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ARTICLE 

 

A power spectrum approach to tally convergence 

in Monte Carlo criticality calculation 

Taro Ueki*† 

Japan Atomic Energy Agency, Nuclear Safety Research Center, 

Fuel Cycle Safety Research Division, Criticality Safety Research Group. 

Abstract 

In Monte Carlo criticality calculation, confidence interval estimation is based on the 

central limit theorem (CLT) for a series of tallies from generations in equilibrium. A 

fundamental assertion resulting from CLT is the convergence in distribution (CID) of the 

interpolated standardized time series (ISTS) of tallies. In this work, the spectral analysis of 

ISTS has been conducted in order to assess the convergence of tallies in terms of CID. 

Numerical results obtained indicate that the power spectrum of ISTS is equal to the 

theoretically predicted power spectrum of Brownian motion for tallies of effective neutron 

multiplication factor; on the other hand, the power spectrum of ISTS of a strongly 

correlated series of tallies from local powers fluctuates wildly while maintaining the 

spectral form of fractional Brownian motion. The latter result is the evidence of a case 

where a series of tallies is away from CID, while the spectral form supports normality 

assumption on the sample mean. It is also demonstrated that one can make the unbiased 

estimation of the standard deviation of sample mean well before CID occurs. 
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1. Introduction 

Monte Carlo (MC) codes with neutron transport capabilities [1,2,3] are important analysis 

tools in the nuclear energy fields. In these MC codes, effective neutron multiplication factor 

(keff) and its perturbation, power distribution, and kinetic parameters are computed by the 

criticality mode where a fission source generation in equilibrium is iterated to yield a series of 

tallies. These iterations are of a form of the power method with particle population 

normalization [4]. Consequently, the sources in adjacent generations are dependent and a 

series of tallies is under correlation. A significant amount of research has been conducted on 

the standard deviation estimation of the sample mean of tallies [5-10]. Many estimators were 

investigated by incorporating or excluding the influence of correlation. However, assessment 

in terms of the weak convergence in the central limit theorem (CLT) has not been explicitly 

conducted. For this reason, it is worthwhile investigating the convergence of the sample mean 

of tallies by way of spectral analysis, since the weak convergence in CLT is equivalent to 

convergence in distribution (CID). In this work, power spectrum is computed for a series of 

tallies and compared with a reference spectrum from Brownian motion. If contrasted with the 

spectral analysis approach to MC fission source distribution [11], the computation of power 

spectrum and the availability of reference stochastic processes such as Brownian motion and 

Brownian bridge are unique and novel aspects in this work. The essential element of spectral 

analysis in this work is an interpolated standardized time series (ISTS) which was originally 

introduced in MC criticality calculation in some previous investigation of statistical error 

estimation [12]. The ISTS methodology is itself based on theoretical developments by 

operations research scientists [13,14]. Numerical results are demonstrated for models of PWR 

initial core [15] and UO2-concrete debris [16]. 

The variance of the sample mean of tallies is the lag zero autocovariance, i.e., the 

variance of tally at a generation, plus twice the sum of autocovariances through lags, divided 

by the number of generations iterated [17]. In this respect, if there exists a method for 
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accurately estimating individual autocovariances, one can in principle compute the standard 

deviation of sample mean in an unbiased manner. However, these autocovariances are reliably 

estimated only for small lags. In addition, if a series of tallies are under strong positive 

correlation, the estimates of autocovariances over adjacent lags tend to be under strong 

positive correlation, which leads to the large uncertainty of the sum through lags. Even 

negative estimates can arise if the sum is not artificially truncated [8]. Motivated by these 

challenges, the computation of the standard deviation of the sample mean of tallies has been 

an actively investigated topic since the implementation of non-overlapping batch means 

(NBM) by Gelbard and Prael [5]. In this work, CID is argued much more explicitly than any 

of previous works [5-10]. A pre-CID phenomenon is also investigated where the inverse 

square-root law of decrease appears during insufficient-CID generations. 

This paper is organized as follows. In Section 2, the CLT for a correlated series is 

reviewed together with Brownian motion, Brownian bridge, and ISTS. In Section 3, fractional 

Brownian motion (FBM) is introduced as a generalization of Brownian motion. The analysis 

of power spectrum is then proposed as a theoretically founded tally convergence assessment 

tool alternative to the ad-hoc run length diagnosis with fractal dimension [18]. The use of 

power spectrum is also argued for identifying the pre-CID phenomenon. Sections 4 and 5 

demonstrate the power spectrum of ISTS for models of PWR initial core and UO2-concrete 

debris, respectively, together with the standard deviation estimation of sample mean. In 

Section 6, milestones achieved are summarized together with an issue for future work. 

2. Central Limit Theorem (CLT) and Standardized Time Series 

In MC criticality calculation, a fission source generation in equilibrium is stochastically 

iterated in a form of the power method with particle population normalization. Consequently, 

the generations yield a correlated series of tallies denoted as 1 2, , , nx x x  for which the joint 

statistical property of xj and xk is the same as that of xj+m and xk+m, i.e., translation invariant 

with respect to generation shift. Here the subscript denotes the generation number in 
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equilibrium and the largest subscript n is the total number of generations iterated through 

equilibrium. The tally x is estimated by the sample mean of 1 2, , , nx x x  and the variance of 

the sample mean is  
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where  is the symbol for summation, AC(j) is the lag j autocovariance of xi and xi+j [17]. 

When the total number of generations is sufficiently large, Eq (1) becomes 
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This approximation is justified as far as n is large enough in terms of the attenuation of AC(j). 

In this respect, the validity of Eq (2) is not directly influenced by CID. For example, when 

AC(j) becomes negligibly small in magnitude at about lag 200, n=5000 will be sufficiently 

large for Eq (2) to be valid. However, n=5000 may not be large enough so as to ensure CID. 

The possibility of such a case cannot be excluded and will be a topic in numerical 

computations. 

Brownian motion referred to in Section 1 is a vehicle for analyzing the CID of a 

correlated series of tallies from equilibrium. The path of Brownian motion, if denoted as BM(t), 

is known to satisfy [19]: 

(BM) (a) For 0 1 20 mt t t t     , 0( )MB t , 1 0( ) ( )M MB t B t , 2 1( ) ( )M MB t B t , , 

1( ) ( )M m M mB t B t   are independent, 

 (b) 1/2 2( ( ) ( ) ) (2 ) exp( / (2 ))
z

R M MP B t h B t z h u h du


      , 0t  , 0h  , 

 (c) ( (0) 0) 1R MP B    and ( )MB t  is continuous with probability 1 for 0t  , 

where PR stands for probability. Hereafter, citation will be made as (BM), (a) in (BM), etc. To 

proceed, it is convenient to introduce notations for the mean and the partial sample mean of 

1 2, , , nx x x : 

 [ ]iE x  ,  (3) 
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where E[ ] is the notation for an expected value. The weak convergence in CLT is then stated 

as [14] 
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where nt    is the largest integer not exceeding nt and D  stands for CID. Eq (5) asserts 

that as ,n  the cumulative distribution function (cdf) of 
1

( ) /
nt
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x nt n

  


      

converges to the cdf of ( )MB t  for all t in [0,1]. Historically, the CLT for dependent variables 

was first proved in 1961 [20] and subsequently refined as in the CID in Eq (5) in the fields of 

operations research [13].  

At first glance, Eq (5) appears to suggest the analysis of 
1

( ) /
nt

ii
x nt n

  


     in order 

to estimate  from the amplitude. However, the mean  is itself one of the quantities to be 

estimated in MC criticality calculation and the exact value of cannot be known. To 

overcome this dilemma, other theorem was derived and utilized in the communities of 

simulations and operations research [13,14], 

 
( )

( ) ( ) ( ) (1)
n nt

n D B M M

nt s s
T t B t B t tB

n

  
     


 for 0tas n (6) 

where Tn(t) is the ISTS referred to in Section 1 and BB(t) is the path of Brownian bridge. Note 

that the subscripts in the numerator of Eq (6) are n and nt   . It is also worth mentioning that 

Tn(i/n), i=0,…,n, is known as standardized time series. A sketchy derivation of Eq (6) from Eq 

(5) is also found elsewhere [12]. Unlike the case of Eq (5), it is possible to analyze 

( ) /n ntnt s s n  
    in Eq (6) in order to obtain an estimate of  from the amplitude since sn 

and nts  
 are both computable from a series of tallies. Eqs (5) and (6) imply that the CID 

toward Brownian motion transforms to the CID toward Brownian bridge if the mean is 

replaced by sn.  
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The covariance of Brownian bridge is easily computed using the covariance of Brownian 

motion [ ( ) ( )] min( , )M ME B t B u t u  (from (a) and (b) in (BM)) as  

 [ ( ) ( )] min( , )B BE B t B u t u tu   for 0 , 1t u  . (7) 

Based on Eq (7), an estimator of 2 can be constructed as follows [12]. First, a family of 

weighting functions is introduced as 

 ( ) 8 cos(2 )C
jw t j jt   , ( ) 8 sin(2 )S

jw t j jt   ,  j=1,2, … ,  (8) 

for which orthonormality relation holds [12]: 

 
1 1

, ,0 0
( ) ( ) [ ( ) ( )]F H

j k B B F H j kw t w s E B t B s dsdt      for F,H=C,S,  j,k=1,2, … .  (9) 

Here  with two subscripts denotes the Kronecker delta. Second, a statistic is defined as 
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  , F=C,S,  j=1,2, … , (10) 

which satisfies [12] 

 2
, ,[ ( ) ( )]F H

j k F H j kE Z n Z n     for  F,H=C,S,  j,k=1,2, … as n  . (11) 

The variance of sample mean is thus estimated as  
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   .  (12) 

This estimator is the main result in orthonormally weighted standardized time series 

(OWSTS) and is called the J-th order OWSTS estimator.  

In the above construction, Eq (8) is not the only choice for making orthonormality 

satisfied as in Eq (9). For example, one can construct orthonormal basis under the inner 

product in the left side of Eq (9) from 2 3{1, , , , }t t t   based on the Gram-Schmidt 

orthogonalization. However, solving for the integral equation with the covariance kernel of Eq 

(7), 

 
1

0
[ ( ) ( )] ( ) ( )B BE B t B u g t dt g u  ,  (13) 

one finds pairs of eigenvalues and eigenfunctions as (Appendix) 

 21/ ( ) , ( ) 2 sin( ) , 1, 2,...j jj e t jt j      . (14) 
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The Karuhunen-Loéve expansion of BB(t) is then formally written down as [21] 
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where j  are independent standard normal random variables. The expansion in Eq (15) 

indicates that weighting functions proportional to j × (sine or cosine) (π (integer) t) are natural 

choices. For this reason, the OWSTS estimator with the weighting functions in Eq (10) is 

used in this work for the statistical error estimation of sample mean. 

3. Fractional Brownian Motion and Power Spectrum 

Eq (6) asserts that ( )nT t  will be under the distribution of ( )BB t  for 0 1t   as n. 

On the other hand, one cannot exclude the possibility that the real relative error / ( )n   is 

practically small enough when n is not so large as to ensure ( )nT t  under the distribution of 

( )BB t . In this way, one often faces statistical estimation problems under the departure from an 

ideal distribution and it is natural to introduce an extended model of Brownian motion known 

as fractional Brownian motion (FBM) [22,23]: 

(FBM) (a) 2 1/2 2 2( ( ) ( ) ) (2 ) exp( / (2 ))
zF F

R M MP B t h B t z h u h du  


      , 0t  , 0h  , 

0 1   , 

 (b) ( (0) 0) 1F
R MP B    and ( )F

MB t  is continuous with probability 1 for 0t  , 

where ( )F
MB t  denotes the path of FBM. Hereafter, citation will be made as (FBM), (a) in 

(FBM), etc. It is clear that (b) and (c) in (BM) is equivalent to (a) and (b) in (FBM) with 

0.5  . It follows from (a) and (b) in (FBM) that [18] 

 [( ( ) ( ))( ( ) ( ))]F F F F
M M M ME B u t h B u t B u t B u        

 2 2 21
[( ) ] , 0, 0, 0

2
t h t h u t h         . (16) 

As the right hand side is zero for 0.5  , (a) in (BM) follows from the equivalence of 

uncorrelatedness and independence in normal distribution; Brownian motion is FBM with 

0.5  . It is also easy to show that the covariance of the adjacent increments of FBM in Eq 
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(16) is positive or negative, respectively, depending on 0.5 1    or 0 0.5    [22,23]. 

In addition, by rewriting Eq (16) as 

 
[( ( ) ( ))( ( ) ( ))]F F F F

M M M ME B u t h B u t B u t B u

h t 

     
=

2

1

2

t h t h

h t h t

                       
, (17) 

the representative correlation of adjacent increments of FBM is obtained by setting h=t: 

 RC() . (18) 

Note that RC() is positive for 0.5 1    and negative for 0 0.5   . 

In general, tallies in MC criticality calculation are scored by way of paths and collisions 

of many particles. This can give rise to situations where the fluctuation of ( )nT t  in Eq (6) 

exhibits some characteristics of normal distribution even when the number of generations is 

not sufficiently large so as to ensure CID in Eqs (5) and (6). Such a scenario indicates the 

need for the characterization of the departure or deviation from Brownian motion in Eq (5) 

and Brownian bridge in Eq (6). In advanced stochastic analysis [22], FBM is utilized for the 

innovation noises under normal distribution containing Brownian motion as a special case of 

independent increments. In fractal geometry [23], FBM is a stochastic model for continuous 

and non-differentiable lines with dimensions 1 through 2 and Brownian motion has a 

dimension of 1.5. These theories indicate that Brownian motion is a case of midway nature in 

FBM. Moreover, in the path of Brownian bridge ( ) ( ) (1)B M MB t B t tB  , the dimension of the 

first term is 1.5 and that of the second term is 1, which implies that the fluctuation of ( )BB t  

is strongly dominated by the first term ( )MB t . For this reason, spectral comparison will be 

made for ( )nT t  and ( )MB t  in Section 4. 

Further motivation for the spectral analysis with power spectrum comes from the review 

of a theoretically less-founded part of the run length diagnosis of MC criticality calculation 

using fractal dimension analysis [18]. FBM ( ( )F
MB t ) is known to have the dimension of 2- 

[23]. It was also shown that the dimension of ( )BB t  is equal to that of ( )MB t  [18].  

Introducing the assumption that the fluctuation of ISTS in MC criticality calculation is 
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governed by the distribution of ( )F
MB t and thus the path of ISTS has the dimension 2- 

dimension analysis was applied to compute the index  in order to see if (dimension 

of BM(t)). The idea is itself sound, however the computational steps involved a linear least 

square fitting that was merely an ad hoc choice based on numerical observations. We seeks to 

improve this empiricism. 

A frequency representation of FBM was first asserted as [24] 

 2 12 2 1/2
2 1 0

( ) ( ) ( ) ( )ift iftF F
M M MB t B t e e f dB f

         (19) 

where i in the argument of exponentials is the imaginary unit 2( 1)i   , and ( )MB f  is the 

complex Brownian motion process in the frequency domain. Since then, it was widely 

accepted that Eq (19) implied the 2 11 / f   power spectrum of ( )F
MB t . However, it was also 

pointed out that spectral densities of nonstationary random functions such as ( )F
MB t  were 

difficult to interpret [24]. Later, motivated by the stationary property of increments as 

represented in Eq (16), the power spectrum of a non-stationary stochastic process Y with 

stationary increments, denoted as ( )Y  , was established via the structure function 

2 1 4 3( , ; , )YR t t t t  [25]: 

2 1 4 3( , ; , )YR t t t t   2 1 4 3[( ( ) ( ))( ( ) ( )]E Y t Y t Y t Y t   

 = 4 2 4 1 3 2 3 1[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]E Y t Y t E Y t Y t E Y t Y t E Y t Y t    

 = 3 2 3 14 2 4 1 ( ) ( )( ) ( )1
( )

2
i t t i t ti t t i t t

Ye e e e d
       


         .  (20) 

In this framework, the power spectrum of FBM was derived to be [25] 

 
2 1

1
( )

| |
F
MB   


 . (21) 

Now, given a realization ˆ ( )Y t  of the real-valued stochastic process Y(t) with mean zero 

and stationary increments, the power spectrum is defined in an asymptotically computable 

manner [23]: 
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2

P i t
Y PP

Y t e dt
P




     (22). 

(Note that Ŷ  is assumed to be real and a squared-absolute value is computed for integral.) 

Similarly, the covariance of Y(t) is also defined in an asymptotically computable manner: 

 
1ˆ ˆ ˆ( ) lim ( ) ( )

2

P

PP
C h Y t Y t h dt

P 
  .  (23) 

The power spectrum in Eq (22) is shown to be the Fourier transform of the covariance in Eq 

(23) as asserted in the Wiener-Khinchin theorem [23]: 

 ˆˆ ( ) ( ) i h
Y C h e dh

  


    .  (24) 

The inverse Fourier transform of Eq (24) reads  

 
1ˆ ˆ( ) ( )

2
i h

YC h e d
 


   

  .  (25) 

Eqs (23) and (25) correspond to term-wise equality in Eq (20); equating ˆ ( )Y   and ˆ ( )C h , 

respectively, to ( )Y   and [ ( ) ( )]E Y t Y t h  do not introduce any inconsistency in Eq (20). 

Therefore, Eq (21) also implies the following relation for ˆ ( )F
MB t : 

 
2

2 1

1 1ˆˆ ( ) lim ( )
2 | |

F
M

P F i t
MB PP

B t e dt
P

 


   
 , (26) 

where the hat in ˆ ( )F
MB t  implies a realization as in ˆ ( )Y t . If one views Tn(t) as a periodic 

function with a period of 1, the power spectrum of ISTS is expressed as 

 
21

0
( ) ( )

n

i t
T nT t e dt       (27) 

Using the frequency f instead of the angular frequency Eq (27) can be computed as 
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1

1
( )

n
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n

T n
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j
f T e
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 .  (28) 

Here j=0 and n are excluded from the summation because Tn(0)=Tn(1)=0. 



 11

For reference purposes, it will be instructive to compute ( )F
MB

f  from a realization of 

( )F
MB t . To this end, based on the following relation similar to Eq (16) [23] 

 2 2 21
[ ( ) ( )] [ ( ) ]

2
F F
M ME B t B t h t t h h       ,  (29) 

the covariance matrix ,( )j kCC  of ( )F
MB t  is introduced as 

 2 2 2
,

1
[ ( ) ( )] [ | | ]

2
F F

j k M j M k j k j kC E B t B t t t t t       , , , , 1, ,j k

j k
t t j k n

n n
    . (30) 

Since covariance matrices are symmetric and non-negative definite, Cholesky factorization 

allows one to express the matrix C as the product of a lower triangular matrix L and its 

transpose LT: 

 T
,( )i jC C LL . (31) 

Let 1 2( , , , )nV V VV   be a vector of independent random variables under the standard 

normal distribution satisfying E[Vj]=0, E[(Vj)2]=1 and E[VjVk]= for jk where the subscripts 

of Vj and Vk corresponds to tj and tk. The covariance matrix of LV then becomes equal to 

TC LL . Therefore, sampling 1 2( , , , )nV V V , one obtains a realization of F
MB  as  

  1 2
ˆ ˆ ˆ( ), ( ), , ( ) ( )F F F T

M M M nB t B t B t  LV . (32). 

For this realization of ( )F
MB t , one can compute 

 

2
2

2 1
1

1 1ˆ( )F
M

jn i fF n
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j

j
f B e
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 .  (33) 

Here, the proportionality to 2 11 / f   is displayed due to Eq (26). For Brownian motion, 

0.5   yields 

 

2
2

2
1

1 1ˆ( )
M

jn i f
n

MB
j

j
f B e

n n f

 



    
 

   (34) 

On the other hand, the Fourier transform of ˆ (1)MtB  is  

 
22 2

1 2
20

ˆ (1)1ˆ ˆ(1) (1)
( 2 ) ( 2 ) ( 2 )

ifif if
ift M

M M

B ee e
tB e dt B

if if if

    
   

         
  for 1f  .  (35) 
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This implies that (1)MtB  does not introduce a frequency component attenuating slower than 

21 / f in the power spectrum of ( )BB t . Therefore, Eqs (34) and (35) yield 

 

2
2

2
1

1 1ˆ ˆ( ) (1)
B

jn i f
n

B M M
j

j j
f B B e

n n n f

 



         
  for 1f  , (36) 

i.e., the power spectrum of Brownian bridge is also proportional to 21 / f  except for small 

frequencies. It then follows from Eq (6) that  

 

2
1 2

2
1

1 1
( )

n

jn i f
n

T n
j

j
f T e

n n f

  



    
 

  for 1f   as n   .  (37) 

At this stage of developments, it is worthwhile repeating the issue raised at the beginning 

of this section: A scenario cannot be excluded that the real relative error / ( )n   is 

practically small enough when n is not so large as to ensure ( )nT t  under the distribution of 

( )BB t . To cope with this non-ideal issue of practical interest, one may place the following 

hypothesis on numerical testing: 

 
 is sufficiently large but not 

so large as to ensure CID

n 
 
 　

 
2 1

1
( ) , 0.5

nT f
f      for 1f  . (38) 

Here, “n is sufficiently large” is captured by the normality attribute of FBM while “but not so 

large as to ensure CID” is reflected in  

In the CID of ( )nT t  toward ( ) ( ) (1)B M MB t B t tB  , fractal dimension is 1.5 and 1.0, 

respectively, for the first and second terms of ( )BB t  [18,23]. The fluctuation of ( )BB t  is 

thus dominated by the first term ( ( )MB t ) and the insufficient CID of ( )nT t  will appear as the 

FBM characteristics with 0.5  . Consequently, ( )nT t  in Eq (6) and 

( ) / ( )ntnt s n  
      in Eq (5) are both likely to exhibit the normality characteristics of 

FBM with 0.5   when n is sufficiently large but not so large as to ensure CID. Taking into 

account that the standard normality of (1)F
MB  follows from setting 0t   and 1h   in 

(FBM) and ( ) / ( )ntnt s n  
      in Eq (5) becomes ( ) / ( / )ns n   for 1t  , one can 

form the confidence interval of sn based on normality assumption and the inverse square-root 



 13

law of decrease will be observed for the standard deviation of sn if the accurate estimate of   

is available. These matters can be judged based on Eq (38). 

Before concluding this section, it is worth raising the second reason for choosing the 

weighting functions in Eq (8) in addition to the first reason mentioned at the end of Section 2. 

In this section, the power spectrum of ( )BB t  was shown to be proportional to 21 / f . The 

functions sin(2 )jt  and cos(2 )jt  correspond to the components of integer frequency j. 

Under these characteristics, the weighting functions should be proportional to (inverse square 

root of power spectrum at frequency j) (sine or cosine) (2πjt) so that equal contributions are 

extracted from all integer frequencies. This argument gives another legitimacy to a choice in 

Eq (8). 

4. Local Power Tally in PWR Whole Core Calculation – Numerical Results 1 

In this section, numerical results are demonstrated for power spectrum, the -index in (a) 

in (FBM) that subsequently appeared in Eqs (33) and (38), and the standard deviation 

estimation by OWSTS in Eq (12) for a model of PWR initial core in Figure 1. Since the 

previous investigation of this model [9] has revealed that the autocorrelation of local power 

tallies is generally largest at the fifth assembly along diagonal from center, the local power at 

the location indicated in Fig. 1 is examined in this section. The effective neutron 

multiplication factor (keff) is also examined for comparison. Power spectrum is computed for 

the frequencies 0.05*10 j , 20, , 60j   , so that 10 1000f   is covered. All MC 

calculations are conducted by a version of the MCNP code with ENDF-VI libraries [26] The 

detailed specifications of the model in Fig. 1 are available in previous work [15].  

Figure 2 shows the reference power spectrum from a replica of Brownian motion 

computed by Eq (34) and the power spectra of ISTS ( ( )nT t ) for the keff and local power of 

PWR in Fig. 1 computed by Eq (28). It is seen that the power spectrum of keff nearly follows 

the 21 / f  law as does the power spectrum of Brownian motion. Figure 3 shows the -index 

values obtained from the power spectra of 100 independent replicas of Brownian motion. It 
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follows that RC() in Eq (18) falls within 0.09 and 0.09 for the uncertainty of the 

one-replica standard deviation of . The fluctuations in Fig.3 indicate that in Fig. 2 the 

deviation from the -index value at CID, i.e., the deviation from 0.5, is within statistical 

uncertainty for keff but well beyond statistical uncertainty for the local power; RC()=0.03 

and 0.66, respectively, for the keff and local power. However, the power spectrum of local 

power still exhibits the 2 11 / f   law of FBM. This was observed for other replicas of the MC 

calculation with the same computational conditions (n=4500, and 100000 particles per 

generation), which are not shown here to avoid repetitions of similar figures. Namely, the 

hypothesis in Eq (38) has been confirmed for the model in Fig. 1 and it is thus possible to 

assume normality on the sample mean ns . The remaining issues are to check whether or not 

the -index estimates converge rapidly toward 0.5 as n increases and to see if it is possible to 

make the unbiased estimation of the standard deviation of sample mean ( n ) before CID 

is achieved. Figure 4 shows the  index of local power for 10 independent replicas of MC 

calculation. It is obvious that CID will not occur for 18000n   for the computation with 

100000 particles per generation; the convergence in terms of CID is very slow for local power 

tally. Two specific issues can be raised from this result; is it possible to make unbiased 

estimation of the standard deviation of the sample mean sn for 18000n   and does the power 

spectrum of Tn(t) keep the spectral form of the 2 11 / f   law of FBM for the replica i yielding 

rapidly changing estimates of -index? Both issues are answered positively as shown in 

Figures 5 and 6. Fig 5 shows that the standard deviation of sn can be estimated in an unbiased 

manner by OWSTS if the real statistical error is about 1% or smaller corresponding to 

9000n  . Fig 6 demonstrates that the rapidly changing power spectra at n=6000, 9000 and 

12000 for replica i in Fig. 4 maintain the spectral form of FBM, which is a further 

confirmation of the hypothesis in Eq (38). These numerical results indicate that even before 

CID is achieved, the standard deviation of sample mean can be estimated in an unbiased 

manner and a confidence interval may be formed based on normality assumption if the real 
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statistical error is sufficiently small. Figs 4 and 5 confirm the appearance of the pre-CID 

phenomenon mentioned in Sec 1. It is also worth mentioning that, associated with the 

jump-up and jump-down of the -index estimates from 0.69 via 0.95 to 0.64 for replica i in 

Figs 4 and 6, RC() in Eq (18) changes from 0.31 via 0.87 to 0.21 while the spectral form in 

Fig 6 maintains the 2 11 / f   law of FBM. Wild changes may occur in the -index estimates 

while keeping the spectral form of FBM. This phenomenon is a new discovery as far as this 

author is aware of. Moreover, in Fig 6 and in the third figure of Fig 2, the spectral form of 

FBM leans toward the side of 21/ f  through 31 / f  (0.5<<1). This implies that the higher 

frequency components of Tn(t) are smaller in magnitude than they are supposed to be. 

Consequently, improvement in the OWSTS estimator is not likely to occur by further raising 

the order J because of the correspondence between integer frequencies and the orders of 

OWSTS weighting functions discussed at the end of Section 3. For this reason, J is fixed to 

10 in Fig 5 as practiced in previous work [12]. 

5. Effective Neutron Multiplication Factor (keff) in Fuel Debris Model - Numerical 

Results 2 

In this section, numerical results are demonstrated for a preliminary model of 

UO2-concrete debris in Figure 7 [16]. The model geometry is a cube of 140×140×140 cm3; 

inside this cube, a smaller inner cube of 100×100×100 cm3 is situated at center with the 

corresponding faces parallel to each other; the inner cube is occupied by concrete and UO2 

fuel at 12 GWd/t with the average volume ratio of 7:1 in concrete:UO2; the outside of the 

inner cube is occupied by concrete only. One energy group macroscopic cross-sections in Fig. 

7 were computed by the MVP code [1]. MC criticality calculations are carried out with an 

in-house research-purpose code.  

Concerning the mixture of concrete and UO2 fuel inside the inner cube, the macroscopic 

cross-section of reaction-type RT is assigned by 

 ( ) (1 ( )) [1 (1 ( ))]F C
RT RT RT      r r r  v v v v   (39) 
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where unlike Sections 2 and 3, the italic  is not the summation symbol but the Greek letter 

“sigma” as traditionally used for macroscopic cross-section in nuclear reactor physics, 

1 2 3( , , )x x xr  is the space coordinates inside the inner cube in Fig. 7, the superscripts F and 

C indicate, respectively, the UO2 fuel and concrete, v=1/8 is the mean volume fraction of fuel, 

and v(r) is the space-dependent variation part of the volume fraction of fuel. The 

randomized Weierstrass function (RWF) [16] is assigned to v(r):  

 
1

( ) sin( ( / ) )j j
j j j

j

d B R A






     r r Ωv , (40) 

where the non-italic  is the summation symbol as in Sections 2 and 3, d is the parameter 

determining the level of fluctuation, Bj are the independent Bernoulli random variables taking 

1 equally likely, >1, R is the scaling factor, j are unit vectors chosen uniformly and 

independently on the unit sphere at the origin, and Aj are independent random variables 

uniformly distributed on [0,2). As Bj, j and Aj are independent and the expected value of Bj 

is zero, the expected value of v(r) is zero. The parameter  in Eq (40) satisfies 0 0.5    

so that v(r) represents a stationary approximation [16] to the system state reached via 

extreme disorder [27] characterized by the power spectrum of 1 21 / f   . For this reason, the 

same parameter  is used in Eqs (33), (38) and (40). Practically, when the summation in Eq 

(40) is truncated at j=M, d is chosen to be 

 
1

1 M
d 













  (41) 

so that 1 v(r) is satisfied [16] The number of terms M for the summation truncation is 

chosen to be the smallest positive integer satisfying 0.01M  . In other words, the terms in 

Eq (40) are kept as far as their amplitudes are larger than 1% of the amplitude of the first 

term. 

Figure 8 shows OWSTS estimates together with apparent estimates for the standard 

deviation of the sample mean of keff tallies; a pair of these estimates are shown for each of 100 
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independent replicas of RWF. It is clearly seen that OWSTS estimates are on average 

significantly larger than apparent estimates and under large fluctuation. It is desirable to 

clarify if these fluctuation is a spurious phenomenon due to insufficient CID. To this end, 

power spectra are shown in Figure 9 for the replicas yielding the largest and smallest OWSTS 

estimates in Fig. 8. If judged based on the fluctuation in Fig 3, it is clear that both power 

spectra exhibit the 2 11 / f   law with 0.5  . Power spectra for other replicas of RWF were 

also examined and turned out to follow the 2 11 / f   law with 0.5  , which is not included 

here to avoid the repetitions of similar figures. It is deemed certain that estimates in Fig.8 are 

obtained under CID and their fluctuation is not spurious and is attributed to the different 

correlation properties of keff tallies due to randomly realized replicas of RWF. Figure 10 

shows OWSTS estimates of the standard deviation of sample mean with respect to the order J 

in Eq (12) for additional 10 replicas after replica 100 in Fig 8. There is no sign of ill behaviors 

such as divergence, zeroing-out, rapid swing at very large orders which may arise from 

insufficient CID. 

6. Conclusions 

In this work, the spectral analysis of the interpolated standardized time series (ISTS) of 

tallies was proposed to assess convergence in distribution (CID) in the framework of the 

central limit theorem. It was shown that via the Fourier transform of ISTS one could compute 

power spectrum which was to be compared with the inverse-square dependence on 

frequencies because of CID toward Brownian bridge. The criterion is universal, which is the 

strength of the proposed methodology. Modeling with fractional Brownian motion was also 

attempted at in order to capture the departure from the ideal state of CID. These 

methodologies were demonstrated for models of PWR initial core [15] and UO2-concrete 

debris [16]. 

Salient aspects of numerical results are summarized as below. First, in the model of PWR 

initial core, the power spectrum from local power tallies was under the law expected for 
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fractional Brownian motion. This means that even before CID is achieved, one is allowed to 

form a confidence interval based on normality assumption if the standard deviation of sample 

mean can be estimated in an unbiased manner. Specifically, the unbiased estimation of the 

standard deviation of sample mean during insufficient CID generations leads to the pre-CID 

phenomenon raised in Sec 1, which was indeed observed when real relative statistical errors 

were about 1% or smaller. Second, in the model of UO2-concrete debris, CID is achieved for 

the tallies of effective neutron multiplication factor and the standard deviation estimation of 

sample mean with orthonormally weighted standardized time series (OWSTS) performed 

normally without any indication of ill behaviors such as divergence, zeroing-out and rapid 

swing at very large orders. Based on this result, the following guideline may be placed on the 

standard deviation estimation with OWSTS; do not raise the order beyond 10 as 

recommended in previous work [12] unless CID is judged to be achieved by the power 

spectrum of ISTS. 

In future work, technical tools in stochastic differential equations may be pursued so that 

ISTS is transformed to other statistic which is asymptotically under the law of Brownian 

motion. One can then develop improved statistical methodologies based on 1) the independent 

increments of Brownian motion for non-overlapping intervals and 2) the inference procedures 

for the stochastic processes driven by Brownian motion. In pursuit of these developments, 

estimation instability inherent in cases of a small number of generations should be 

appropriately addressed. 
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Appendix: Eigenfunctions and Eigenvalues of Eq (13) 

This appendix shows how to obtain the eigenvalues and eigenfunctions of Eq (13), 

 
1

0
[min( , ) ] ( ) ( )t u tu g t dt g u   ,  (42) 

where Eq (7) is substituted in Eq (13). First, rewrite Eq (42) as  

 
1 1

0 0
( ) ( ) ( ) ( )

u

u
tg t dt u g t dt u tg t dt g u      .  (43) 

Differentiate with respect to u: 

 
1 1

0
( ) ( ) ( )

u
g t dt tg t dt g u    .  (44) 

Differentiate once more to yield 

 
1

( ) ( )g u g u  


.  (45) 

The general solution of Eq (42) is then obtained as 

 ( ) sin cos
u u

g u A B
           

 . (46) 

Since Eq (42) implies (0) 0g  , one obtains 0B  . Eq (42) also implies (1) 0g  , which 

leads to 21 / ( )j   , 1, 2,...j  : 

 ( ) sin( )g u A ju  , 1, 2,...j  . (47) 

Finally, the normalization condition 
1 2

0
[ ( )] 1g u du   yields 2A  . 
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Figure Captions 

 

Figure 1. PWR initial core model; local power evaluated for selected cell location at 5th 

assembly on diagonal in 5th elevation; computations with point-wise cross sections conducted 

under 100,000 histories per generation for the whole core of this model. 

 

Figure 2. Power spectrum (PS) of Brownian motion compared against PS of interpolated 

standardized time series from PWR initial core model; results for one replica 

 

Figure 3. a-index estimates of Brownian motion on [0,1] via power spectrum over 100 

replicas of paths. 

 

Figure 4. a-index estimates via power spectrum of interpolated standardized time series of 

local power tally. 

 

Figure 5. Standard deviation (SD) estimation of sample mean (sn: Eq (4)) of local power 

tallies by orthonormally weighted standardized time series (OWSTS: J=10) over 60 replicas 

of a MC computation of 100,000 particles per generation.  

 

Figure 6. Power spectrum (PS) of replica i in Figure 4. 

 

Figure 7. UO2-Concrete debris model. 

 

Figure 8. Standard deviation estimates of effective neutron multiplication factor (keff) of 

UO2-concrete debris model; one whole set of MC criticality calculation consisting of 20000 

particles per generation, 5000 generations and 1000 skip generations for each of 100 
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independent replicas of randomized Weierstrass function (RWF: a=0.5, l=0.5, R=25cm); 

OWSTS for orthonormally weighted standardized time series estimates. 

 

Figure 9. Power spectrum (PS) of interpolated standardized time series of effective neutron 

multiplication factor (keff) in UO2-concrete debris model with randomized Weierstrass 

function (RWF). 

 

Figure 10. Converging behaviors of OWSTS standard deviation estimates of effective 

neutron multiplication factor of UO2-concrete debris model; 10 independent realizations of 

randomized Weierstrass function (RWF: a=0.25, l=1.5, R=25) replicas; OWSTS for 

orthonormally weighted standardized time series estimates. 
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Figure 1. PWR initial core model; local power evaluated for selected cell location at 5th 

assembly on diagonal in 5th elevation; computations with point-wise cross sections conducted 

under 100,000 histories per generation for the whole core of this model. 
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Figure 2. Power spectrum (PS) of Brownian motion compared against PS of interpolated 

standardized time series from PWR initial core model; results from one replica 

T. Ueki: 

A power spectrum approach to tally convergence in Monte Carlo criticality calculation 
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Figure 3. -index estimates of Brownian motion on [0,1] via power spectrum over 100 

replicas of paths. 
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Figure 4. -index estimates via power spectrum of interpolated standardized time series of 

local power tallies. 
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Figure 5. Standard deviation (SD) estimation of sample mean (sn: Eq (4)) of local power 

tallies by orthonormally weighted standardized time series (OWSTS: J=10) over 60 replicas 

of a computation of 100,000 particles per generation; error bars for one replica estimate, i.e., 

for a population of 60 SD estimates by OWSTS. 
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Figure 6. Power spectrum (PS) of replica i in Figure 4. 

T. Ueki: 

A power spectrum approach to tally convergence in Monte Carlo criticality calculation 

(b) 9000 generaions (n=9000) 

(c) 12000 generaions(n=12000) 

frequency (s-1)

frequency (s-1)

P
S

P
S

slope
= ‐2.90
‐index
=  0.951

slope
= ‐2.27
‐index
= 0.640

(a) 6000 generaions (n=6000) 

P
S

frequency (s-1)

slope
= ‐2.39
‐index
=  0.693

1.0E‐11

1.0E‐09

1.0E‐07

1.0E‐05

1.0E‐03

1.0E‐01

10 100 1000

1.0E‐11

1.0E‐09

1.0E‐07

1.0E‐05

1.0E‐03

1.0E‐01

10 100 1000

1.0E‐11

1.0E‐09

1.0E‐07

1.0E‐05

1.0E‐03

1.0E‐01

10 100 1000



 31

 

 

 

 

 

 

 

 

Figure 7. UO2-Concrete debris model. 
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Figure 8. Standard deviation estimates of effective neutron multiplication factor (keff) of 

UO2-concrete debris model; one whole set of MC criticality calculation consisting of 20000 

particles per generation, 5000 generations and 1000 skip generations for each of 100 

independent replicas of randomized Weierstrass function (RWF: =0.5, =0.5, R=25cm); 

OWSTS for orthonormally weighted standardized time series estimates. 
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Figure 9. Power spectrum (PS) of interpolated standardized time series of effective neutron 

multiplication factor (keff) in UO2-concrete debris model with randomized Weierstrass 

function (RWF). 
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Figure 10. Converging behaviors of OWSTS standard deviation estimates of effective 

neutron multiplication factor of UO2-concrete debris model; 10 independent realizations of 

randomized Weierstrass function (RWF: a=0.25, l=1.5, R=25) replicas; OWSTS for 

orthonormally weighted standardized time series estimates. 
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