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1CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
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(Received 28 July 2017; accepted 2 October 2017; published online 20 October 2017)

Two full-F global gyrokinetic codes are benchmarked to compute flux-driven ion temperature gra-

dient (ITG) turbulence in tokamak plasmas. For this purpose, the Semi-Lagrangian code

GYrokinetic SEmi-LAgrangian and the Eulerian code GT5D are employed, which solve the full-F

gyrokinetic equation with a realistic fixed flux condition. The equilibrium poloidal flow profile for-

mation processes are benchmarked and compared against the local neoclassical theory. The simula-

tions above are carried out without turbulence, which agree well with each other and with the

theoretical estimates. Here, a lot of attention has been paid to the boundary conditions, which have

huge impacts on the global shape of radial electric field. The behaviors of micro-instabilities are

benchmarked for linear and nonlinear cases without a heat source, where we found good agree-

ments in the linear growth rates and nonlinear critical gradient level. In the nonlinear case, initial

conditions are chosen to be identical since they dominate the transient turbulence behavior. Using

the appropriate settings for the boundary and initial conditions obtained in the benchmarks above, a

flux-driven ITG turbulence simulation is carried out. The avalanche-like transport is assessed with

a focus on spatio-temporal properties. A statistical analysis is performed to discuss this self-

organized criticality (SOC) like behaviors, where we found a 1/f spectra and a transition to 1/f3

spectra at high-frequency side in both codes. Based on these benchmarks, it is verified that the

SOC-like behavior is robust and not dependent on numerics. Published by AIP Publishing.
https://doi.org/10.1063/1.4998015

I. INTRODUCTION

First-principles kinetic simulations are considered as

essential tools to understand and predict plasma transport

phenomena in magnetic confinement fusion devices. So far,

a number of simulation studies have addressed the physical

mechanisms involved in turbulent transport, and compared

them with experimental results (see the review paper,1 for

example). In most cases, these codes tackle local transport

phenomena under fixed plasma profiles. Since they compute

the perturbed part of the distribution functions only, they are

often called local df gyrokinetic simulations. Tremendous

efforts have been done for code verification, namely, bench-

marking of different local df gyrokinetic codes, in order to

ensure better credibility.2,3

Concerning the experimental situation, the local

approach may fail whenever the characteristic size of turbu-

lence is non-negligible compared with the machine size or

the profile formation is affected by plasma turbulence itself,

possibly leading to an organization of meso-scale structures.

Robust features of non-local transport have been reported.4,5

To address this issue, a new generation of gyrokinetic codes

called full-F gyrokinetic codes have been developed, where

the fluctuations and equilibrium profiles evolve self-consis-

tently.6–10 More importantly, full-F gyrokinetic codes can

compute turbulent heat transport in the presence of a physi-

cally relevant fixed flux condition.

In addition, full-F gyrokinetics is an approach to treat

turbulent and collisional transport consistently. This favor-

able feature is rather problematic in benchmarking due to the

complex physics involved in these simulations. In fact, there

exist few benchmark works of full-F gyrokinetic codes11 and

they are addressing fixed-gradient global simulations with

adaptive heat source terms12 rather than a realistic heat

source term with a constant heating source. In order to

address the complicated dynamics of full-F flux-driven simu-

lations, we first decompose the problem into subsets, each

tackling a specific physics issue. For collisional (neoclassi-

cal) properties, we carried out simulations where the Ion

Temperature Gradient (ITG) mode is stable so that transport

is only due to collisions. For turbulence, we investigated lin-

ear ITG mode and nonlinear decaying ITG turbulence in the

absence of collisions (or weakly collisional). After complet-

ing these tests, we move to the benchmark of flux driven

ITG turbulence, which involves all the physical processes

listed above. The physics to be addressed mainly is the

avalanche-like transport and profile corrugations and their

statistical properties. We focus on the self-organized critical-

ity (SOC) like behaviors, which are at the heart of the full-F

flux driven gyrokinetic simulations. It should be stressed that

these physical processes can only be simulated in the frame-

work of global full-F gyrokinetic models.

This paper contributes to the benchmark of long-time

flux-driven ITG turbulence simulations, which is organized

as follows: Section II describes the full-F gyrokinetic model

with source and sink terms. In Sec. III, the differences in thea)Electronic mail: yuuichi.asahi@cea.fr
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numerical schemes are shown. The benchmarks for the neo-

classical physics and zonal flow dynamics against theories

are shown in Sec. IV. The linear and nonlinear benchmarks

for gyrokinetics without source and sink terms are shown in

Sec. V. The benchmark for the flux driven case is summa-

rized in Sec. VI. The results are summarized in Sec. VII.

II. MODEL

In this section, we briefly describe the physical models

used in GYrokinetic SEmi-LAgrangian (GYSELA)9,13 and

GT5D10 codes. Although these codes can now treat the

kinetic electrons,14 we employ the conventional versions

with adiabatic electrons in this work. Since the gyrokinetic

part is fundamentally the same, we emphasize the differ-

ences in the collision operators and sink/source models.

A. Full-F gyrokinetic models

In the modern gyrokinetic theory,15 the time evolution

of the guiding center distribution function f can be computed

by the 5D gyrokinetic equation

@J f

@t
þr �J _Rf þ

@J _vkf

@vk
¼ J Dr fð Þ þK fð Þ þ C fð Þ þ Sð Þ;

(1)

where J ¼ m2
i B�k is the Jacobian in the gyrocenter coordi-

nate and vk is the parallel velocity. mi is the mass of ion,

B�k ¼ b � B� is the parallel component of B�, with the unit

vector in the parallel direction b, and B� ¼ Bþ ðBvk=
XiÞr � b. Xi ¼ ðeiBÞ=ðmicÞ is the ion cyclotron frequency

with the charge of ion ei and the speed of light c. For the

right hand side, Dr and K are a diffusion term and a Krook

operator applied on radial buffer regions, C represents a colli-

sion operator, and S is a source term. The details for the col-

lision operator are defined in Sec. II B, and source/sink terms

(diffusion or Krook) are described in Secs. II C and II D.

The nonlinear characteristics in Eq. (1) are given by

_R � R;Hf g ¼ B�

miB�k

@H

@vk
þ c

eiB�k
b�rH

¼ vkbþ
c

eiB�k
eirh/ia þ miv

2
kb � rbþ lrB

� �
; (2)

_vk � vk;H
� � ¼ � B�

miB�k
� rH

¼ � B�

miB�k
� eirh/ia þ lrB
� �

; (3)

where fF; Gg is the gyrokinetic Poisson bracket operator

F; Gf g � Xi

B

@F

@a
@G

@l
� @F

@l
@G

@a

� 	
þ B�

miB�k

� rF
@G

@vk
� @F

@vk
rG

 !
� c

eiB�k
b � rF�rG

(4)

in the gyro-center coordinates Z ¼ ðR; vk; l; aÞ, where l is

the magnetic moment and a is the gyro-phase angle. H repre-

sents the Hamiltonian of the system defined as

H ¼ 1

2
miv

2
k þ lBþ eih/ia: (5)

Here, h/ia ¼
Þ

/da=2p stands for the gyro-averaged electro-

static potential /.

The electrostatic potential / is determined by the quasi-

neutrality condition

�r? �
q2

ti

k2
Di

r?/þ
1

k2
De

/� h/if
� �

¼ 4pei

ð
fd Rþ q½ � � xð Þd6Z � nG;eq


 �
; (6)

where Rþ q is a particle position, d6Z ¼ m2
i B�kdRdvkdlda is

the phase space volume of the gyro-center coordinates, qti is

the Larmor radius evaluated with the thermal velocity vti, kDi

and kDe are the ion and electron Debye lengths, h�if is a flux

surface average, and nG;eq is the equilibrium guiding-center

density. The first term of the left hand side stands for the ion

polarization density in the long wavelength approximation.

This assumption should be valid for the core ITG turbulence,

which is characterized by k?qti � 1 with the perpendicular

wavenumber k?. By coupling the gyrokinetic equation (1)

and quasi-neutrality condition (6), the gyrokinetic model can

be solved self-consistently.

B. Collision operators

In this subsection, we briefly describe the collision opera-

tors used in GYSELA13 and GT5D.16 Although there are

some differences, it has been shown that the conservative

properties13,16 and some neoclassical properties17,18 are satis-

fied in both codes. It should be noted that the finite-Larmor-

radius (FLR) effect is not taken into account in the collision

operators in GYSELA and GT5D, which is equivalent to a

collision operator computed in the drift-kinetic limit.

1. Collision operator in GYSELA

The version of the collision operator considered in the

present study for GYSELA (other versions exist, such as a

recently benchmarked multi-species version19,20) is given by

a simplified Lenard-Bernstein collision operator,21 where

only the vk contribution is taken into account

C fð Þ ¼ 1

B�k

@

@vk
B�k Dk

@f

@vk
� Vkf

 !" #
: (7)

The operators Dk and Vk, respectively, model a diffusion

and a drag in the parallel velocity direction. The conserva-

tion properties of parallel momentum and energy are ensured

by constraining Dk to depend on l only and defining the

local fluid velocity Vk;coll and ion temperature Tcoll in an

appropriate manner.13

2. Collision operator in GT5D

GT5D is equipped with the linearized Fokker-Planck

collision operator22 as Cðf Þ ¼ CTðf Þ þ CF. The test particle

operator CT is given by
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CT fð Þ ¼ @

@s
�?1v

2f
� �

þ @

@u
�k1uf
� �

þ 1

2

@2

@s2
�?2v

4f
� �

þ 1

2

@2

@u2
�k2v

2f
� �

þ @2

@s@u
�k?v

3f
� �

; (8)

where s ¼ 2lB=mi and u ¼ vk � Uk are defined in a moving

frame with respect to the parallel flow velocity Uk and

v2 ¼ u2 þ s. The field particle operator CF ensures the con-

servation properties of parallel momentum and energy. The

definitions of the collision frequencies, �?1; �k1; �?2; �k2;
�k?, and the field particle operator CF are given in the

Appendix of Ref. 16.

C. Source models

Let us describe the gyrokinetic equation neglecting all

terms but the source term

@f

@t
¼ Ssrc: (9)

We assume that the source term can be expressed in the fol-

lowing way:

Ssrc ¼ S0SE q;Eð ÞSr qð Þ; (10)

where S0 is the amplitude of the source in physical unit,

E ¼ v2
k=2þ lB is the dimensionless energy, and SE and Sr

represent source profiles in velocity space and real space,

respectively. q ¼ r=a is the normalized minor radius used as

a radial variable throughout the paper, with a minor radius a.

In GYSELA and GT5D, the radial and velocity space pro-

files (all variables are dimensionless) are given by

Sr;GYS qð Þ ¼ �
1

2
tanh

q� qs � 3Ls

Ls

� 	


þtanh
qs � 3Ls � q

Ls

� 	�
;

Sr;GT5D qð Þ ¼
1

2
1� tanh

q� qs

Ls

� 	
 �
;

SE;GYS q;Eð Þ ¼ 1

3p
ffiffiffiffiffiffi
2p
p

T
5=2
s

E

Ts
� 3

2

� 	
exp �E=Ts½ �; (11)

SE;GT5D q;Eð Þ ¼ B0

B�k
fM1 � fM2½ �; (12)

where fM1 represents the Maxwellian

fM1 ¼
1

2p �T1ð Þ3=2
exp �E=2 �T1


 �
(13)

for the volume averaged temperature �T1 and fM2 is for the

volume averaged temperature �T2. If we take �T2 ¼ �T 1 � DT,

Eq. (12) can be approximated by

SE;GT5D q;Eð Þ ’ B0

B�k

@fM1

@T
DT


 �
¼ B0

B�k
fM1

@lnfM1

@T
DT


 �
: (14)

If we neglect the difference in B0 and B�k, of the order of the

inverse aspect ratio � ¼ r=R0 and use the relationship

lnfM1 ¼ �3=2lnT1 � E=T1, it leads to

SE;GT5D q;Eð Þ ’ C
fMs

Ts

E

Ts
� 3

2

� 	
(15)

by replacing T1 by Ts. Since the difference in B�k and B is of

the order of q? and negligible, the major difference between B0

and B�k is of the order of the inverse aspect ratio �, that is the

difference between B and B0. In our flux-driven test case with

a relatively large aspect ratio (see Table III), the difference in

B0 and B�k is about 10% in the source region, since the source

term is strongly localized in the q < 0:3 region, wherein � is

smaller than 0.1. Although this gives the minor difference in

the region with q < 0:3, it may not affect much in the region

with 0:3 < q < 1:0 since the integrated input power which

affects the dynamics in this region is the same for both codes.

On one hand, the GYSELA source model has isotropic veloc-

ity space structure, but it gives a momentum input due to the

velocity space Jacobian found in Eq. (1). On the other hand,

the GT5D source model does not impose any extra momentum

input, at the cost of anisotropic velocity space structure. The

impact of momentum input is of the order of q?, but it could

be important when discussing the parallel flow dynamics, as

found in Sec. VI. Equation (15) is the same as Eq. (11) except

for the factor C. The difference is then absorbed in the source

amplitude S0. Figure 1 shows the radial and velocity space pro-

files of source terms used in this study. For radial profile, we

set qs ¼ 0:01212 and Ls¼ 0.1 in GYSELA and qs ¼ 0:31

and Ls¼ 0.1 in GT5D. For the velocity space, we employ

Ts ¼ 1:5T0 and DT ¼ 0:1T0 in order to make the velocity

space structures the same in both codes in case we dismiss the

difference in B�k and B0. Here, T0 is the reference temperature

at the mid-minor radius (see Sec. III D for detail). These

parameters are used in the flux-driven simulations in Sec. VI.

As is clear from Eq. (11), this source term continuously

reduces the number of slow particles and increases the number

of fast particles. This process leads to plasma heating. This is

different from a Krook-type source term as used in Ref. 12,

which forces the temperature profile to be fixed on average.

D. Sink models

In practice, GYSELA often employs diffusion terms in

the buffer regions as a sink term (although a Scrape-Off-

Layer (SOL)-like outer boundary condition has been recently

developed23). However, for better comparison with GT5D,

we used a Krook type operator Krðf Þ ¼ ��ðqÞðf � fMÞ in

GYSELA as well as GT5D. The radial profile of the coeffi-

cient �ðqÞ is given by

� qð Þ ¼ �0 1þ 1

2
tanh

q� qk

Lk

� 	" #
; (16)

where �0 is the diffusion coefficient, qk and Lk are, respec-

tively, the location and the steepness of the buffer regions.

For the flux-driven simulations in Sec. VI, we employ

qk ¼ 1:0, Lk¼ 0.1, and �0a=vti ¼ 0:1. The Krook operator

forces the distribution function to relax towards the initial

Maxwellian fM in the buffer region. Thus, turbulence is

damped in the buffer region.

III. NUMERICAL SCHEMES

In this subsection, we briefly describe the numerical

schemes used in the codes. We will focus, in particular, on
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some differences that involve different numerical properties

which could end up with different results. For example, the

numerical schemes to solve the gyrokinetic Poisson equa-

tion, which are relevant to the boundary conditions, may

have a strong impact on the global mode structure of the

electrostatic potential. The comparisons of numerical costs

are provided in the Appendix.

A. GYSELA code

As named, GYSELA (GYrokinetic SEmi-LAgrangian)

code uses a Backward Semi-Lagrangian scheme to solve

the advection term. In order to avoid a costly multidimen-

sional interpolation, the advection operator is split into

three different operators based on Strangs’s operator

decomposition method:24 2D ðr; hÞ þ 1D ðvkÞþ 1D ðuÞ
advection terms. Here, GYSELA employs the toroidal coor-

dinate system ðr; h;uÞ for a spatial coordinate and ðvk; lÞ
for a velocity space coordinate. The Poisson equation is

solved with Fourier expansion in toroidal and poloidal

directions and finite differences in the radial direction. The

difficulty lies in the estimate of flux surface averaged elec-

trostatic potential h/if , since this term is nonlinear in h due

to the h dependence of the Jacobian. To tackle this, the

Poisson equation is decomposed in two equations, one for

the difference between the potential and its flux surface

average and the other for the flux surface averaged compo-

nent. These equations can be solved sequentially, and

finally, the electrostatic potential can be obtained. The

boundary conditions used in these equations are described

in Sec. III C.

Contrary to local flux-tube codes, the gyro-averaging

operation is not straightforward. In the flux-tube codes, the

gyro-average operator can be represented by a Bessel func-

tion in the Fourier space based on the periodicity assump-

tions both in radial and poloidal directions (that is the local

approach). In a global code, a periodic boundary condition in

the radial direction is not allowed so that the Fourier repre-

sentation of the gyro-average operator is no longer feasible.

Therefore, we have to compute the gyro-average operator

numerically in real space with some approximations. In

GYSELA, there are two possibilities to approximate the

gyro-average: A Pad�e approximation and integration on

gyro-circles using Hermite interpolation. Here, we employ

the Hermite interpolation approach with 8 sampling points.

The time integration is performed using a predictor-corrector

method. The detailed implementation of GYSELA is found

in Ref. 13.

B. GT5D code

In GT5D, the gyrokinetic Poisson bracket operator is dis-

cretized using the fourth-order non-dissipative and conserva-

tive finite difference scheme,10 which is a variant of the

Morinishi scheme25 extended to incompressible Hamiltonian

flows, and the gyrokinetic Poisson equation Eq. (6) is com-

puted using a toroidal mode expansion and a 2D finite element

approximation on the poloidal plane. Similar to GYSELA, the

gyro-average is evaluated by a finite-point sampling tech-

nique, with 40 sampling points. GT5D solves the gyrokinetic

Vlasov equation in the cylindrical coordinate ðR; Z;uÞ and

the gyrokinetic Poisson equation in the flux coordinates

ðw; h�;uÞ, with the poloidal flux w and the straight-field-line

poloidal angle h�. The velocity space coordinate is uniform in

ðvk;wÞ directions, with w ¼ ð2B0l=miÞ1=2 ¼ ðB0=BÞ1=2v?.

The use of an aligned coordinate in the w direction is benefi-

cial to capture trapped-passing boundaries.

The time integration is performed using the second-

order additive semi-implicit Runge-Kutta method and a stiff

linear term involving the parallel streaming is treated implic-

itly. An implicit part is solved using the generalized conju-

gate residual method. The detailed implementation of GT5D

is found in Refs. 10 and 16.

C. Boundary conditions

Due to the differences in the numerical schemes used to

solve the Poisson equation, GYSELA and GT5D impose dif-

ferent boundary conditions on electric potential /. The non-

axisymmetric components of / are forced to be zero at both

inner (if exists) and outer boundaries in both codes. The axi-

symmetric /00 mode is treated in a different way. In GT5D,

the Dirichlet boundary condition /00 ¼ 0 is applied at the

edge, while the natural boundary condition is imposed at the

magnetic axis. It should be noted that the use of cylindrical

coordinates ðR; Z;uÞ in GT5D allows one to avoid the singu-

larity at the magnetic axis. In GYSELA, the plasma region

qmin < qð¼ r=aÞ < qmax, with some tiny value qmin is solved

in order to avoid the singularity in 1=r at the magnetic

FIG. 1. Profiles of source terms in

GYSELA and GT5D. (a) Radial struc-

ture and (b) Velocity space structure.
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axis.13 Conventionally, for the axisymmetric /00 mode, the

Dirichlet boundary condition is imposed at the edge

(q ¼ qmax), while the Dirichlet or Neumann conditions can

be chosen at the inner boundary (q ¼ qmin). The Neumann

boundary condition can be applied only with qmin 	 10�2,

which ensures that the poloidal dependence of the Jacobian

is negligible. Recently, we employed the scheme in Ref. 26

to avoid imposing any boundary condition at the inner

boundary (q ¼ qmin). In this scheme, the radial mesh width

is adjusted to eliminate the coefficients of the grids at the

inner boundary so that there is no inner boundary condition

needed. Here, the first radial grid point r0 is set as Dr=2

with the radial grid width Dr. The interpolation in the

Vlasov solver inside r0 ¼ Dr=2 is performed with the map-

ping from the polar to rectangular coordinates, where the

1=r singularity can be avoided in the rectangular coordinate

system.27 With this technique, the theta dependence of the

Jacobian is taken into account appropriately in GYSELA as

well as in GT5D, except for the linear GYSELA simula-

tions with Neumann boundary condition as described

below.

Three different choices for the inner boundary condi-

tions can be used in GYSELA. However, we employ the

new boundary condition (called the Null boundary condition

hereinafter) for all the simulation shown in this paper except

for linear simulations, which is closer to the natural bound-

ary condition at the magnetic axis in GT5D. In the linear

simulations, we used the Neumann boundary condition with

qmin ¼ 0:01 instead. The use of different boundary condi-

tions can be justified, since the axisymmetric /00 ¼ 0 is fil-

tered out in the linear simulations and is nothing to do with

the results. We solve the plasma region qmin < q < qmax,

with qmin ¼ 0 ðor 0:01 for linear simulationsÞ and qmax ¼ 1:0
for GYSELA and qmin ¼ 0 and qmax ¼ 1:0 for GT5D. Figure

2 shows examples of meshes in GYSELA and GT5D. For

simplicity, the low resolution cases with ðNr;NhÞ ¼ ð16; 32Þ
for GYSELA and ðNR;NZÞ ¼ ð16; 16Þ for GT5D are shown

here. As is easily seen from Fig. 2(a), the core region is well

resolved while the edge region may be under resolved in

GYSELA. Figure 2(a) corresponds to the Dirichlet or

Neumann boundary condition, and is no longer correct for

the Null boundary condition wherein the inner hole

disappears.

As summarized in Sec. III E, we choose the resolutions

in each code to be the same in the edge region q 
 0:9.

D. Normalization

In order to compare the values directly, we employ a

common normalization that is different from the ones used

in both codes. The normalizations used in this paper are sum-

marized in Table I, where the notation X̂ is used for the

dimensionless value of X.

The subscripts s represents the species. Here, we

employed the reference variables including a reference mass

m0 ¼ A0mp, a reference charge e0 ¼ Z0e, a reference mag-

netic field B0 on magnetic axis and a reference temperature

T0, where mp is the proton mass. The over-lined value means

the value evaluated with the volume averaged density and

temperature, and the value without it means the value at the

mid-minor radius qð¼ r=aÞ ¼ 0:5.

E. Simulation settings

Since there are many different benchmarking parame-

ters, it appears useful to summarize all relevant physical,

geometrical, and numerical settings for the different

benchmark cases (neoclassical, zonal flow, linear micro-

instabilities, nonlinear decaying turbulence and nonlinear

flux-driven turbulence).

Tables II and III show the relevant numerical and physi-

cal settings used in this paper. The numerical settings are

kept the same as in conventional runs in the spirit of present-

ing the consistency with previous publications. On the other

hand, we use the exactly same physical parameters. In the

FIG. 2. Mesh grids in GYSELA (a)

and GT5D (b). Although emphasized

by setting qmin ¼ 0:1 in figure (a), the

actual hole inside the inner boundary is

rather small with qmin ¼ 0:01 even

with the Neumann condition.

TABLE I. Comparisons of the normalizations in this work and the original

ones in each code.

Common normalization GYSELA GT5D

ms ¼ m0Âs ms ¼ m0Âs ms ¼ m0Âs

es ¼ Z0eẐs es ¼ Z0eẐs es ¼ Z0eẐs

l ¼ qt0 l̂ l ¼ qt0 l̂ l ¼ qt0 l̂

t ¼ t̂R0=vt0 t ¼ t̂=Xc0 t ¼ t̂R0=vt0

ns ¼ n0n̂s ns ¼ n0n̂s ns ¼ n0 n̂s

Ts ¼ T0T̂ s Ts ¼ T0T̂ s Ts ¼ T0 T̂ s

B ¼ B0B̂ B ¼ B0B̂ B ¼ B0B̂
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linear simulations, we increased the perpendicular grid reso-

lutions and decreased the time step size for n¼ 25 and 30

cases in both codes. Correspondingly, we increased the reso-

lution in toroidal direction in GYSELA while keeping the

wedge size. In contrast, we reduced the wedge size while

keeping the resolution in toroidal direction in GT5D.

IV. BENCHMARKS OF COLLISIONAL TRANSPORT
AND ZONAL FLOW DYNAMICS

Let us begin with the benchmarking of collisional trans-

port and poloidal flow dynamics, namely, neoclassical trans-

port in the axisymmetric limit and zonal flow dynamics. The

neoclassical results can be obtained at the drift kinetic limits

as shown in Ref. 17.

A. Neoclassical benchmarks

As for the neoclassical benchmarks, we compare the

neoclassical ion heat flux and the parallel flow relation at a

quasi-equilibrium state. The grid points used in GYSELA

and GT5D are ðNr;Nh;Nu;Nvk ;NlÞ ¼ ð256; 256; 16; 128; 16Þ
and ðNR;Nz;Nu;Nvk ;Nv?Þ ¼ ð200; 200; 1; 128; 16Þ, respec-

tively. The q�1
� � a=qti ¼ 150 is employed here, which is

carefully chosen to be equivalent for both codes (see the nor-

malization defined in Sec. III D). The profiles used in this

neoclassical computation are shown in Fig. 3. As explained

in Sec. III D, the normalized variables like vti; qti, and Ti are

the ones defined at the mid-minor radius at t¼ 0 in the

following.

The temperature and density gradients are set identical,

that is, gi ¼ Lti=Ln ¼ 1, wherein the ITG mode is stable. In

addition, we consider the plasma with large aspect-ratio with

��1
a ¼ R0=a ¼ 1:738=0:3477 ¼ 5, in order to mimic the large

aspect ratio assumption used in the neoclassical theory.

Here, �a represents the inverse aspect ratio. In this configura-

tion, we can focus on the neoclassical dynamics (without tur-

bulence) and direct comparisons against neoclassical theory

are possible. The low resolution in the toroidal direction

reflects the axisymmetrical nature of this test.

For the collisionality dependency of the ion thermal dif-

fusivity, we use a well-known formula derived by Chang-

Hinton28

vi=vi;GB ¼ 2
ffiffiffi
2
p

��K2;

K2 ¼
0:66þ 1:88�1=2 � 1:54�

1þ 1:03�
1=2
� þ 0:31��

 !
B2

0

B2

� �
f

þ 0:79

�1=2

0:74���
3=2

1þ 0:74���3=2

 !
B2

0

B2

� �
f

� B2

B2
0

� ��1

f

" #
;

(17)

with the gyro-Bohm coefficient vi;GB ¼ q2
tivti=R0 and

� ¼ r=R0. The factor 2
ffiffiffi
2
p

results from our definition of the

thermal velocity vti ¼
ffiffiffiffiffiffiffiffiffiffi
Ti=m

p
, whereas Chang-Hinton uses

vTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=m

p
. The effective collision frequency is given by

�� ¼ qR0=ð�3=2siivtiÞ. Figure 4 shows the collisionality

dependence and its comparison with Chang-Hinton’s theory.

The neoclassical ion heat diffusivity vNeo
i ¼ �QNeo

i =ðnirTiÞ
is defined using the heat flux driven by the curvature drift

QNeo
i �

ð
d3vf vD � rr

� �
f

: (18)

Concerning experimentally relevant plasmas where the

collisionality �� varies a lot in the radial direction, it is quite

important to verify the applicability of the codes for a wide

range of ��. We found good agreement for a wide range of

��, namely, banana and plateau regimes as shown in Fig. 4.

From the first order gyrokinetic theory, the radial force

balance equation can be derived

eiEr

Ti

¼ miXi

TiRBt

dw
dr
hUkif þ

dlnhniif
dr

þ 1� k ��; �ð Þ

 � dlnhTiif

dr
;

(19)

TABLE II. Numerical settings for the different benchmarking cases.

GYSELA ðNr ;Nh;Nu;Nvk ;NlÞ Wedge size Inner boundary Time step Collision Source/Sink

Linear ð256; 256� 512; 128� 256; 128; 16Þ 1 Neumann 10-40 OFF OFF

Neoclassical (256, 256, 16, 128, 16) 1/2 Null 10 ON OFF

Zonal flow (256, 256, 16, 128, 32) 1 Null 5 OFF OFF

Nonlinear (256, 256, 32, 128, 16) 1/6 Null 15 ON OFF

Flux driven (256, 256, 32, 128, 16) 1/6 Null 15 ON ON

GT5D ðNR;Nz;Nu;Nvk ;Nv? Þ Wedge size Boundary Time step Collision Source/Sink

Linear (200-400, 200-400, 16, 128, 16) 1/5–1/30 Natural 5-10 OFF OFF

Neoclassical (200, 200, 1, 128, 16) 1 Natural 5 ON OFF

Zonal flow (200, 200, 1, 128, 32) 1 Natural 5 OFF OFF

Nonlinear (200, 200, 32, 128, 16) 1/6 Natural 5 ON OFF

Flux driven (200, 200, 32, 128, 16) 1/6 Natural 5 ON ON

TABLE III. Physical parameters at the mid-minor radius q ¼ 0:5 for the dif-

ferent benchmarking cases.

R0=Lti R0=Ln s ¼ Ti=Te �� � q ŝ

Linear 6.92 2.22 1.0 0 0.18 1.4 0.78

Neoclassical 6.0 6.0 1.0 0.01-10 0.1 1.4 0.78

Zonal flow 10�7 10�7 1.0 0.18 1.4 0 0

Nonlinear 6.92 2.22 1.0 0.02 0.18 1.4 0.78

Flux driven 10.0 2.22 1.0 0.02 0.18 1.4 0.78
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where Er is the radial electric field, Uk the parallel mean

flow velocity, R ¼ R0 þ r cos h is the plasma major radius,

Bt the toroidal magnetic field, and w the poloidal flux. The

coefficient k is a coefficient of the neoclassical poloidal flow.

Based on Hinton’s theory,29 the coefficient (the H-H for-

mula) is

k ��; �ð Þ ¼
1:17� 0:35�

1=2
�

1þ 0:7�
1=2
�

� 2:1�2
��

3

 !�
1þ �2

��
3

� �
: (20)

Similar to Ref. 16, we compare the radial profile of the

electric field against the theoretical estimate. Since neoclas-

sical theory gives an estimate of the poloidal flow, we can

estimate the radial electric field based on the radial force bal-

ance equation Eq. (19). Figure 5 shows the radial electric

field computed from the electrostatic potential and from Eq.

(19) for �� ¼ 0:1 case. We drew two theoretical estimates

using profiles from GYSELA and GT5D, respectively. The

time evolution of profiles is very close with each other but

not exactly the same, especially when looking at the deriva-

tives like temperature gradients. We found good agreements

with the H-H formula in both codes, confirming that the

collision operators in both codes produce the appropriate

neoclassical poloidal flows.

B. Zonal flow dynamics

In the collisionless regime, the dynamics of the zonal

component /00 can be calculated analytically.30,31 Namely,

the time oscillatory components or geodesic acoustic modes

(GAMs) are decaying towards the residual poloidal flow. In

this section, we computed the time evolution of zonal flow

component /00 and compared its damping rate and residual

level against theory. The initial distribution function is given

by f ¼ feqð1þ e sin ð2pðr=2aÞÞÞ with a perturbation ampli-

tude e ¼ 10�5. As shown in the work by Sugama and

Watanabe, the time evolution of the zonal-flow potential is

given by

/00 tð Þ ¼ /00 1ð Þ þ /00 0ð Þ � /00 1ð Þ

 �

cos xGtð Þexp ctð Þ;
(21)

where /00ð1Þ ¼ /00ð0Þ=ð1þ 1:6q2=�1=2Þ is the residual

zonal flow derived by Rosenbluth-Hinton.30 xG and c are the

frequency and damping rate of GAM. Since the analytical

theories30,31 are derived in the local limit, we employ radi-

ally uniform profiles to eliminate global effects. The safety

FIG. 3. (a) Initial radial profiles of

density, temperature, safety factor, and

(b) temperature and density gradients

used for neoclassical benchmarks.

FIG. 4. The collisionality dependence of the ion heat diffusivity vi with the

radial average for r=a ¼ 0:4� 0:6. The dashed curve shows the analytical

estimation by Chang-Hinton’s formula.

FIG. 5. Radial profile of electric field Er against the theoretical estimate

EH�H
r at tR0=vti ¼ 130 from GYSELA and GT5D. Solid lines correspond to

GYSELA results and dashed lines correspond to GT5D results. Theoretical

values EH�H
r are estimated using the profiles of GYSELA and GT5D,

respectively.
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factor profile is given by qðqÞ ¼ 1:5 ð8q 2 ½0; 1�Þ, and the

aspect ratio is set as �a ¼ a=R0 ¼ 0:18. The density and tem-

perature profiles are almost constant with R0=LTi
¼ R0=

Ln ¼ 10�7. The grid points used in GYSELA and GT5D are

ðNr;Nh;Nu;Nvk ;NlÞ ¼ ð256; 256; 16; 128; 32Þ and ðNR;Nz;
Nu;Nvk ;Nv?Þ ¼ ð200; 200; 1; 128; 32Þ, respectively. The

q�1
� ¼ 150 is used here.

Figure 6 shows the time evolution of /00 mode at

q ¼ 0:5 and corresponding analytical results. They show

good agreements with the theoretical estimates of frequen-

cies, damping rates, and residual flow levels. Table IV shows

the estimates of frequencies and damping rates from simula-

tions and theories. From simulations, the GAM frequency is

estimated by FFT with the time window of 0 	 tR0=vti 	 50,

and the damping rate is estimated for the time window of

10 	 tR0=vti 	 20. The shorter time window for the damping

rate estimate is chosen to avoid the time-evolution of the

radial wavenumber kr of /00 mode.

For the wavenumber used to estimate the damping rate

analytically, we employed the same initial radial wavenum-

ber of /00 mode, that is, krqTi ¼ ð2p=2aÞ �
ffiffiffi
2
p

qti ¼
ffiffiffi
2
p

pq�
¼ 0:0296.

Difficulty of this benchmark lies in the time-evolution of kr,

which is largely affected by boundary conditions. As described

in Eq. (2.10) in Ref. 31, the damping rate of GAM depends on

kr. Thus, it is important to give the appropriate boundary condi-

tions for two codes. In addition, it would be helpful to investi-

gate the point near the mid-minor radius q ¼ 0:5, in order to

minimize the influence from the boundaries.

V. BENCHMARKS OF MICROINSTABILITY

To benchmark microinstability, we considered the

Cyclone-Base case (CBC),2 which is a standard benchmark

case for local df gyrokinetic simulations. Contrary to the

local df gyrokinetic simulations, we have to take into account

the plasma profiles. The initial plasma distribution function

is given by a local Maxwellian. The density ni, temperature

Ti, safety factor q, and the magnetic field B are given by the

following form:

ni qð Þ ¼ n0 exp �Dn

Ln
tanh

q� 0:5

Dn=a

� 	
 �
; (22)

Ti qð Þ ¼ Ti0 exp �DTi

LTi
tanh

q� 0:5

DTi=a

� 	
 �
; (23)

q qð Þ ¼ 0:854þ 2:184q2; (24)

B ¼ B0R0

R

r

qR0

eh þ eu


 �
; (25)

where q ¼ r=a is the normalized minor radius, B0 is the

magnetic field at the magnetic axis, and eh and eu are poloi-

dal and toroidal unit vectors. We choose Dn=a ¼ 0:3 and

DTi
=a ¼ 0:3 for density and temperature profiles. Figure 7

shows the initial radial profile of ion temperature Ti, density

ni, and safety factor q.

The electron and ion temperature profiles are the same

so that s ¼ Ti=Te ¼ 1 everywhere. At the mid-minor radius

q ¼ 0:5, the profile gives the CBC parameters as R0=LTi

¼ 6:92; R0=Ln ¼ 2:22; s ¼ Ti=Te ¼ 1:0, q¼ 1.4, and ŝ
¼ 0:78. Although the normalized Larmor radius for original

DIII-D shot 8149932 is given by q�1
� ¼ 180 with R ¼ 1:71 m

and a ¼ 0:625 m, we consider q�1
� ¼ 150 with R ¼ 1:01 m

and a ¼ 0:365 m to reduce the computational costs.

A. Linear benchmarks

As for linear benchmarks, we compared the linear growth

rate and real frequency of ITG modes. As discussed in Ref. 13,

the separation between linear and non-linear terms is not possi-

ble in a full-F code. In order to avoid the coupling of different

toroidal modes, we filtered out all the toroidal modes except the

initial one. The filtering is performed just after solving the

quasi-neutrality equation. For example, Fig. 8 contains 6 differ-

ent linear simulations initialized with n ¼ 5; 10; 15; 20; 25; 30.

The corresponding poloidal mode number is computed by using

the relationship khqti ¼ nq0q�a=r0 with r0 ¼ a=2 and

q0 ¼ qðr0Þ. Since the high toroidal mode number is equivalent

to a tiny structure both in toroidal and poloidal directions, we

doubled the numbers of grid points both in toroidal and poloidal

directions for the simulations with n � 25.

Figure 8 shows the linear growth rate and real frequency

of ITG mode computed at the mid-minor radius q ¼ 0:5
from 6 different runs. Both the linear growth rate and real

frequency show quantitative agreements between GYSELA

and GT5D.

FIG. 6. The time evolution of the normalized E�B flows in Rosenbluth-

Hinton test. The residual value is compared with Rosenbluth-Hinton theory.

The GAM frequencies and damping rates are compared with theoretical pre-

dictions by Sugama and Watanabe.

TABLE IV. Estimates of frequencies and damping rates from simulations

and the theories.30,31

cR0=vti xGR0=vti

GYSELA �0.031 2.644

GT5D �0.036 2.643

Sugama-Watanabe �0.039 2.690
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The global structures of the linear eigenmodes have also

been compared. Figure 9 shows the global mode structure of

the linear eigenmode with n¼ 15. A similar shape of global

eigenmode is found, including the radial peak position and

the ballooning angle.

B. Nonlinear decaying turbulence

In this section, we present the benchmarks for nonlinear

decaying turbulence, i.e., without sink and source terms.

Weak collision with �� 
 0:01 is added in order to avoid

unphysical solution coming from the absence of diffusion in

the vk direction. In the collisionless limit, the fine structures

in the vk direction generated by parallel phase mixing will

reach the grid scale at a recurrence time. Therefore, the solu-

tion will be unphysical after the recurrence time in the colli-

sionless limit.

The initial condition is given by

�Fs ¼ �Fs;eq 1þ e
Xnmax

n¼1

XmmaxðnÞ

m¼mminðnÞ
cos mhþ nuþ dmnð Þ

0
@

1
A;

(26)

where mminðnÞ ¼ max½1; nq� dm� and mmaxðnÞ ¼ min½mmax;
nqþ dm�, with nmax ¼ 18; mmax ¼ 70, and dm ¼ 8. The per-

turbed amplitude is set as e ¼ 10�6. Since the decaying tur-

bulence simulations are sensitive to initial conditions, we use

exactly the same initial conditions for the two codes. The

grid points used in GYSELA and GT5D are ðNr;Nh;Nu;
Nvk ;NlÞ ¼ ð256; 256; 32; 128; 16Þ and ðNR;Nz;Nu;Nvk ;Nv?Þ
¼ ð200; 200; 32; 128; 16Þ, respectively. In order to save the

computational cost, we employed one sixth of a torus

based on convergence tests.33 The time step size is set as

DtXi ¼ 15 in GYSELA and 5 in GT5D.

The time evolution of the turbulent heat diffusivity vi

and the normalized temperature gradient R0=Lti is plotted in

Fig. 10. The turbulent ion heat diffusivity vi ¼ �Qi=ðnirTiÞ
is defined using the heat flux driven by E�B drift velocity

QTurb
i �

ð
d3vf vE�B � rr

� �
f

: (27)

FIG. 7. (a) Initial radial profiles of

density, temperature, safety factor, and

(b) temperature and density gradients

based on Cyclone-base case.

FIG. 8. Linear growth rate and real frequency obtained by GYSELA (blue)

and GT5D (red).

FIG. 9. Linear eigen functions of the

most unstable mode with n¼ 15

obtained by (a) GYSELA and (b)

GT5D.
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As shown in Fig. 10(a), the time scale for the initial transient

and final steady phase shows good agreements in GYSELA

and GT5D. Although the initial saturation level is not exactly

the same, the asymptotic state transport levels are close to

zero in both codes, implying that turbulence is almost

quenched. Because of the chaotic nature of plasma turbu-

lence, a perfect agreement in time evolution cannot be

expected after the initial transient phase, that is, the turbulent

phase. Thus, we compare well-defined properties like the

critical temperature gradient and the relaxation process

toward the asymptotic state. The steady state temperature

gradients are R0=Lti 
 5:5 in Fig. 10(b), which is consistent

with the effective critical gradients found in Ref. 2. The non-

linear threshold value is confirmed from Fig. 11, which

shows the temperature gradient and turbulent transport val-

ues at successive time points during profile relaxation. Both

codes show a relaxation toward the temperature gradient

R0=Lti 
 5:5, where the turbulent transport is almost

quenched. Figure 12 shows the time evolution of the root

mean square of the electrostatic potential ei/=Ti, where

zonal components, GAM components and other contribu-

tions are separately plotted. Here, we found that the time

evolutions of zonal components are roughly the same and

dominate turbulence in the asymptotic state. We can also

confirm that the behavior of the turbulent components are

quite similar, both in the linear phase with 50 	 tvti=R0 	 70

and the asymptotic state phase with tvti=R0 � 160.

Figure 13 shows contours of the n 6¼ 0 components of

the electrostatic potential ei/=Ti in the decaying phase. The

amplitude of the normalized potential is about ei/=Ti 
 0:03

for both codes. Since the formation of the mean electric field

has a large impact on transport properties, we analyzed the

spatio-temporal evolutions of the radial electric field Er and

turbulent ion heat flux vturb
i as shown in Fig. 14. As expected,

the heat transport is quenched almost everywhere in both

codes after tvti=R0 � 160. The quench of turbulent heat

transport is presumably the consequence of the turbulence

regularization by the radial electric field shear found in Figs.

14(c) and 14(f). The temperature gradient is kept almost con-

stant with R0=Lti 
 5:5 after the initial transient phase [see

Figs. 14(b) and 14(e)].

FIG. 10. Time evolution of the turbu-

lent heat diffusivity vi (a) and normal-

ized ion temperature gradient R0=Lti

(b) averaged for 0:45 	 q 	 0:55. The

heat flux level converges to the same

nonlinear critical gradient R0=Lti


 5:5, where the ion heat transport is

almost quenched.

FIG. 11. Time evolution of the turbulent heat diffusivity vi and normalized

ion temperature gradient R0=Lti averaged for 0:45 	 q 	 0:55. The heat flux

level converges to the same nonlinear critical gradient R0=Lti 
 5:5, where

the ion heat transport is almost quenched.

FIG. 12. Time evolutions of the root mean square of the electrostatic poten-

tial ei/=Ti at the mid-minor radius q ¼ 0:5. The zonal component /0;0 is

represented by the line with squares, the GAM component /1;0 is repre-

sented by the dotted line and the summation of other modes
P

m;n /m;n are

plotted with lines.
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In order to compare the global mode structure quantita-

tively, we computed the radial and time correlation functions

of electrostatic potential fluctuations ~/ ¼ /� /n¼0. We

employed the following definition for the correlation function:

C/ tlag; rlagð Þ ¼

ð
dt

ð
drh~/ tþ tlag; r þ rlag;u; h ¼ 0

� �~/ t; r;u; h ¼ 0ð Þiuð
dt

ð
drh~/2

t; r;u; h ¼ 0ð Þiu
; (28)

FIG. 13. Contours for n 6¼ 0 components of the electrostatic potential at tvti=R0 ¼ 100 from (a) GYSELA and (b) GT5D.

FIG. 14. Spatio-temporal evolutions of the ion turbulent heat diffusivity vi=ðq2
tivti=R0Þ [(a) and (d)], the normalized temperature gradient R0=Lti [(b) and (e)]

and the radial electric field shear dEr=dr [(c) and (f)] in GYSELA (upper row) and GT5D (lower row).
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where hiu stands for the average in toroidal angle u. As

shown in Fig. 15, both codes show the quite similar correla-

tion length around Drlag=qti 
 6 and correlation time around

Dtlagvti=R0 
 2.

VI. BENCHMARKS FOR FLUX DRIVEN SIMULATIONS

In the flux driven simulations, we employ basically the

same physical parameters as for decaying turbulence simula-

tion except for a larger temperature gradient, R0=Lti ¼ 10 at

the mid minor radius q ¼ 0:5. The input power is set to

2MW, whose radial and velocity space profiles are given in

Sec. II C. The Krook-type sink operator is applied in the

buffer region near the edge as described in Sec. II D. The

grid points used in GYSELA and GT5D are ðNr;Nh;Nu;
Nvk ;NlÞ ¼ ð256; 256; 32; 128; 16Þ and ðNR;Nz;Nu;Nvk ;Nv?Þ
¼ ð200; 200; 32; 128; 16Þ, respectively. As well as the non-

linear decaying turbulence case, we employed the one sixth

wedge torus model. The time step size is set as DtXi ¼ 10 in

GYSELA and 5 in GT5D. The gradient of initial ion temper-

ature profile R0=Lti ¼ 10 is above the linear and nonlinear

thresholds with R0=Lti 
 4:5 and R0=Lti 
 6:0, respectively.

The nonlinear threshold value can be identified from Fig. 11,

where both GYSELA and GT5D show similar values,

namely, R0=Lti 
 5:5. In this section, we plot the turbulent

ion heat flux Qi rather than the heat diffusivity vi in order to

differentiate the time evolution of turbulent transport and

temperature gradient. As found in Eq. (27), a heat diffusivity

vi is affected by both heat flux Qi and temperature gradient

R0=Lti. In flux driven simulations, these quantities evolve

self-consistently and exhibit avalanche-like properties. In

addition, the time-averaged temperature profile spontane-

ously corrugates leading to zonal flows and the interplay

between zonal flows and avalanches gives rise to the so-

called E�B staircase.4,5,34,35

Figure 16 shows the spatio-temporal evolutions of the

ion heat flux Qi, the normalized ion temperature gradient

R0=Lti and the radial electric field shear dEr=dr. In a source

free region (q ¼ 0:5–0:9), the turbulent heat transport shows

the avalanche-like feature in both codes [see Figs. 16(a) and

16(d)]. Correspondingly, the ion temperature gradient profile

in Figs. 16(b) and 16(e) exhibits the near threshold value

around R0=Lti 
 6. As found in the time evolution of heat

diffusivity [Figs. 16(a) and 16(d)] and radial electric field

shear [Figs. 16(c) and 16(f)], there are inward and outward

avalanches depending on the sign of the electric field shear.

In the positive shear region with q > 0:6 avalanches propa-

gate outward, while they propagate inward in the negative

shear region with q < 0:6. Both codes agree well on the

directions of avalanche propagation and their relationship

with the radial electric field shear. Several discussions on

this issue are found in Refs. 16, 36, and 37.

Figure 17 shows (a) the steady state profile of the turbu-

lent ion heat flux Qi=½niTivtiq2
ti=a2�, (b) the normalized ion

temperature gradient R0=Lti, (c) the radial electric field

eiR0Er=Ti, and (d) the parallel flow velocity Uk=vti. The time

average is taken over tvti=R0 ¼ 300–750. First of all, we find

quite similar radial profiles of the turbulent heat flux.

Although there are some differences in the inner region with

0 	 q 	 0:5, the temperature gradient in this region is close

to the marginal state [Fig. 17(b)] where the transport level

should be very sensitive to the temperature gradient. In the

marginal state, it has been often reported5,34 that the temper-

ature gradient profile, poloidal flow profile, and heat trans-

port interplay via meso-scale structure organization. In this

regime, a difference in the temperature gradient profile cor-

rugations easily propagates to a transport level. Another

important aspect is that the temperature gradient is kept

almost constant in this region, which is close to the critical

gradient level with R0=Lti 
 6. The constrained profiles by

the nonlinear threshold as in Fig. 17(b) and the staircase

meso-scale organization are important characteristics of full-

F simulations. As shown in Fig. 17(c), the radial electric field

determined by radial force balance shows a global V-shape

with a negative peak around the mid minor radius which is

consistent with the discussions in Ref. 16. The radial electric

field then determines the directions for avalanche propaga-

tion. The parallel flow velocity Uk in Fig. 17(d) represents

the intrinsic rotation. Although the levels of rotation speeds

are not exactly the same, both codes show co-rotation in the

core region with q ¼ r=a 
 0:2 and counter-rotation in the

outer region with 0:5 	 q 	 1:0. The larger difference in

the core region could be explained by the difference in the

inner boundary condition, the Null (resp. natural) boundary

condition in GYSELA (resp. GT5D). Another important dif-

ference is the source term, where GYSELA imposes the

FIG. 15. (a) Temporal and (b) radial

self-correlation functions computed

from n 6¼ 0 components of electrostatic

potential ei/=Ti for GYSELA and

GT5D, during the time period of

tvti=R0 ¼ 160� 180.
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FIG. 17. The quasi-steady state radial

profiles (time average over tvti=R0

¼ 300–750) of (a) the ion energy flux

Qi, (b) the normalized ion temperature

gradient R0=Lti, (c) the radial electric

field Er, and (d) the parallel flow veloc-

ity Uk.

FIG. 16. Spatio-temporal evolutions of the ion turbulent heat flux Qi=½niTivtiq2
ti=a2� [(a) and (d)], the normalized temperature gradient R0=Lti [(b) and (e)] and

the radial electric field shear dEr=dr=ðvtiB0=qtiÞ [(c) and (f)] in GYSELA (upper row) and GT5D (lower row).
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momentum input in addition to the energy input (see discus-

sions in Sec. II C for detail). It should also be noted that the

higher resolution of GYSELA near core could have some

impacts (the differences in the boundaries are detailed in

Sec. III C). In the consequence, the net rotation, Uk; net

¼
Ð

drrUk=
Ð

drr, is slightly different, where GYSELA gives

a large negative net rotation Uk; net=vti 
 �0:0069 and GT5D

gives a small negative net rotation Uk; net=vti 
 �0:0003.

The dynamics of rotation will be detailed with respect to the

momentum transport processes in a separate publication.

Finally, statistical properties are assessed for 300 	 tvti=
R0 	 750 with a radial average in the source free region

(0:5 	 q 	 0:8). Figures 18(a) and 18(b) show the frequency

Fourier spectrum of ion turbulent energy flux Qi=QGB and

normalized temperature gradient R0=Lti, with the gyro-Bohm

coefficient QGB ¼ niTivtiq2
ti=a2. The signal is Fourier trans-

formed first at each radial point and then radially averaged.

As discussed in Ref. 38, the frequency Fourier spectrum

exhibits a 1/f decay at intermediate frequencies, which are

found in both codes [See Fig. 18(a)]. In addition, there

appears to be a transition from 1/f to 1/f3 decay at high fre-

quencies. The transition frequency which may be interpreted

as the transition from avalanche-like dynamics to vortex

dynamics is the same in the two codes.

A 1/f decay is often considered as a typical feature of a

self-organized criticality (SOC) like behavior, similar to

the sand pile automaton model by Bak et al.39 This agree-

ment in the statistical properties indicates that both codes

exhibit a SOC-like behavior, which stems from the nonlin-

ear interactions between the background profile and the

plasma turbulence, which is the heart of full-F gyrokinetic

simulations. These findings are non-trivial since they

confirm that this SOC-like behavior is robust and not

dependent on numerics.

The burst characteristics can also be extracted from the

probability density function (PDF) shown in Figs. 18(c) and

18(d). The PDF is obtained from the histogram with an

appropriate normalization so that the integral over the range

is equal to one. Although the PDF of normalized temperature

gradient R0=Lti in Fig. 18(d) shows the Gaussian-like charac-

teristic, the heat flux Qi in Fig. 18(c) shows the long-tails in

both codes indicating the non-Gaussian transport phenom-

ena. It should still be noted that the heat flux stems from

cross-correlated fluctuating quantities (temperature and

E�B velocity) so that it can show non-Gaussian PDF as

long as both temperature and E�B velocity exhibit

Gaussian PDF.40

VII. SUMMARY

In this work, we have performed benchmark tests of

global ITG turbulence with a fixed heat source. For this pur-

pose, we employed two different full-F gyrokinetic codes

GYSELA and GT5D. The successful benchmark of full-F

global gyrokinetic codes gives confidence in the transport

phenomena described by full-F models in the presence of a

fixed heat source. Since the flux-driven ITG turbulence

involves a wide range of physics, i.e., turbulence, neoclassi-

cal and their interplay, it is not easy to perform benchmark-

ing straight away for a flux driven case. Thus, we first

decomposed the problem into small subsets that correspond

to idealized physical situations. Basically, the equilibrium

poloidal flow is described by the neoclassical physics and

the time evolution of turbulence is described by the gyroki-

netic model. For the benchmarking of neoclassical physics,

FIG. 18. The statistical analysis of the

turbulent heat flux Qi and R0=Lti which

are evaluated for 300 	 tvti=R0 	 750

with radial average in source free

region (0:5 	 q 	 0:8). The frequency

spectra of (a) Qi and (b) R0=Lti, and

the probability density function (PDF)

of (c) Qi and (d) R0=Lti are shown.
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we choose the plasma parameters such that ITG modes are

stable. For the benchmarking of turbulence, we investigated

the linear ITG modes and decaying ITG turbulence in the

weak collisional regime. After getting a reasonable agree-

ment, we carried out a flux-driven benchmark with the

appropriate numerical and physical settings.

First, we carried out the benchmark of neoclassical the-

ory and zonal flow damping tests. Neoclassical theory pre-

dicts the ion heat transport level and the mean poloidal

velocity. In order to compare the simulation results against

theory, we carried out a collisionality scan for a wide range

of �� ¼ 0:01� 10:0 and confirmed that both codes give the

ion heat transport predicted by theory. In combination with

the radial force balance relation, we confirmed that the poloi-

dal velocity agrees well with the theoretical estimate. The

short and long time behaviors of the zonal flows are also

compared against theory. For short time behavior, it is con-

firmed that the GAM frequency and the damping rate agree

with the theoretical estimate. The long time behavior called

the residual zonal flow is also investigated and compared

with the Rosenbluth-Hinton theory. Both codes show the

convergence of the zonal flow velocity to the level predicted

by theory. Thanks to the benchmarking above, we got ready

to carry out the long-time flux-driven simulations with colli-

sions. The long time zonal flow behavior is particularly

important since the flux-driven simulations require robust

long-time behaviors.

Second, we carried out benchmarks for linear ITG

modes and nonlinear decaying ITG turbulence to test the

gyrokinetic model. In the linear benchmark, we found good

agreements for the growth rates and real frequencies. Also,

we found a similar shape of the global eigenmodes. The

analysis for the nonlinear decaying ITG turbulence shows

good agreements in the critical temperature gradients.

Although pure collisionless situations would be preferable, a

weak collision has been added in order to avoid unphysical

solutions due to the absence of diffusion in vk direction,

whose impact on the turbulence is confirmed to be negligible

in the decaying turbulence case. It was also found that the

radial structures of the zonal flow and the temperature gradi-

ent have quite similar features. In the asymptotic state, turbu-

lence heat transport is almost quenched and the temperature

gradient is below the critical level.

Finally, a benchmarking of long-time flux-driven simu-

lations has been performed. As described above, this kind of

simulation includes every single piece of physics bench-

marked above. The spatio-temporal evolutions of ion turbu-

lent heat flux showed an avalanche-like transport in both

codes. Correspondingly, we found avalanche-like features in

the temperature gradient and electric field shear. We also

found an ion temperature profile constrained by the nonlinear

threshold of Lti value. In addition, we compared the radial

electric field to find a global V-shape with a negative peak

around the mid-minor radius. Although the amplitude is not

the same, we found co-current rotation near the core and

counter-current rotation near the edge in both codes. We

found similar statistical properties, like 1/f decay and its tran-

sition to 1/f 3 decay in both codes. These features can be con-

sidered as indicative of a self-organized criticality (SOC)

behavior, which are the heart of the full-F flux driven gyroki-

netic simulations. These simulations confirm that this SOC-

like behavior is robust and independent of numerics.

In addition to the presented comparisons, it may be use-

ful to report the difficulties we encountered in this bench-

marking work. Indeed, there are mainly three important

points: boundary conditions for the electrostatic potential,

initial conditions, and sink terms.

1. Boundary conditions are critical in the Rosenbluth-Hinton

test (see Sec. IV B). The radial wavenumber kr of zonal

mode can evolve in time which results in a time evolution

of GAM damping rate [see Eq. (2.10) in Ref. 31 for the

dependence of GAM damping rate on kr]. Since boundary

conditions have large impacts on the time evolution of kr,

it is important to give the appropriate boundary conditions

for the two codes.

2. Nonlinear simulations are sensitive to initial conditions.

Especially, the amplitude and time behavior of avalanche-

like transport in flux-driven simulations are chaotic. This

complex dynamics is sensitive to initial conditions.33 In

addition, GYSELA and GT5D employ different numeri-

cal schemes so that we cannot expect an exact agreement

in the spatio-temporal turbulence behavior. Nevertheless,

one may expect the system to be insensitive to initial con-

ditions after several confinement time, but it is generally

too costly and cannot be tackled in the present study.

Rather, we compare the statistical properties like PDF and

frequency spectra, for which we can expect an agreement

as discussed in Ref. 33. This is the reason why it is impor-

tant to analyse statistical properties in flux-driven simula-

tion benchmarking. The decaying turbulence is also

largely affected by initial conditions, where we compare

well-defined properties like the critical temperature gradi-

ent and the relaxation process toward the asymptotic

state.

3. The sink model implementation is also a matter.

Comparing two different flux-driven simulations with dif-

fusion or Krook operators by GYSELA, it turned out that

these operators give different toroidal flow and radial

electric field profiles. In fact, a Krook-type sink term

works not only as a heat sink but also work as a momen-

tum source (sink) term when a negative (positive)

momentum flux is absorbed. Therefore, using the same

sink operator is also quite important to get the similar

toroidal flow profile. As a matter of fact, much effort is

now devoted to the development of physically more rele-

vant boundaries, including the modeling of the open field

line region (Scrape-Off Layer).23

As is clear, all the points presented above should be

appropriately treated for the benchmark of flux-driven

simulations.
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APPENDIX: COMPARISON OF NUMERICAL COSTS

It is good to know the difference in numerical costs of

these two codes to understand more about the algorithm effi-

ciencies, i.e., Semi-Lagrangian scheme in GYSELA and

Finite-Difference scheme in GT5D. In order to consider the

efficiency from the view point of time-to-solution, we

employ Lattice Update Per Second (LUPS) as a metric rather

than Floating-point Operations Per Second (FLOPS). LUPS

is computed by the number of grids divided by an elapsed

time for updating each grid point.

Both GYSELA and GT5D codes are highly parallelized

and based on a hybrid MPI/OpenMP programming

model.41,42 The parallelization strategies are to some extent

similar where both codes define a MPI communicator for

each value of the magnetic moment l. This strategy reflects

the underlying physics that the magnetic moment l is a

parameter in Vlasov equation if we dismissed the collisional

effects [see Eqs. (1)–(3)]. Thus, the number of sub-domains

in l direction pl is equivalent to Nl the mesh size of l direc-

tion. Inside each l communicator, the two dimensional

domain decomposition is applied to the poloidal plane

ðNx;NyÞ. If we call the number of sub-domains in (x, y)

directions ðpx; pyÞ, the original domain ðNx;NyÞ is decom-

posed into a sub-domain sized ðNx=px;Ny=pyÞ. Here, (x, y)

represents (r, h) in GYSELA and (R, Z) in GT5D as

described in Sec. III C. The total number of MPI processes

can be written as NMPI ¼ px � py � Nl.

To investigate the strong scaling, we scan with the num-

ber of sub-domains ranged ðpr; phÞ ¼ ð1–4; 1–4Þ in

GYSELA and ðpR; pZÞ ¼ ð2–8; 2–8Þ in GT5D. The sub-

domain in l direction and the number of threads ðNl;NthreadÞ
are kept constant with ð16; 18Þ in GYSELA and ð16; 4Þ in

GT5D. As a testbed, we employ the Intel Xeon Processor

E5–2697 V443 (Broadwell family) equipped with 18 cores.

Hyperthreading is switched off in this test. The different con-

figuration of GYSELA and GT5D in the number of cores per

CPU is coming from the measured performance of GT5D

(GYSELA uses 18 cores per CPU, while GT5D uses 16

cores per CPU). It is also possible to use the same paralleli-

zation in GT5D as GYSELA, but we found a slightly higher

performance with 16 cores per CPU (more MPI processes

and less OpenMP threads). This can be partially explained

by a higher cache locality with the MPI-domain decomposi-

tion inside a CPU. It should be noted that our codes have

been optimized for Sandy Bridge architecture, not for

Broadwell architecture which is used in this study.

Therefore, the results shown here cannot be considered as

fully optimized, but moderately optimized. Figure 19 shows

the strong and weak scaling of both codes obtained from the

flux-driven simulations with q�1
� ¼ 100 and q�1

� ¼ 150 on

the Marconi supercomputer.44 The input power is set as

1.33 MW for q�1
� ¼ 100 and 2 MW for q�1

� ¼ 150, which

also scales with plasma size in order to keep the plasma

parameter as close as possible. The q�1
� ¼ 100 case is

resolved with a mesh size ðNx;Ny;Nu;Nvk ;NlÞ ¼ ð128

�128� 32� 128� 16Þ and the q�1
� ¼ 150 case is resolved

with a mesh ðNx;Ny;Nu;Nvk ;Nv?Þ ¼ ð256� 256� 32� 128

�16Þ. The time step size is set as DtXi ¼ 10 in GYSELA

and 5 in GT5D for each case. The elapsed time for Lattice

Update is measured by the total elapsed time excluding diag-

nostics and initialization divided by the number of iterations.

In GYSELA, the 4D advection solver occupies about

65% of the overall execution cost, which consists of the 2D

(r, h)þ 1D ðvkÞþ 1D ðuÞ interpolation (50%) and the trans-

pose communication (15%). The most time-consuming part

of the rest is the collision operator which corresponds to

about 20% of the total cost. For the interpolation, GYSELA

employs the cubic spline interpolation method, which has a

good conservation property at the cost of non-locality. Due

to the non-local feature, a single MPI process should have an

access to all the values of a distribution function f in a

dimension where the interpolation takes place. Therefore, for

the 2D interpolation in (r, h) directions, a transpose commu-

nication is required to construct the original (r, h) domain

from each sub-domain in (r, h) directions kept by a single

MPI process.

In GT5D, the iterative solver for linear advection term

costs about 90% of the total elapsed time, which is solved

implicitly with the 4th-order 4D Finite-Difference scheme.

The collision operator costs about 5% of the total cost. The

asymmetric block diagonal matrix is solved with the general-

ized conjugate residual (GCR) method. Since the matrix

solver requires several iterations, this is the most time

consuming part, which consists of the 4th-order 4D

FIG. 19. Mega Lattice Update Per Seconds (MLUPS) of both codes. For

problem sizes, we employed the small one for q�1
� ¼ 100 with

ðNx;Ny;Nu;Nvk ;NlÞ ¼ ð128� 128� 32� 128� 16Þ and the middle one

for q�1
� ¼ 150 with ðNx;Ny;Nu;Nvk ;NlÞ ¼ ð256� 256� 32� 128� 16Þ.

For a parallelization configuration, we employ ðpr ; ph;Nl;NthreadÞ
¼ ð1–4; 1–4; 16; 18Þ for GYSELA and ðpR; pZ ;Nl;NthreadÞ ¼ ð2–8; 2–8;
16; 4Þ for GT5D. One node includes two Broadwell CPUs.
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Finite-Difference computation (35%) and the vector compu-

tations (55%) such as DAXPY and DDOT. The Finite-

Difference part includes the halo-communication (5%) and

the vector computation part includes the inter-node all-

reduce communication (5%).

As shown in Fig. 19, it is found that GYSELA is faster

than GT5D about 30%–40% for small number of nodes and

15% for 128 nodes. This represents the better overall perfor-

mance of GYSELA and better scalability of GT5D. The better

performance of GYSELA can be interpreted as higher compu-

tational intensity of the advection solver, which could be an

important advantage for Semi-Lagrangian method. Higher

computational intensity could be especially important on the

recent architectures like Broadwell which have a high compu-

tational performance and a relatively low memory bandwidth.

The GT5D weak scaling from q�1
� ¼ 100 to q�1

� ¼ 150 shows

a super scaling, which stems from the difference in the number

of iterations required by GCR method. It should be noted that

the number of iterations cannot be fixed and different plasma

parameters result in different numbers of iterations. The better

scalability of GT5D can be explained by communication-

computation overlapping based on OpenMP42 (allocating the

master thread to communication and others to computation),

which is applied to hide the halo-communication cost in the

Finite-Difference part. In order to reduce the inter-node all-

reduce communication cost, communication avoiding algo-

rithms45 could be applied in the future. Similar strategy for

communication-computation overlapping could be applied to

GYSELA, by pipelining the advection part to overlap the small

chunks of transpose communications and advection

computations.
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