formations not at the
box size, but at system specific scales such as the Rhines
scale and the adiabatic scale. The quasi-2D slab ETG turbu-
lence is well described by the Hasegawa-Mima (HM) equa-
tion,18 which is mathematically equivalent to the Charney
equation describing the Rossby wave turbulence.19 In such
2D rotating fluid turbulence, short wavelength turbulence is
characterized by the so-called dual cascade with the inverse
energy cascade.

In gyrokinetic simulations, the turbulent cascade and the
resulting turbulent spectra in the sub-Larmor scale range are
often discussed based on the so-called entropy cascade20

induced by phase mixing due to perpendicular E!B drifts
with the finite Larmor radius (FLR) effect.21,22 However, the
above classical self-organization process described by the
HM equation and the resulting turbulent spectra in the long
wavelength range have not been directly observed in gyroki-
netic simulations, while the correspondence between the
Rhines scale and the scale of ETG zonal flows was shown in
gyrokinetic particle simulations.17

In the self-organization picture, two competing effects,
the inverse energy cascade and the linear wave dispersion,a)E-mail: c-kawai@ppl.k.u-tokyo.ac.jp
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are characterized by the nonlinear transfer rate or the inverse
of the eddy turnover time xt, and the linear wave frequency
xr. If the self-organization occurs at the Rhines scale or the
wave-turbulence boundary xt " xr, the formation of zonal
flows is expected as in the Rossby wave turbulence. However,
this picture may be modified in the ETG turbulence, where
the adiabatic response term is not negligible. When its charac-
teristic wave number kk is much higher than that for the
Rhines scale kc, the turbulent inverse energy cascade is
impeded by the adiabatic response term with keeping the iso-
tropic turbulent structure. This means that the turbulent struc-
tures may be controlled by changing either kk or kc, which
depends on various plasma parameters, e.g., density and tem-
perature gradient, and temperature ratio. In this study, we
examine the self-organization process in the slab ETG turbu-
lence through direct measurements of turbulent spectra using
the gyrokinetic Eulerian code G5D.23 The comparisons of
gyrokinetic simulations against fluid simulations based on the
HM equation and the ETG turbulence simulations give the
viability of self-organization picture in the gyrokinetic (GK)
turbulence, while the comparison of ETG turbulence simula-
tions with different plasma parameters shows its effect on the
structure formation of ETG turbulence.

The remainder of this article is organized as follows.
In Sec. II, a GK model used in this study is introduced, and
its relation to the HM equation is discussed. In Sec. III,
decaying turbulence simulations with the GK and the HM
models are presented, and basic properties of the self-
organization process are discussed. In Sec. IV, ETG turbu-
lence simulations are shown, and the influences of plasma
parameters on the turbulent structures and the mechanism
of self-organization are discussed. Finally, Sec. V gives
the summary and discussion.

II. CALCULATION MODEL

A. Gyrokinetic model

The electrostatic gyrokinetic equations for the electron
distribution function FðR; vk; l; tÞ in a slab configuration are
given by17

@F

@t
þ vkbþ

c
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me
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@F

@vk
¼ C Fð Þ; (1)

' r2 þ q2
Te

k2
De

r2
?

 !
/þ 1

k2
Di

/

¼ 4pqe

ð
Fd ðRþ qÞ ' x½ *d6Z ' n0

$ %
; (2)

where R is the guiding center position, Rþ q is the particle
position, vk is the parallel velocity, l is the magnetic
moment, a is the gyro-phase angle, / is the electrostatic
potential, ms and qs are the mass and charge of the sth
species, b + B=jBj is a unit vector in the direction of the
magnetic field B ¼ B0ẑ þ B1ŷ; kDs +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts=4pnsq2

s

p
is the

Debye length, qTe + vTe=Xe is the electron Larmor radius,

vTe +
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is the electron thermal velocity, Xe + qeB0=

ðmecÞ is the electron cyclotron frequency, n0ðxÞ is the
background ion density, h&ia + 1

2p

Ð
&da is the gyro-average

operator, and C(F) is a linear Fokker-Planck collision
operator.24,25 In Eq. (2), the adiabatic ion response ni ¼ n0

'n0qi/=Ti and the long wavelength approximation, k2q2
Te

, 1, are assumed.
Eqs. (1) and (2) are solved using the full-f gyrokinetic

Eulerian code G5D.23 In a shearless slab configuration, sin-
gle helicity perturbations with kk ¼ kyB1=jBj are solved with
a fixed boundary condition, e.g., / ¼ 0 and F¼ 0 at the
boundary, in the x-direction and a periodic condition in the
y-direction. The initial equilibrium distribution function F0

is given by a local Maxwellian distribution with the follow-
ing density and temperature profiles:

n xð Þ ¼ !n exp ' 0:3Lx

Ln
tanh

x' 0:5Lx

0:3Lx

! "$ %
; (3)

Te xð Þ ¼ !Te exp ' 0:3Lx

LTe
tanh

x' 0:5Lx

0:3Lx

! "$ %
; (4)

where !n and !Te are the density and the temperature at
x ¼ 0:5Lx, and Ln + n=jrnj and LTe + Te=jrTej are the
scale lengths of density and temperature gradients, respec-
tively. The box size in the x and y directions is given as
ðLx; LyÞ ¼ ð585qTe; 292qTeÞ, and the grid number is chosen
as Nx ! Ny ! Nvk ! Nl ¼ 512! 256! 64! 16, such that
turbulent energy injection and dissipation are correctly com-
puted by covering linearly unstable and stable wavenumber
ranges.

B. Hasegawa-Mima model

By neglecting the collision term, the parallel dynamics
(kk ! 0 or 2D limit), and the gyro-average operator, Eqs. (1)
and (2) yield the HM equation for electron scale turbulence

@

@t
q2

sr
2
?/' s/

( )
þ b!r/ð Þ &r q2

sr
2/þ ln n0

( )
¼ 0;

(5)

where s + Te=Ti, and q2
s + 1þ k2

De=q
2
Te involves a correc-

tion due to the Debye shielding term. In Eq. (5), normaliza-
tions are chosen as x̂ + x=qTe; t̂ + tjXej; v̂ + v=vTe; n̂ + n=n0

by using the density and the temperature at the reference sur-
face or x ¼ 0:5Lx, and hereafter, the hat is suppressed for
simplicity. The term s/ in Eq. (5) originates from the second
term in Eq. (2), which corresponds to the ion adiabatic
response term. By linearising Eq. (5), the linear dispersion of
the electron drift wave is obtained as

xr ¼
L'1

n ky

sþ k2q2
s

; (6)

where k2 ¼ k2
x þ k2

y .
The HM equation conserves two quantities, the energy

E ¼ 1
V

Ð
1
2 ½sj/j

2 þ q2
s jr/j2*dV, and the enstrophy W ¼ 1

V

Ð
1
2

½sjr/j2 þ q2
s jr2/j2*dV, where 1

V

Ð
&dV denotes the volume

average. The conservation of these two quantities induces
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the dual cascade, the inverse energy cascade, and the normal
enstrophy cascade, which imposes different power laws for
the turbulent energy spectra Ek in the long and short wave-
length ranges26

Ek /
k'5=3 ðk < ksÞ;
k'3 ðk > ksÞ;

(

(7)

where ks is the energy injection scale at which turbulence is
driven.

However, in rotating fluids such as drift wave turbulence,
the inverse energy cascade is impeded at a specific scale
because of a frequency mismatch induced by the linear wave
dispersion originated from the fluid rotation. The rate at which
energy cascade evolves due to the nonlinear coupling is esti-
mated by the inverse of the eddy turnover time xt.

27 It is
noted that in Ref. 27, the nonlinear transfer rate is defined as

xt ¼ kU; (8)

assuming k2q2
s - 1. Here, U ¼ ð2!Þ1=2 is the RMS turbulent

velocity, ! + 1
V

Ð
1
2 jr/j2dV, and h ¼ tan'1ðky=kxÞ. Instead of

using this definition, we measure the nonlinear transfer rate
at an arbitrary scale based on the nonlinear term of the HM
equation retaining the adiabatic response term

x̂t ¼
k3q2

s

sþ k2q2
s

U: (9)

Equating the linear drift wave frequency xr and the nonlin-
ear transfer rate x̂t yields a critical wavenumber kc;x and
kc;y

27

kc;xqs ¼ L'1=2
n U'1=2 sin1=2h cos h;

kc;yqs ¼ L'1=2
n U'1=2 sin3=2h; (10)

and its isotropic estimation by setting h ¼ p=2

kcqs ¼ L'1=2
n U'1=2: (11)

The linear wave dispersion becomes important in the low k
range k < kc, while the nonlinear turbulent cascade is domi-
nant in the high k range k > kc. Therefore, kc gives the
Rhines scale,28 at which a spectral condensation is expected.

There is another scale that divides the property of turbu-
lent inverse energy cascade. According to Eq. (5), the adia-
batic response term s/ becomes comparable to the Debye
shielding term q2

sr2/ at the adiabatic response scale kk

kkqs ¼ s1=2: (12)

It is thus expected that while Eq. (5) has almost the same
property as the 2D Navier-Stokes equation in the higher k
range k - kk, the dynamics of the turbulence in the lower k
range k , kk is affected by the adiabatic response term. This
leads to different power laws for Ek across kk

29

Ek /
k'11=3 ðk, kkÞ;
k'5=3 ðkk , k, ksÞ:

(

(13)

This also gives different time evolutions of turbulent spectra.
In Ref. 29, the characteristic wavenumber kE for the energy
containing scale is defined as

kE +

ð
dkxdky jkjEkx;ky

ð
dkxdky Ekx;ky

; (14)

and its time dependency kEðtÞ is estimated by dimensional
analysis as

kEðtÞ "
t'3=8 ðkE , kkÞ;
t'3=2 ðkE - kkÞ:

(

(15)

The difference of power laws indicates that once energy con-
taining scale reaches around kk by the inverse energy cas-
cade, the process slows down and the energy spectrum is
expected to condensate around this scale.

The formation of zonal flows is expected when the
energy spectrum stagnates around kc due to the linear disper-
sion. On the contrary, when the slowing down of the inverse
energy cascade around kk occurs around higher k range than
kc, the formation of an isotropic turbulence structure is antic-
ipated since the contribution from the linear term is smaller
than that from the nonlinear term around the energy contain-
ing scale kE. Therefore, the relative magnitude of kc and kk,
which are dependent on Ln and U, and s, respectively, is of
critical importance in dictating turbulence structures. The
scale lengths discussed so far are summarized in Table I.

Nonlinear simulations of the HM model are performed
using a pseudo-spectral method with including the hypervis-
cosity term

' @
@t

sþ k2q2
s

( )
/k þ

1

2

X

k¼k0þk00

! b & k0! k00ð Þ k002' k02ð Þq2
s /k0/k00

h i
þ iL'1

n ky/k ¼ lk4/k;

(16)

where the dissipation coefficient is chosen as l ¼ 1:0! 10'3.
Periodic boundary conditions are imposed in both the x- and
y-directions by assuming a local approximation with constant
Ln. The simulation parameters and the grid number are chosen
to be the same as the GK model, while the HM model is con-
sidered in the 2D limit or B1 ! 0.

C. Linear wave dispersion in the HM and the GK
models

The Rhines scale is determined by the two competing
effects, the linear wave dispersion and the turbulent cascade,

TABLE I. The summary of characteristic scales.

Rhines scale kc ¼ q'1
s L'1=2

n U'1=2

Adiabatic response scale kk ¼ q'1
s s1=2

Scale length of zonal flows kZF ¼
Ð

dkxdky kxEkx ;ky¼0Ð
dkxdky Ekx ;ky¼0

Energy containing scale kE ¼
Ð

dkxdky jkjEkx ;kyÐ
dkxdky Ekx ;ky

Energy injection scale ks
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which are characterized by the linear frequency xr and the
nonlinear transfer rate xt, respectively. Therefore, it is
important to estimate the linear wave dispersion in the HM
and GK models. In this section, we estimate linear dispersion
relations by solving an eigenvalue problem30 in the local
limit, where radial variations of Ln and LTe are neglected,
and a periodic radial boundary condition is assumed.

Figure 1(a) shows a comparison of xr of the linearly sta-
ble electron drift wave in the decaying turbulence simula-
tions in Sec. III. In the high ky range, the spectra obtained
from the GK and the HM models show some difference due
to the FLR effect, while in the low ky range, they show a
quantitative agreement. Figure 1(b) shows the ge + Ln=LTe

dependency of xr and the growth rate c of the ETG mode,
which is discussed in Sec. IV. In the ge scan, c is largely var-
ied, while the change in xr is relatively small.

In Figs. 2(a)–2(c), the ratios of xr to x̂t in the decay-
ing turbulence simulations are plotted on the kx-ky plane.
Here, x̂t is estimated by using the RMS turbulent velocity
U in the decaying turbulence simulations in Figs.
4(b)–4(d). In the figures, the thick lines show the 2D struc-
tures of the Rhines scale kc at which xr ¼ x̂t . In both HM
and GK models, kc shows similar shapes, in which the

inverse energy cascade is impeded in the wave-like region
with ky> kx, and a spectral condensation at ky " 0 is
expected. In the weak turbulence case (see Fig. 2(b)), kc is
rather close to the initial perturbation with kqTe " 0:6,
while in the strong turbulence case (see Fig. 2(c)), the
wave-like region shrinks to the lower k region. The struc-
ture of strong turbulence might thus be different from that
of weak turbulence. These conjectures are examined in the
decaying turbulence simulations in Sec. III.

FIG. 1. In (a), the real frequency of the linearly stable electron drift wave in
the decaying turbulence with ge ¼ 0; s ¼ 0:3, and q2

s ¼ 11 is computed
using the HM model (kk ¼ 0) and the GK models (kk=ky ¼ 8:0! 10'5). In
(b), the ge dependency of the real frequency and the growth rate of the ETG
mode are calculated using the GK model. Here, ge is changed from the refer-
ence parameters with s ¼ 0:3; q2

s ¼ 2, and kk=ky ¼ 5:1! 10'4.

FIG. 2. The ratio of the real frequency xr to the nonlinear transfer rate x̂t is
plotted on the kx-ky plane. xr and x̂t are estimated for the decaying turbu-
lence simulations with (a) weak turbulence case (U " 2:55! 10'4) in the
HM model, (b) weak turbulence case (U " 3:62! 10'4) in the GK model,
and (c) strong turbulence case (U " 2:15! 10'3) in the GK model. The
thick line shows the Rhines scale kc at which xr ¼ x̂t .
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III. DECAYING TURBULENCE

In this section, decaying turbulence simulations are per-
formed based on the HM and GK models, and their self-
organization processes are investigated. In the decaying tur-
bulence simulations, isotropic and random density perturba-
tions are initially given around kqTe " 0:6 (see Fig. 4(a)).
Since the initial perturbations do not involve coherent pump
waves, the modulational instability is not expected in the
decaying turbulence, and one can focus on the self-
organization processes. The initial perturbations are damped
either by the hyperviscosity in the HM model or by the
Landau damping in the GK model, and self-organized turbu-
lent structures are formed after the turbulence relaxation pro-
cesses. The reference parameters for the decaying turbulence
simulations are chosen as s ¼ 0:3; q2

s ¼ 11; ge ¼ 0.

A. Turbulent energy spectra in the HM and the GK
models

In this section, kk=ky ¼ 2:7! 10'4 is chosen so that the
damping of the GK model is comparable to that in the HM
model. Figure 3 shows the time development of the RMS
turbulence velocity U for the HM and GK models with weak
perturbations and the GK model with strong perturbation. In
the following, physical quantities in decaying turbulence
simulations are measured at the quasi-steady phase with time
averaging over Dt ¼ 40Ln=vTe. In Figs. 4(b) and 4(c), the 2D
turbulent energy spectra

Ekx;ky + ðsþ k2q2
s Þj/kx;ky

j2; (17)

are shown for the weak turbulence cases in which the maxi-
mum initial perturbation amplitude is given as
jqe/=Tej ¼ 0:5%. Although the final turbulence amplitudes
differ because of different dissipation mechanisms, both the
HM and GK models generate the similar self-organized tur-
bulent structures with zonal flows. In the spectra, the spectral
condensation occurs outside the wave-like region in Figs.
2(b) and 2(c), and the anisotropic turbulent structures with
the so-called dumb-bell shape are formed. These observa-
tions indicate that the self-organization picture of the HM
model is relevant also in the GK model.

B. Density gradient scan

In this section, the Ln dependency of zonal flows is stud-
ied to verify the present decaying turbulence simulations
against the Rhines scale and the former particle simula-
tions.17 The Ln scan of decaying turbulence is performed
using the GK model with kk ¼ 8:0! 10'5 following Ref. 17,
and the characteristic scale of zonal flows:

kZF +

ð
dkxdky kxEkx;ky¼0

ð
dkxdky Ekx;ky¼0

; (18)

is compared with the Rhines scale kc. In Fig. 5, the Ln depen-
dency of kZF agrees well with that of kc, and the former parti-
cle simulation results are successfully recovered also in the
present Eulerian simulations.

C. Turbulence amplitude scan

Another important control parameter is turbulence
intensity, which can be changed by the initial perturbation
amplitude in the decaying turbulence simulation. As
deduced from Eqs. (10) and (11), the turbulence intensity
or the RMS turbulent velocity U dictates the Rhines scale.
In order to see this effect, the decaying turbulence simula-
tion using the GK model is repeated by imposing larger ini-
tial perturbations with jqe/=Tej ¼ 5:0%. In Fig. 4(d), the
2D turbulent energy spectrum clearly shows that both the
scale and the anisotropy of the self-organized turbulent
structure are significantly changed from the weak turbu-
lence case in Fig. 4(c). This change is consistent with the
shrinkage of kc shown in Fig. 2(c).

In order to discuss the anisotropy of turbulent structures
quantitatively, we introduce a measure of the anisotropy cy,
which is defined by the relative magnitude of the turbulent
energy to the E!B drifts in the y-direction

cy +

ð
dxdy

****
c

B0
ŷ & b!r/ð Þ

****
2

ð
dxdy

****
c

B0
b!r/ð Þ

****
2
: (19)

In the anisotropic limit, zonal flows with ky¼ 0 and stream-
ers with kx¼ 0 give cy¼ 1 and cy¼ 0, respectively, while iso-
tropic turbulence gives cy ¼ 0:5. Table II summarizes U,
kZF, and cy for the decaying turbulence simulations in Figs.
4(b)–4(d). In the data, it is clearly seen that the self-
organized structures characterized by kZF and cy are qualita-
tively different between the weak and strong turbulence
cases.

It is not expected from Eq. (10) that not only the scale
but the anisotropy of the turbulence also depends on the tur-
bulence amplitude. The difference may arise because the
adiabatic response term for the electron gyrokinetic turbu-
lence is not negligible, while the short wavelength approxi-
mation ðsþ k2Þ/ " k2/ is assumed in the Rossby wave
turbulence. In order to see how the dynamics of inverse

FIG. 3. Time histories of the RMS turbulence velocity U for the decaying
turbulence simulations of HM and GK models with q/ð0Þ=Te ¼ 0:5%; 5%.
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energy cascade affects the turbulent structure, the time
development of the energy containing scale kEðtÞ given by
Eq. (14) is plotted for both simulations in Fig. 6. In the
strong turbulence case, kE gradually shifts to the lower k
following kEðtÞ " t'3=8. This time dependency suggests that
the inverse energy cascade is not blocked by the linear
wave dispersion but by the adiabatic response term. Since
the linear wave dispersion is weaker than the nonlinear
inverse energy cascade at kE, the isotropic turbulence is
formed. This time dependence is not observed in the weak
turbulence case. The energy containing scale for this case is

determined by the Rhines scale as shown in Fig. 5, but kE

becomes smaller as the short wavelength spectra decay by
the Landau damping. The above results indicate that the
competition of two mechanisms, which impede the inverse
energy cascade, dictates the turbulent structure. One is the
linear wave dispersion, which dictates the Rhines scale kc

and the other is the adiabatic response term, which charac-
terizes the adiabatic response scale kk. The former gener-
ates zonal flows, while the latter keeps isotropic turbulence.
Therefore, the anisotropy of the turbulent structure is char-
acterized by the ratio kc=kk
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FIG. 4. The 2D energy spectra Ekx ;ky in the decaying turbulence simulations are plotted for (a) the initial perturbations and the self-organized turbulent struc-
tures of (b) weak turbulence case in the HM model, (c) weak turbulence case in the GK model, and (d) strong turbulence case in the GK model. (b)–(d) Are
observed by taking time average for Dt " 40Ln=vTe in the quasi-steady phases. In the weak and strong turbulence cases, the initial perturbations are given by
isotropic and random density perturbations with jqe/ðt ¼ 0Þ=Tej " 0:5% and jqe/ðt ¼ 0Þ=Tej " 5%, respectively.
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kc

kk
¼ L'1=2

n U'1=2s'1=2: (20)

The weak and strong turbulence simulations in Figs. 4(c) and
4(d), respectively, show kc=kk " 2:4 and 0.97. kc=kk > 1
indicates that the inverse energy cascade is impeded by the
linear wave dispersion, which results in the formation of the
anisotropic structure as in the Rhines scale picture. In the
opposite case, kc=kk < 1 implies that inverse energy cascade
cannot continue up to the Rhines scale, but is hindered at the
adiabatic response scale.

IV. ETG TURBULENCE SIMULATION

In Sec. III, the decaying turbulence simulations show
that the self-organization picture of the HM model is applica-
ble to the GK model. The resulting turbulent structures are
controlled by relative intensity between the linear wave dis-
persion and the turbulent cascade, which are characterized
by xr and x̂t at the energy containing scale kE. In this sec-
tion, we examine these properties in the ETG turbulence
simulations, in which quasi-steady turbulent spectra are sus-
tained by a balance between energy injection by the ETG
mode and energy dissipation by the Landau damping. In the
ETG turbulence simulations, the reference parameters are
chosen as s ¼ 0:3; q2

s ¼ 2:0, and kk=ky ¼ 5:1! 10'4, so that
the scales of the energy injection and the energy dissipation
are well separated and covered by the present numerical
parameters.

A. Self-organization in ETG turbulence

Figures 7(a) and 7(b) show the turbulent electrostatic
potential in the weak ETG turbulence with ge ¼ 2:85 and in
the strong ETG turbulence with ge ¼ 5:0, which are charac-
terized by qualitatively different turbulent structures with
zonal flows and with isotropic turbulence, respectively.
Reflecting these turbulent structures, the electron heat diffu-
sivity is also changed. The electron heat transport coefficient
is calculated by the time and volume average of the local
transport coefficient within turbulent regions

ve tð Þ ¼ 1

0:4LxLyDt

ðtþDt

t
dt

ðLy

0

dy

ð0:7Lx

0:3Lx

dx
Qe

p00
; (21)

FIG. 6. The time development of the energy containing scale kEðtÞ is shown
for the weak and strong decaying turbulence simulations (see Fig. 4). The
inverse energy cascade for k < kk is characterized by kEðtÞ / t'3=8.

FIG. 5. The Ln dependencies of kc and kZF are compared in the Ln scan of
the decaying turbulence simulations.

TABLE II. The RMS turbulent velocity U, the wavenumber of zonal flows
kZF, and the turbulent anisotropy cy for the decaying turbulence simulations
in Figs. 4(b)–4(d).

Model qe/=Teðt ¼ 0Þ U kZFqTe cy

HM 0.5% 2:55! 10'4 0.20 0.85

GK 0.5% 3:62! 10'4 0.42 0.73

GK 5% 2:55! 10'3 0.12 0.53

FIG. 7. The electrostatic potential qe/=Te in the ETG turbulence is plotted on
the x-y plane. (a) The weak ETG turbulence with ge ¼ 2:85; c " 0:043vTe=Ln.
(b) The strong ETG turbulence with ge ¼ 5:0; c " 0:20vTe=Ln.
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where Dt ¼ 2:0=c is a time averaging window, p00 is the
radial derivative of the equilibrium pressure, and the electron
heat flux Qe is defined as

Qe ¼
ð

c

B0
x̂ & b!r/ð Þ 1

2
mev2

k þ lB0

! "

! Fd Rþ qð Þ ' x½ *d6Z: (22)

The measured values are normalized by the gyro-Bohm coef-
ficient vGB ¼ q2

TevTe=Ln. Figure 8 shows the time develop-
ment of ve=vGB for the weak and strong ETG turbulence
simulations shown in Fig. 7. The difference of ve between
the weak and strong turbulence cases in the initial saturation
phase (tc " 20) is "20 times, while the mixing length esti-
mate or the ratio of c is only "4 times. In addition, in the
quasi-steady phase, the difference expands, and the weak
turbulence case is almost quenched. This qualitative differ-
ence in the turbulent transport is attributed to the self-
organization. In order to see how these turbulent structures
affect transport levels, the cross phase between / and ~pe, the
perturbation part of the electron pressure, is compared in
Fig. 9. Here, we use the definition given in Ref. 31, and time
and space average is the same as that in Eq. (21). The result
shows that the cross-phase is not so different between the
weak and strong turbulence cases, and thus, the transport lev-
els are affected mainly by the amplitudes of non-zonal com-
ponent of /. Figures 10 and 11 show the 2D turbulent
energy spectra. The thick lines show the Rhines scale kc. The
difference of the turbulent structures between these two
cases, especially in the turbulent anisotropy, is attributed to
the change of kc. Although the linear wave dispersion is dif-
ferent between the electron drift wave in Fig. 1(a) and the
ETG mode in Fig. 1(b), the structures of kc are qualitatively

FIG. 8. Time histories of ve=vgB for weak ETG turbulence with ge ¼ 2:85
and the strong ETG turbulence with ge ¼ 5:0. The time is normalized by the
inverse of the linear growth rate c of the most unstable ETG mode at each ge.

FIG. 9. The cross phase of / and ~pe

plotted at tc ¼ 20 with (a) ge ¼ 2:85
and (b) ge ¼ 5:0.

FIG. 10. The 2D turbulent energy spec-
tra Ekx ;ky observed in the weak and strong
ETG turbulence with (a) ge ¼ 2:85 and
(b) ge ¼ 5:0. The time average is taken
with the window of Dt ¼ 40Ln=vTe for
(a) and ¼ 10Ln=vTe for (b) in the quasi-
steady phases.
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similar. In the weak ETG turbulence in Fig. 11(a), xr is com-
parable to x̂t at kEqTe " 0:32, and the turbulent cascade is
impeded in the wave-like region with ky> kx. On the other
hand, in the strong turbulence in Fig. 11(b), x̂t exceeds xr

around kEqTe " 0:18. The influence of the adiabatic ion
response leads to the formation of isotropic turbulent
structures.

B. Turbulent energy spectra in ETG turbulence

The self-organization picture in the HM model is based on
the dual cascade, which shows the different power laws (7) in
the lower and higher k ranges. However, it is not trivial
whether the dual cascade also exists in the GK model because
the turbulent energy injection by the ETG mode and the energy
dissipation by the Landau damping are distributed over wide
spectral ranges. In order to clarify this point, we observe the
turbulent energy spectrum Ek and the energy injection rate Ck

in the shell averaged 1D wavenumber k space. The latter is
derived from the energy conservation of the GK model

dEkin

dt
þ

dEf

dt
¼ dEc

dt
; (23)

dEkin

dt
¼ d

dt

ð
1

2
mev2

k þ lB0

! "
Fd6Z; (24)

dEf

dt
¼
ð

qeh/ia
@F

@t
d6Z

¼ d

dt

1

8pk2
De

ð
q2

s jr̂/j2 þ sj/j2
h i

dV; (25)

dEc

dt
¼
ð

qeh/iaC Fð Þd6Z; (26)

where r̂ + qTer. Since the field energy Ef in the GK model
corresponds to the turbulent energy E in the HM model, the
turbulent energy injection and dissipation are defined by
transforming Eq. (25) into the k space. dEf =dt is also defined
as the energy transfer through the parallel streaming term,32

which can be written in the k space as

dEf

dt
¼
ð

qe
dR

dt
& hr/iaFd6Z ¼

X

k

dEk

dt
; (27)

dEk

dt
¼
ð

qevkkk/kJ0 kqTeð ÞFkd3v: (28)

By using Eq. (28), the energy injection rate Ck is defined as

Ck +
1

Ek

dEk

dt
: (29)

In the linear phase, the energy injection rate agrees with the
linear growth rate at the most unstable k. Figures 12(a)
and 12(b) show Ek and Ck in the weak and strong ETG turbu-
lence simulations at the quasi-steady phase of tc ¼ 50. In
both cases, the most unstable wavenumber is given around
kqTe " 0:4, and the energy dissipation regions exist both in
the higher and lower k sides. However, the relative scales of
energy injection, energy dissipation, and self-organization
are different between these two cases. In the weak turbu-
lence, kc shown in Fig. 11 is located in the relatively higher k
range, and the peak of zonal flows at kZFqTe " 0:30 is rather
close to the energy injection scale. Because of this scale
overlap, the power law of the inverse energy cascade is not
observed. On the other hand, in the strong turbulence, kc is
shifted to lower k, and the energy containing scale develops
up to kEqTe " 0:05, which is well separated from the energy
injection scale. The resulting energy spectrum in Fig. 12(b)
clearly shows the change of power laws between the lower
and higher k ranges, which support the existence of the dual
cascade in the ETG turbulence. For these simulations, the
adiabatic response scale kkqTe " 0:32 is close to the most
unstable wavenumber, and the inverse energy cascade with
Ek / k'11=3 is expected. However, the spectrum in Fig.
12(b) is rather close to Ek / k'5=3. The discrepancy may be
due to the remaining contribution from the Debye shielding
term, which is still comparable to the adiabatic response
term around k " kk.

C. Impact of plasma parameter on self-organization

In this section, we discuss the possibility of controlling
the self-organization process by the nonlinear transfer rate x̂t .
The weak and strong ETG turbulence simulations in Sec. III
show that the anisotropy of the turbulent structures is changed
depending on the competition of the Rhines scale and the adi-
abatic response scale. We investigate this effect more in detail
in a systematic ge scan. It is noted that as shown in Fig. 1(b),
ge mainly affects c, while the change in xr is relatively small.
Figures 13(a) and 13(b) show the time evolutions of the RMS
turbulence velocity U and the turbulent anisotropy cy in the ge

scan. In the linear phase, eigenfunctions of the ETG mode

FIG. 11. The ratio of the real fre-
quency of the ETG mode xr to the
nonlinear transfer rate x̂t is plotted on
the kx-ky plane. (a) and (b) The weak
and strong ETG turbulence cases in
Figs. 10(a) and 10(b).
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produce streamers with cy " 0, and in the early saturation
phase, turbulent structures with cy " 0:5 are produced due to
the excitation of zonal modes. Although these features are
common to all cases, in the quasi-steady phase, different tur-
bulent structures are slowly formed depending on ge. In Fig.
13(b), anisotropic turbulent structures emerge in the low ge

cases with ge . 3:0.
The parametric dependency of the turbulent anisotropy

cy to the ratio of the linear mode frequency to the nonlinear
transfer rate, xr=x̂t , at the energy containing scale kE is
shown in Fig. 14. Here, x̂tðkÞ is given using the shell aver-
aged spectrum of turbulence velocity U(k)28

! kð Þ ¼ 1

2

ð2k

0:5k
k2j/kj

2dk; (30)

UðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2!ðkÞ

p
: (31)

The criterion parameter kc=kk is also plotted against
xr=x̂tðkEÞ in Fig. 14. In the figure, the weak and strong ETG
turbulence simulations in Figs. 10(a) and 10(b) corresponds
to kc=kk " 1:5 and "0:64, respectively. The result clearly
shows that cy depends on xr=x̂tðkEÞ, and smaller ge cases

with zonal flows give larger xr=x̂tðkEÞ. It is also shown that
xr=x̂tðkEÞ is almost proportional to kc=kk, and zonal flows
are generated for kc=kk > 1, as shown in decaying turbulence
in Sec. III C. On the other hand, for kc=kk < 1, isotropic
turbulence is formed. These qualitatively different self-
organization processes are understood also in Fig. 15. While
the strong ETG turbulence shows kEðtÞ " t'3=8, which sug-
gests the inverse energy cascade hindered by the adiabatic

FIG. 12. The turbulent energy spectrum Ek and the energy injection rate jCkj
in the shell averaged 1D wavenumber k space are shown for the ETG turbu-
lence simulations with (a) ge ¼ 2:85 and (b) ge ¼ 5:0. The time average is
taken at the quasi-steady phase tc ¼ 50 with the window of Dtc " 2. The
energy injection rate is plotted by using its absolute value, and blue and
green symbols indicate energy injection (þ) and dissipation (!), respec-
tively. In (b), the power laws of the inverse energy cascade and the normal
enstrophy cascade, (7) and (13), are shown by arrows.

FIG. 13. The time evolutions of the RMS turbulent velocity U and the turbu-
lent anisotropy cy in the ge scan of ETG turbulence simulations with
kk=ky ¼ 5:1! 10'4. The time is normalized by the inverse of the linear
growth rate c of the most unstable ETG mode at each ge.

FIG. 14. The turbulent anisotropy cy is plotted against xr=x̂t ðkEÞ, in which
kE is measured at tc " 30. In the ge scan in Fig. 13, anisotropic turbulent
structure cy > 0:5 is formed for weak turbulence with xr=x̂t > 1.
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response term, the weak ETG turbulence shows the conden-
sation of turbulent spectra at the Rhines scale kc.

D. Modulational instability

In this section, we consider the modulational instability15 as
another candidate for the mechanism of zonal flow generation

in the ETG turbulence. In fact, abrupt increase of the turbulent
anisotropy cy (see Fig. 13(b)) is not by the inverse energy cas-
cade, but by the direct excitation of zonal flows. This is clearly
seen in the 2D energy spectra observed in the linear phase and
the early saturation phase of the weak and the strong ETG tur-
bulence simulations (see Fig. 16). The results indicate that
zonal flows at kZFqTe " 0:30ð0:35Þ are directly excited from
linear streamers at kyqTe " 0:35ð0:45Þ for weak (strong) tur-
bulence. This process is analyzed by calculating the modula-
tional instability in the HM model, in which a zonal mode
/kq;0 is excited by its coupling with a pump wave /0;kp

and
sideband modes /kq;'kp

. Here, the pump wave is given at
kpqTe ¼ 0:35ð0:45Þ based on the wavenumber of the ETG
mode in Figs. 16(a) and 16(c). Figure 17 shows the kq depen-
dency of the growth rate of the modulational instability. The
result shows that the most unstable kq is slightly smaller than
kp, which is consistent with the above observation.

The coupling of these waves is directly measured by the
bicoherence analysis, in which three-wave correlation is
evaluated as

b x1;x2ð Þ ¼
jh/ x1ð Þ/ x2ð Þ// x1 þ x2ð Þij2

hj/ x1ð Þ/ x2ð Þj2ihj// x1 þ x2ð Þj2i
; (32)

FIG. 15. The time development of the energy containing scale kEðtÞ is
shown for the weak and strong ETG turbulence simulations (see Fig. 10).
The inverse energy cascade for k < kk is characterized by kEðtÞ / t'3=8.

FIG. 16. The 2D energy spectra Ekx ;ky

in (a), (c) linear phase and (b), (d)
early saturation phase are shown for
the weak (strong) ETG turbulence sim-
ulation with (a), (b) ge¼ 2.85, and (c),
(d) ge ¼ 5:0.
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where /ðx1Þ; /ðx2Þ, and /ðx1 þ x2Þ are, respectively, fre-
quency spectra of /0;kp

; /kq;'kp
, and /kq;0, and h&i denotes

time average over the saturation phase. Figure 18 shows
bðx1;x2Þ for the saturation phase of the weak turbulence
case for tc ¼ 12–14. Here, the wavenumbers are chosen as
kpqTe

¼ 0:35 and kqqTe
¼ 0:28 so that the coupling of the

most unstable linear ETG mode and the most unstable zonal
mode by the modulational instability is measured. In Fig. 18,
strong coupling of the wave x1 > 0 propagating in the direc-
tion of electron diamagnetic frequency to another wave
x2 " 'x1 is observed. The resulting beat wave has the fre-
quency x1 þ x2 " 0, which is characteristic of the ZFs. The
result suggests that the excitation of the ZFs at the saturation
phase may be caused by the modulational instability of the
linear ETG modes. This analysis cannot be applied to the
strong turbulence case, because the saturation process is too
fast to keep a sufficient time window for the bicoherence
analysis. However, it can still be inferred from the ETG
modes at kx " 0 and ZFs at ky " 0 in Figs. 16(c) and 16(d)
that the same kind of modulational instability may exist.
This result indicates that the self-organization process plays
an essential role in dictating the final turbulent structure,

while transient mode coupling may be described by the mod-
ulational instability.

V. SUMMARY AND DISCUSSION

In this work, we have discussed the impacts of the plasma
parameters on the self-organization of the electron turbulence
based on the HM model, which is derived by taking the 2D
fluid limit of the GK model. In the HM model, the self-
organized turbulent structures are generated at the Rhines
scale kc, at which the linear mode frequency xr and the non-
linear transfer rate xt become comparable, xrðkcÞ " xtðkcÞ.
As the short wavelength approximation is not satisfied in the
ETG turbulence due to the typical scale kqTe!1, the role of
the adiabatic response term should be considered. In order to
see this effect, the impact of the criterion parameter kc=kk on
turbulent structures is investigated, where kk is defined at
which the adiabatic response term becomes comparable to the
Debye shielding term. The scale and the anisotropy of the
self-organized turbulent structure are controlled by varying
this parameter through the plasma parameters such as the den-
sity and temperature gradient.

In the decaying turbulence, in which the initial perturba-
tions at given wavenumber are relaxed through the turbulent
cascade, the applicability of the self-organization picture in
the HM model is confirmed by showing the similarity of the
zonal flow generation between the HM and GK models. We
then demonstrated that the anisotropy of the turbulence
structure is changed by controlling the initial amplitude of
perturbation, which dictates kc=kk. It is found that the weak
and strong turbulence cases with kc=kk > 1 and kc=kk < 1
lead to zonal flows and isotropic turbulent structures, respec-
tively, and in the strong turbulence case, the power law of
kEðtÞ suggests that the inverse energy cascade is retarded by
the adiabatic response term.

The self-organization process is investigated more in
detail in the ETG turbulence, in which the scales of energy
injection, energy dissipation, and self-organization are self-
consistently determined. The turbulent energy spectrum of
the strong turbulence case clearly shows the power laws of
the dual cascades, the inverse energy cascade, and the nor-
mal enstrophy cascade in the lower and higher k ranges.
The controllability of turbulent structures is examined by
systematic ge scan and it is shown that a turbulent anisot-
ropy is changed depending on the turbulence intensity. The
plot of the ratio of the linear mode frequency to the nonlin-
ear turbulent transfer rate at the energy containing scale
xr=xtðkEÞ shows that the mechanism that determines the
anisotropy of the turbulence structure is relevant also in the
ETG turbulence.

In the future work, the self-organization process will be
investigated by taking account of missing physical effects
such as magnetic shear and toroidal mode coupling.
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