

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

	Development and application of a method for discriminating the
Title	influence of radon progenies in air from aerial radiation monitoring
	data
Author(a)	Hirouchi Jun, Nishizawa Yukiyasu, Urabe Yoshimi,
Author(s)	Shimada Kazumasa, Sanada Yukihisa, Munakata Masahiro
Citation	Applied Radiation and Isotopes,141,p.122-129
Text Version	Accepted Manuscript
URL	https://jopss.jaea.go.jp/search/servlet/search?5061336
DOI	https://doi.org/10.1016/j.apradiso.2018.08.027
	© 2018. This manuscript version is made available under the
	CC-BY-NC-ND 4.0 license
Dialet	http://creativecommons.org/licenses/by-nc-nd/4.0/.
Right	This is the accepted manuscript version. The formal published
	version is available at
	https://doi.org/10.1016/j.apradiso.2018.08.027.

1 Title

- Development and application of a method for discriminating the influence of radon progenies in air from aerial
 radiation monitoring data
- 4
- 5 Author names and affiliations
- 6 Jun Hirouchi ^{a,*}, Yukiyasu Nishizawa ^b, Yoshimi Urabe ^c, Kazumasa Shimada ^a, Yukihisa Sanada ^d, Masahiro
- 7 Munakata ^a
- 8 ^a Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun,
- 9 Ibaraki 3191195, Japan
- 10 ^b OYO Corporation, 1-66-22 Miyahara-cho, Kita-ku, Sitama-shi, Saitama, 3310812, Japan.
- 11 °NESI Inc., 38 Shinko-cho, Hitachinaka, Ibaraki, 3120005, Japan.
- 12 ^d Fukushima Remote Monitoring Group, Fukushima Environmental Safety Center, Japan Atomic Energy
- 13 Agency, 45-169 Sukakeba, Kaihama-aza, Haramachi-ku, Minami-soma, 9750036, Japan.

14

15 *Corresponding author, E-mail address: hirouchi.jun@jaea.go.jp (Jun Hirouchi)

17 Abstract

The influence of gamma-rays from natural nuclides (particularly the radon progenies, ²¹⁴Pb and ²¹⁴Bi) 18 19 must be excluded from aerial radiation monitoring (ARM) data to accurately estimate the deposition of artificial 20 radionuclides. A method for discriminating the influence of the radon progenies in air from the ARM data was 21 developed. Two types of detectors with different crystal sizes were installed in a helicopter. The gamma-ray 22 responses of these detectors were simulated using EGS5. The influence of the radon progenies in air was 23 excluded using the relation between the count rates of six NaI (Tl) detectors and a LaBr3 detector. The 24 discrimination method was applied to the ARM data obtained from around the Sendai and Fukushima Dai-ichi 25 Nuclear Power Stations. To verify the validity of the discrimination method, the dose rate estimated from the 26 ARM data was compared with the dose rate measured using a NaI survey meter at a height of 1 m above the 27 ground. The application of the discrimination method improved the dose rate estimation, showing the validity 28 of the discrimination method. 29

31 Aerial radiation monitoring, NaI(Tl) detector, LaBr₃ detector, Radon progeny

³⁰ Keywords

33 1. Introduction

34	Aerial radiation monitoring (ARM) using a helicopter is one of the most effective methods for
35	measuring the distribution of radioactivity deposited after nuclear accidents. In Japan, ARM was started as a
36	national project to map the ground surface distribution of radiocesium after the Fukushima Dai-ichi Nuclear
37	Power Station (NPS) accident (Lyons and Colton, 2012; Blumenthal, 2012). The ARM data provided basic
38	information for the planning of evacuation zones and assessing the consequences and emergency
39	countermeasures after the accident.
40	The ARM system uses detectors to measure the gamma-rays from the ground and air (Fig. 1). The
41	sources of gamma-rays can be categorized into artificial and natural radionuclides. The spectral information
42	obtained with the detectors used in the ARM system is difficult to distinguish the gamma-ray sources because
43	²¹⁴ Bi, which belongs to the U-series, exhibits similar gamma-ray energy to that of radioactive cesium (¹³⁴ Cs and
44	¹³⁷ Cs). Therefore, gamma-rays from natural radionuclides interfere with the estimates of the amounts of
45	deposited artificial radionuclides. Hendricks and Riedhauser (1999) and Sanada et al. (2014) divided the
46	measured gamma ray spectra into two parts, artificial and natural indexes, to estimate the dose rate of natural
47	and artificial radionuclides. The estimated dose rate of natural radionuclides was generally in agreement with
48	the in-situ measured dose rate, showing the validity of the discriminating method. However, the estimated dose
49	rate of the artificial radionuclides increased with time in some places, whereas it declined with time in other
50	places because of physical decay. The inexplicable change over time can be caused by the influence of the radon
51	progenies, ²¹⁴ Pb and ²¹⁴ Bi. The air concentration of the radon progenies can range from approximately 0 to more

52	than 20 Bq m^{-3} in Japan because the air concentration depends on the height of the atmospheric mixed layer
53	and the origin of air, i.e., continental or marine origin (Shimo et al., 2007). In addition, the radon concentration
54	in air is different among different countries and ranges from 7 to 184 Bq m ⁻³ (Zielinski and Chambers, 2008).
55	Therefore, the influence of the radon progenies in air on the dose rate measurements needs to be understood.
56	The influence from measurement data must be excluded to estimate the dose rates more accurately, not only for
57	artificial radionuclides but also for natural radionuclides (background). To discriminate between radiation from
58	the atmosphere and from the ground, the use of secondary detectors placed on top of the main detectors was
59	suggested, known as the upward-looking detector method (IAEA, 1991; IAEA, 2003). In this paper, the
60	influence of radon progenies in air is discriminated from ARM data based on the upward-looking detector
61	method.
62	NaI(Tl) detectors have been used in ARM. In the first few weeks after release, however, the low
63	resolution of a NaI(Tl) detector and the coexistence of ¹³² I can cause erroneous Cs concentration estimation
64	(Hirouchi et al., 2015). In Japan, a LaBr3 detector, which has high energy resolution and efficiency, has been
65	used recently in ARM to resolve inaccurate estimates. However, it is difficult to apply the upward-looking
66	detector method to a pulse height distribution measured by a LaBr3 detector because the inherent contamination
67	of a LaBr3 detector influences the energy range used in the upward-looking detector method and can cause poor
68	estimate accuracy.

69 The aim of this study is to develop a method for discriminating the influence of radon progenies in air 70 from ARM data with NaI(Tl) detectors and a LaBr₃ detector. The influence of radon progenies in air was

71	excluded from the relation between the count rates of six NaI (Tl) detectors and a LaBr ₃ detector. The method
72	is applied to the ARM data around the Sendai and Fukushima Dai-ichi NPSs. The discrimination method can
73	be used to obtain the air concentration of ²²² Rn, which is the parent nuclide of ²¹⁴ Pb and ²¹⁴ Bi, from the ARM
74	data; this method can provide useful information for understanding the atmospheric transport process because
75	²²² Rn is used as a tracer gas for transport modelling (Hirao et al., 2008).
76	
77	2. Theory and methods
78	2.1 ARM system
79	The ARM relied on a dedicated radiation detection system (RSX-3, Radiation solution Inc., Canada)
80	installed on a manned helicopter. Six NaI(Tl) detectors ($2" \times 4" \times 16"$) and one LaBr ₃ detector ($3" \times 3"$) were
81	mounted in the helicopter. The LaBr3 detector was placed on the NaI(Tl) detectors. The arrangement of the
82	detectors allowed the gamma-rays to attenuate into the LaBr3 detector from the ground and provided the
83	difference of the contribution ratio of gamma-rays from the ground and air between the NaI(Tl) and LaBr ₃

attenuation factor and a conversion factor of the dose rate at a height of 1 m, and the calculated data was

84

85

86

87

89 compared with the measured dose rates. In the traditional method, the dose rate was calculated using the total

detectors. The ARM system acquired a once-per-second readout of its spectrometers to produce a 1024-channel

energy spectrum with 3 keV per channel. The spectrometer readings were synchronized with time from a global

positioning system (GPS) receiver. The spectrum and GPS data (date, time, latitude, longitude, and height above

the ellipsoid) were recorded every second. The spectrum data was calculated using the parameters such as an

90 count rate (C_{all}), whereas in the new method, it was calculated using only the count rate from the ground (C_g).

91

92 2.2. Discrimination theory

IAEA (1991) proposed that the contribution of ²¹⁴Bi (609 keV) to ¹³⁷Cs (662 keV) was subtracted using 93 counts in the 1764 keV, which is a peak of ²¹⁴Bi. However, counts in the 1764 keV was too low to apply the 94 95 method to the spectral information in Japan because of the flight height of approximately 300 m and the 96 measurement time of 1 s. In the present study, we attempted to use the difference in response of the up and 97 down-looking (one LaBr3 detector and six NaI(Tl) detectors, respectively) . An NaI detector is able to use as 98 up-looking detector in substitution for LaBr₃ detector because all count rate is applied in this method. The 99 method for discriminating the influence of the radon progenies in air from ARM data was derived from the 100 following four equations:

$$C_{NaI,all} = C_{NaI,g} + C_{NaI,a} \quad , \tag{1}$$

$$C_{LaBr,all} = C_{LaBr,g} + C_{LaBr,a} \quad , \tag{2}$$

$$R_a = \frac{C_{NaI,a}}{C_{LaBr,a}} \quad , \tag{3}$$

$$R_g = \frac{C_{NaI,g}}{C_{LaBr,g}} \quad , \tag{4}$$

where *C* is the count rate in the energy range of 100–700 keV. The influence of inherent contamination of a LaBr₃ detector is small, and *R* is the count rate ratio (C_{Nal}/C_{LaBr}); the subscripts *NaI* and *LaBr* indicate the NaI(Tl) and LaBr₃ detectors, respectively, *g* is the contribution of the gamma-rays from the ground, *a* is the contribution 104 of gamma-rays from the radon progenies in air, and *all* is both the contribution of the gamma-rays from the 105 ground and air (g+a). Here, the background count rate is subtracted from *C*, which includes the contributions of 106 cosmic-rays and contamination from the helicopter. In this study, the minimum count rate measured over the 107 sea was used as the background count rate. The substitution of Eq. (3) into Eq. (1) leads to

$$C_{NaI,g} = C_{NaI,all} - R_a C_{LaBr,a} \quad , \tag{5}$$

108 the substitution of Eq. (2) into Eq. (5) leads to

$$C_{NaI,g} = C_{NaI,all} - R_a \left(C_{LaBr,all} - C_{LaBr,g} \right) , \qquad (6)$$

109 the substitution of Eq. (4) into Eq. (6) leads to

$$C_{NaI,g} = C_{NaI,all} - R_a \left(C_{LaBr,all} - \frac{C_{NaI,g}}{R_g} \right) \quad , \tag{7}$$

110 and Eq. (7) should be modified as

$$C_{NaI,g} = \frac{\left(C_{NaI,all} - R_a C_{LaBr,all}\right)R_g}{R_g - R_a} \quad . \tag{8}$$

Eqs. (1) and (8) show that the contribution of the radon progenies $(C_{Nal, a})$ can be discriminated using the total count rates of the NaI(Tl) and LaBr₃ detectors $(C_{Nal, all}, C_{LaBr, all})$ and the count rate ratio (R_a, R_g) . In this study, R_a and R_g were determined using the ARM data and the computational calculations discussed in sections 2.3 and 2.4.

- 115
- 116 2.3. ARM data

117 To determine R_a and R_g , ARM was conducted around the Fukushima Dai-ichi and Sendai NPSs in

118	February, 2016 (Fig. 2 (a) and (b)). The ARM data at the Sendai NPS was applied to validate the discrimination
119	method. Additionally, the ARM data over the area more than 80 km away from the Fukushima Dai-ichi NPS
120	shown in Fig. 2 (c) was also applied to validate the discrimination method. The ARMs near the Fukushima Dai-
121	ichi NPS (Fig. 2 (a)) were conducted multiple times over the same measurement lines, whereas those around
122	the Sendai NPS and more than 80 km for the Fukushima Dai-ichi NPS were conducted once per measurement
123	line in Fig. 2 (b) and (c). The height of the helicopter above the ground and sea was approximately 300 m.

• ~

.

.. .

....

124

110

125 2.4. Calculation of detector response

126 The conversion factors from the count rate to the air concentration of the radon progenies Γ (Bq m⁻³ cps^{-1}) and R_a were calculated using the Monte Carlo photon transport code EGS5 (Hirayama et al., 2005). The 127 128 calculation geometry comprised a 1.3-km thick air layer, a 1-m thick soil or sea layer, and a helicopter model mounted six NaI(Tl) detectors and a LaBr₃ detector. The density of the air was set to be 1.2×10^{-3} g cm⁻³. The 129 130 soil composition and density were assumed to be pure SiO_2 and 1.6 g cm⁻³, respectively. The sea composition and density were assumed to be pure H₂O and 1.0 g cm⁻³, respectively. The horizontal size of the calculation 131 132 domain was 1 km × 1 km with the detector at the center, supporting approximately 95% of a virtually infinite 133 horizontal extent. The soil or sea layer was assumed to be flat, without considering the geometric structures and 134 ground surface undulations such as mountains. The height of the helicopter model above the ground or sea was 135 set to be 300 m so that the ARM could be reproduced. The diagram of the helicopter model is shown in Fig. 3. The helicopter was simply modeled using an ellipsoid made of 5-mm thick pure aluminum (2.7 g cm⁻³). 136

137	Machines in the cockpit and the fuels were simply modeled using a pure aluminum cylinder and three kerosene
138	cylinders, respectively; these cylinders largely attenuate gamma-rays. The composition and density of kerosene
139	were assumed to be $C_{11}H_{24}$ and 0.81 g cm ⁻³ , respectively. In contrast, other objects in the helicopter, such as
140	chairs and floor plates, were not modeled because they exhibited lower attenuation of gamma-rays. The detailed
141	constructions such as sizes and location of the detectors were considered to reproduce the ARM system.
142	The validation of the helicopter model was confirmed before calculating the conversion factor and R_a .
143	The shielding effect of the helicopter was investigated using a checking source of ¹³⁷ Cs. The detector responses
144	were measured after setting the checking source on all the outer sides of the helicopter. The experimental results
145	were compared with the calculation results that modeled the experimental situations. The ratio of the calculated
146	to measured total count rates is shown in Fig. 4. This ratios on any positions of the checking source are
147	approximately 1, and the helicopter model is valid.
148	The conversion factors of the NaI(Tl) and LaBr ₃ detectors (Γ_{NaI} , Γ_{LaBr}) were calculated assuming that
149	the radionuclides in air were uniformly distributed and the radioactive equilibrium between ²¹⁴ Pb and ²¹⁴ Bi was
150	achieved. The count rate ratio R_a was calculated as the ratio of conversion factors between the NaI(Tl) and LaBr ₃
151	detectors ($\Gamma_{LaBr}/\Gamma_{Nal}$). The calculated R_a was 27. The value of R_a was compared with the measurement data given
152	in section 3.1.
153	

154 2.5. Ground measurement for confirming the reliability of ARM data

155 In order to validate the measurement results of the ARM, they were compared to ground-based

measurements at a height of 1 m that we performed with a NaI survey meter (TCS-172B, Hitachi Inc., Tokyo, Japan). We obtained air dose rate data at 28 points and 298 surrounding the Sendai NPS and the Fukushima Dai-ichi NPS shown in Fig. 2 (b) and (c), respectively. The air dose rate of the ground data (D_g) and the airborne data (D_a) were compared by visualizing the unevenness using a scatter diagram. The relative deviation (RD) of each measurement cell was calculated as follows in order to evaluate the accuracy of the ARM:

$$RD = \frac{D_a - D_g}{D_g} \quad . \tag{9}$$

161 Calculated *RD*s were used to evaluate the total error and statistical uncertainty, which is shown as a histogram 162 of frequency. In addition, the difference between D_g and D_a was quantified using the normalized mean square 163 error (*NMSE*) method for a relative evaluation between data sets. The *NMSE* was derived as follows:

$$NMSE = \frac{\sum_{i=1}^{n} (D_{g,i} - D_{a,i})^2}{\sum_{i=1}^{n} D_{g,i}^2} \quad , \tag{10}$$

164 where *n* is the total number of data points.

- 166 3. Results and discussion
- 167 3.1. Count rate ratio, R_a and R_g

168 The relations between C_{Nal} and C_{LaBr} over the ground and sea are shown in Fig. 5. The ARM over the 169 ground identified radionuclides in the soil as the gamma-ray source, whereas that over the sea identified the 170 radon progenies in air as the gamma-ray source. Hence, the measured count rate ratio over the ground and the 171 sea can be regarded as R_g and R_a , respectively. As shown in Fig. 5, the value of R_g is greater than R_a . This trend

172	is caused by the difference in the contribution ratio of the gamma-ray sources owing to the detector arrangement.
173	If the values of R_g and R_a are different among places, those need to be preliminarily determined in
174	each place. As shown in Fig. 5, both the values of R_g and R_a obtained from the ARM around the Sendai and
175	Fukushima Dai-ichi NPSs are almost similar, although artificial radionuclides existed around the Fukushima
176	Dai-ichi NPS. The result implies that the same R_a of 27 and R_g of 34 can be used at any place. In addition, the
177	measured R_a is the same as the calculated R_a as described in section 2.3. This shows that an R_a of 27 can be
178	certainly used at any place.
179	
180	3.2. Application of the discrimination method
181	With the R_a and R_g determined in the last section, the discrimination method was applied to the ARM
182	data around the Sendai NPS. The estimated dose rate map at a height of 1 m above the ground, before and after
183	the application of the discrimination method, and the estimated air concentration map of the radon progenies
184	are shown in Figs. 6 and 7, respectively. The air concentration was estimated with the product of the conversion
185	factors Γ_{Nal} and the contribution of the radon progenies $C_{Nal, a}$ that was calculated by the discrimination method.
186	The estimated air concentration map is not always the same as shown in Fig. 7 because the radon concentration
187	in air fluctuates with time. A seamless digital geological map is shown in Fig. 8 (Geological Survey of Japan,
188	AIST, 2015), which shows the locations at which large amounts of natural radionuclides are present. The
189	comparison between Figs. 6(c) and 7 shows that the dose rate significantly decreased at the locations that were
190	estimated to exhibit a high air concentration of the radon progenies. A radon air concentration of 10 Bq m^{-3}

191	caused an error of approximately 20 $nSv h^{-1}$ in the calculated 1-m-height dose rate. The dose rate map before
192	the application of the discrimination method (Fig. 6(a)) has almost the same pattern as that of the seamless
193	digital geological map (Fig. 8). The application of the discrimination method improved the accuracy of the dose
194	rate at the location indicated by dashed circles in Fig. 6(b), where the radon concentration was estimated to be
195	higher. The validity of the discrimination method was verified by comparing the dose rate measured at a height
196	of 1 m above the ground using a NaI survey meter with the one estimated using the ARM data before and after
197	the application of the discrimination method (Fig. 9). Figure 9 shows also the frequent distribution of RD. The
198	NMSE and the frequent distribution of RD were improved by applying the discrimination method. The results
199	confirm the validity of the discrimination method.
200	Additionally, the method was applied to the ARM data over the area more than 80 km away from the
201	Fukushima Dai-ichi NPS in 2016. The estimated dose rate maps at a height of 1 m above the ground, before and
202	after the application of the discrimination method, are shown in Fig. 10. Figure 11 shows the comparison
203	between the dose rate of ground data and ARM data as well as the frequent distribution of RD, before and after
204	the application of the discrimination method. Radiocesium released from the Fukushima Dai-ichi NPS existed
205	on a part of this area at the measurement time. In the high dose area surrounded by yellow circles in Fig. 10, the
206	difference between the dose rate before and after the application of the discrimination method was little or none
207	because the contribution of gamma-rays from air was relatively low compared to that from ground (Cs). In the
208	low dose area surrounded by red dot circles in Fig. 10, on the other hand, the dose rate significantly decreased
209	by applying the discrimination method. The results imply that the method is useful in the low dose area where

210	the dose rate at a height of 1 m above the ground is less than $0.2 \mu\text{Sv}$ h ⁻¹ . According to Fig.11, the dose rate of
211	ARM data before applying the discrimination method tended to be larger than that of ground data. The NMSE
212	and the frequent distribution of RD were improved by applying the discrimination method. The result shows
213	also the validity of the discrimination method even in the area where radiocesium exists.
214	
215	4. Conclusions
216	A method for discriminating the influence of the radon progenies in air from ARM data was proposed.
217	The discrimination method used the relation between the count rates of NaI (Tl) detectors and a LaBr ₃ detector.
218	The dose rate map estimated after the application of the discrimination method was similar to the seamless
219	digital geological map. In addition, to verify the validity of the discrimination method, the dose rate at a height
220	of 1 m above the ground measured using a NaI survey meter was compared with the ARM data. The NMSE and
221	the frequent distribution of RD were improved by applying the discrimination method. The results revealed that
222	the discrimination method was valid. The discrimination method can be applied for measuring the ²²² Rn
223	concentration in air, which has rarely been conducted using the ARM. If we can measure the ²²² Rn concentration
224	in air, the atmospheric dispersion process and the wet deposition process could be investigated more detail with
225	an atmospheric transport model. Therefore, the ARM will contribute not only to the assessment of the
226	consequence after an accident but also to the resolution of the atmospheric transport process of nuclides.
227	

- 228 Acknowledgements
- 229 This work was supported by the Nuclear Regulation Authority, Japan.

- 231 References
- Lyones, C., Colton, D., 2012. Aerial measuring system in Japan, Health Phys. 102, 509–515.
- 233 Blumenthal, D.J., 2012. Introduction to the special issue on the U.S. Response to the Fukushima Accident,
- 234 Health Phys. 102, 482–484.
- Hendricks, T.J., Riedhauser, S.R., 1999. An Aerial Radiological Survey of the Nevada Test Site,
 DOE/NV/11718-324.
- 237 Sanada, Y., Sugita, T., Nishizawa, Y., Kondo, A., Torii, T., 2014. The aerial radiation monitoring in Japan after
- the Fukushima Daiichi nuclear power plant accident, Proc. Nucl. Sci. Technol. 4, 76–80.
- 239 Shimo, M., Yamasaki, K., Tsujimoto, T., Okamoto, K., Yoshimoto, T., Kojima, H., Mizuma, M., 2007. The
- 240 influence of the concentration of atmospheric radon decay products on the environmental radiation dose
- 241 rate. Japan Health Phys. Soc. 42(2), 156–165.
- 242 Zielinski, J. M., Chambers, D. B., 2008. Mapping of residential radon in the world, 2008 The 12th International
- Congress of the International Radiation Protection Association Buenos Aires, Argentina 19–24 October
 2008.
- 245 IAEA, 1991. Airborne gamma ray spectrometer surveying. Technical Reports Series No. 323.
- 246 IAEA, 2003. Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363.

247	Hirouchi, J., Yamazawa, H., Hirao, S., Moriizumi, J., 2015. Estimation of surface anthropogenic radioactivity
248	concentrations from NaI(Tl) pulse-height distribution observed at monitoring station. Radiat. Prot.
249	Dosimet. 164, 304–315.
250	Hirao, S., Yamazawa, H., Moriizumi, J., Yoshioka, K., Iida, T., 2008. Development and verification of long-
251	range atmospheric radon-222 transport model. J. Nucle. Sci. Technol. 45(Suppl. 6), 166–172.
252	Hirayama, H., Namito, Y., Bielajew, A.F., Wilderman, S.J., Nelson, W. R., 2005. The EGS5 Code System, KEK
253	Report 2005-8, SLAC-R-730, High Energy Accelerator Reserch Organization (KEK), Stanford Linear
254	Accelerator Center (SLAC).
255	Geological Survey of Japan, AIST (ed.). Seamless digital geological map of Japan 1: 200,000. May 29, 2015
256	version. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology.
257	2015.

259 Title

260	Development and application of a method for discriminating the influence of radon progenies in air from aerial
261	radiation monitoring data
262	
263	
264	Fig. 1. Gamma-rays measured via aerial radiation monitoring.
265	Fig. 2. Measurement lines (a) around the Fukushima Dai-ichi NPS,(b) around the Sendai NPS, and (c) over the
266	area more than 80 km away from the Fukushima Dai-ichi NPS.
267	Fig. 3. Diagram of the helicopter model.
268	Fig. 4. The ratio of the calculated to measured count rates in the experiment for investigating the shielding effect
269	of the helicopter.
270	Fig. 5. Relation between C_{Nal} and C_{LaBr} (a) over the ground, (b) over the sea around the Sendai and Fukushima
271	Dai-ichi NPSs.
272	Fig. 6. Dose rate maps at a height of 1 m calculated from the ARM data around the Sendai NPS. (a) before the
273	discrimination; (b) after the discrimination; (c) the ratio of (b) to (a).
274	Fig. 7. Estimated air concentration map of the radon progenies around the Sendai NPS.
275	Fig. 8. Seamless digital geological map around the Sendai NPS (Geological Survey of Japan, AIST, 2015). The
276	colored areas are places containing large amounts of natural radionuclides.
277	Fig. 9. Relation between the dose rates at a height of 1 m above the ground measured using a NaI survey meter
278	and calculated from the ARM data around the Sendai NPS (a) before the discrimination (b) after the

- discrimination. Frequency distribution of relative deviation around the Sendai NPS (c) before the
 discrimination (d) after the discrimination.
- Fig. 10. Dose rate maps at a height of 1 m calculated from the ARM data around the Fukushima Dai-ichi NPS.
- 282 (a) before the discrimination; (b) after the discrimination; (c) the ratio of (b) to (a).
- Fig. 11. Relation between the dose rates at a height of 1 m above the ground measured using a NaI survey meter
- and calculated from the ARM data around the Fukushima Dai-ichi NPS (a) before the discrimination (b)
- after the discrimination. Frequency distribution of relative deviation around the Fukushima Dai-ichi NPS
- 286 (c) before the discrimination (d) after the discrimination.

299 Fig. 2. Measurement lines (a) around the Fukushima Dai-ichi NPS,(b) around the Sendai NPS, and (c) over

the area more than 80 km away from the Fukushima Dai-ichi NPS.

Fig. 4. The ratio of the calculated to measured count rates in the experiment for investigating the shielding

- 314 effect of the helicopter.
- 315

Fig. 5. Relation between C_{Nal} and C_{LaBr} (a) over the ground, (b) over the sea around the Sendai and Fukushima

Dai-ichi NPSs.

326 Fig. 6. Dose rate maps at a height of 1 m calculated from the ARM data around the Sendai NPS. (a) before the

discrimination; (b) after the discrimination; (c) the ratio of (b) to (a).

347 Fig. 8. Seamless digital geological map around the Sendai NPS (Geological Survey of Japan, AIST, 2015).

348	The colored areas are places containing large amounts of natural radionuclides.
349	
350	

351

Fig. 9. Relation between the dose rates at a height of 1 m above the ground measured using a NaI survey meter and calculated from the ARM data around the Sendai NPS (a) before the discrimination (b) after the discrimination. Frequency distribution of relative deviation around the Sendai NPS (c) before the discrimination (d) after the discrimination.

Fig. 10. Dose rate maps at a height of 1 m calculated from the ARM data around the Fukushima Dai-ichi NPS.

(a) before the discrimination; (b) after the discrimination; (c) the ratio of (b) to (a).

Fig. 11. Relation between the dose rates at a height of 1 m above the ground measured using a NaI survey
meter and calculated from the ARM data around the Fukushima Dai-ichi NPS (a) before the discrimination (b)
after the discrimination. Frequency distribution of relative deviation around the Fukushima Dai-ichi NPS (c)
before the discrimination (d) after the discrimination.