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Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The
magnetic anisotropy energy (MAE) resulting from the Rashba spin–orbit and s–d type exchange interactions is
determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or
a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a
noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic
case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a
key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the
possibility of electrical-field control of the Néel vector.

Spin-orbitronics1) is a new trend in spin current physics2)

that exploits the relativistic spin–orbit interaction in materials
and opens fascinating new perspectives for both basic
research and device technology. A combination of spin–orbit
interaction and the s–d exchange interaction between the
conduction electron spins and localized moment gives rise to
a variety of phenomena such as the formation of skyrmions,
spin–orbit torques, spin–charge conversion, magnetoresist-
ance, and magnetic anisotropy. These advanced concepts and
functionalities, originally recognized in ferromagnet (FM)-
based nanohybrid structures, are also useful and even more
salient in antiferromagnets (AFMs) because they offer
pathways to manipulate AFMs, thereby fueling the recent
development of antiferromagnetic spintronics.3,4)

The magnetic anisotropy determines the energy barrier
between the preferable orientations of (staggered) magnet-
ization in (A)FMs. Understanding the magnetic anisotropy
energy (MAE) in AFMs is therefore of fundamental
importance when devising magnetic memory bits that are
reliably robust against any external (thermal, magnetic field,
and electric current) noise.5) It has also been pointed out that
a large value of the MAE in AFMs is reflected in the
exchange bias field,6) which is routinely used to fix the
magnetization direction at the AFM=FM interface in current
magnetic memory technology.

Several mechanisms are known to induce the MAE in
AFMs. The dipolar interaction among magnetic ions has been
shown to explain the MAE in a series of corundum-type
transition-metal oxides such as Cr2O3.7,8) Strong perpendic-
ular magnetic anisotropy (PMA) was reported recently at the
Co(111)=α-Cr2O3(0001) interface and results in perpendicular
exchange-biased interlayer coupling.9,10) The crystalline
MAEs of manganese transition-metal alloys have been
studied theoretically by first-principle calculations including
the spin–orbit interaction.6,11) The anisotropic spin Hall
effects12) and spin–orbit torques13,14) of such bimetallic AFMs
have been extensively studied. Shape-induced MAE arises in
compensated AFMs with strong magnetoelastic coupling,
where it is analogous to the demagnetization energy in
FMs.15) A direction-dependent anisotropic exchange inter-
action seeds MAEs that can switch the preferred magnetiza-
tion direction at the paramagnetic–ordered phase transition.16)

Here we focus on the effect of Rashba spin–orbit (RSO)
interaction on the MAE in antiferromagnetic thin films. RSO
coupling, which appears in a system with inversion symmetry
breaking (ISB), plays a leading role in spintronics and other
important branches of condensed matter physics.17,18) For an
RSO-coupled FM, we have derived the MAE,19) where the
onset of PMA is explained by the energy gain from enhanced
exchange splitting due to the RSO interaction. This is
maximum when the magnetization is directed perpendicular
to the ISB plane. An important observation is that the
induced MAE is quadratic in the RSO coupling constant,
which explains an even component of the electrical-field
modulation of the MAE in ferromagnetic thin films.19–21) In
contrast, for an RSO-coupled AFM, we show below that the
condition for PMA depends strongly on the type of RSO
coupling, whereas the magnitude of the MAE shows the
same quadratic dependence on the RSO coupling constant.

To illustrate the effect of the RSO interaction on the MAE
in antiferromagnetic thin films, we study two representative
lattice models: a two-sublattice ordered AFM with global ISB
or local ISB, as shown schematically in Fig. 1(a). The former
is a model of structural ISB at a surface or an interface,22,23)

whereas the latter is a model of a noncentrosymmetric
AFM.24,25)

We start with the two-dimensional (2D) Rashba model
introduced in Refs. 22 and 23 to simulate common
experimental geometries in which a thin antiferromagnetic
film is interfaced with another layer or subjected to a gating
electric field. We consider a square lattice AFM composed of
two sublattices (A and B) with equal saturation magnetization
MS and with a direction given by the classical unit vectors
mi for the i-th site. A uniform sublattice magnetization
mi ¼ mA=B is assumed, as the i-th site belongs to the A=B
sublattice. (The spin dynamics due to nonuniform and time-
dependent mi in AFMs were studied previously in a
continuous model.26,27)) The Hamiltonian

H ¼
X

hiji
A0mi �mj þ H0 þ

X

i

Jsdŝi �mi þHR; ð1Þ

where the indices i; j denote lattice sites; hiji represents the
sum of the nearest neighbors; A0 > 0 is the antiferromagnetic
exchange coupling constant between nearest-neighbor local
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moments; and Jsd is the on-site s–d exchange coupling
constant between the local moment and the conduction spin.
Further, ŝi ¼ cyi �̂ci, where cyi ¼ ðcyi"; c

y
i#Þ is the electron

creation operator on the i-th site with spin ↑ or ↓, and �̂
denotes the Pauli matrices. Here H0 represents the nearest-
neighbor electron hopping, H0 ¼ �t

P
hiji c

y
i cj, and HR ¼

HG
R is the RSO coupling term,

HG
R ¼ i�

X

hiji
�ij � cyi �̂cj; ð2Þ

where λ is the RSO constant (we set the lattice constant a
to 1), and �ij (¼ ��ji) is the unit vector perpendicular to both
the directions of hopping (i � j) and the ISB along the z-
direction. The coupling constant λ is proportional to the sum
(E0 þ E) of the electric field E0 reflecting the surface and that
due to gating, E.

The Hamiltonian (1) is expressed as H ¼
P

k c
y
kHck, in

terms of the Fourier transforms cyk ¼ ðcykA"; cykA#; cykB"; c
y
kB#Þ

of the A and B sublattice operators cyi , and

H ¼ ½�k � �ðsin kx�̂y � sin ky�̂xÞ��̂x þ Jsdn � �̂ �̂z; ð3Þ

where �k ¼ �2tðcos kx þ cos kyÞ, n ¼ ðmA �mBÞ=2 is the
Néel order parameter [Fig. 1(a)], and �̂x;z are the Pauli
matrices acting on the sublattice space. Here we assume a
strong exchange A0, so mA ¼ �mB (and jnj ¼ 1). This
assumption is valid even in the presence of inhomogeneous
Dzyaloshinskii–Moriya interaction,28) which might be in-
duced by a combination of the RSO interaction and on-site
s–d exchange interaction.29,30)

Using the Pauli matrix algebra on H2 and ½H2 �
ð�2k þ J2sd þ �2�2kÞ�2 gives four energy eigenvalues of Eq. (3):

�k�sðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ J2sd þ �2�2k � 2s��kSkðnÞ

p
; ð4Þ

where we define �k ¼ ðsin2 kx þ sin2 kyÞ1=2, and SkðnÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ J2sd½1 � sin2 	 sin2ð
k � 
Þ�

p
, with n ¼ ðsin 	 cos
;

sin 	 sin
; cos 	Þ, as shown in Fig. 1(a), and tan
k ¼
sin ky=sin kx. The eigenvalues with indices � ¼ �1 and
s ¼ �1 are identified as conduction=valence and minority=
majority-spin bands, respectively. The square root SkðnÞ is a
decreasing function of sin 	, and the magnitude of the spin
splitting is maximum for 	 ¼ 0, at which the eigenvalues
become independent of 
k as �k�sðẑÞ ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ J2sd

p
� s��kj.

For the k points with �k ¼ 0, band crossing occurs owing to
PT symmetry, where P and T represent the inversion and
time-reversal symmetries, respectively, which are broken
individually in Eq. (3).

The MAE is defined as the difference in the sums over
occupied states of eigenvalues (4) with n ¼ ẑ as the
reference,

EMAE ¼
Xocc:

k�s

�k�sðnÞ �
Xocc:

k�s

�k�sðẑÞ: ð5Þ

Expanding Eq. (5) around 	 � 0 yields

EMAE ¼ K sin2 	; ð6Þ

where the uniaxial magnetic anisotropy constant K is given
by

K ¼
Xocc:

k�s

�sJ2sd��k sin
2ð
k � 
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ J2sd

p
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ J2sd

p
� s��kj

: ð7Þ

This is one of the main results in this paper.
The sign of K determines the type of MAE: PMA (K > 0)

or easy-plane anisotropy (K < 0). First, we consider �2k þ
J2sd � �2�2k > 0 for all the k points; i.e., band inversion due
to the RSO interaction does not occur. Without loss of
generality, we assume � > 0. Then the above condition can
be expressed as � < �c, where the critical value, evaluated at
the band touching points, k ¼ ð�=2;��=2Þ; ð��=2;��=2Þ, is
�c ¼ Jsd=

ffiffiffi
2

p
for the current model. After the spin summation

in Eq. (7) we have K ¼
Pocc:

k� � fðkÞ for � < �c, with

fðkÞ ¼ J2
sd�

2�2k sin
2ð
k � 
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2k þ J2sd
p

j�2k þ J2sd � �2�2kj
> 0: ð8Þ

From this, we observe that the valence band (� ¼ �1) makes
a negative contribution to K, whereas that of the conduction
band is reversed as η changes sign. In total, for partially
occupied energy bands, it follows that K < 0; i.e., the RSO-
induced MAE for the Néel order parameter n would be the
easy-plane type within the model (1). It becomes maximum
when the band is half-filled (the only � ¼ �1 band is fully
occupied). We remark that the MAE arises from a
combination of the RSO and s–d exchange interactions, both
of which are crucial factors for spin splitting of the energy
bands (4).

Figure 2(a) shows the RSO coupling dependence of K for
the half-filled band. For small values of λ, the anisotropy
constant K in Eq. (7) is proportional to the squared RSO
coupling, �2, as in the ferromagnetic case.19) When � ! �c,
on the other hand, K grows rapidly, as expected from the
denominator of fðkÞ. When � > �c, at which band inversion
occurs, i.e., �2k þ J2

sd < �2�2k holds for certain pockets of k,
Eq. (7) diverges, implying that the expansion of EMAE with
sin2 	 becomes invalid. In fact, for � ¼ �c, a jsin 	j
component appears in the expansion of EMAE. To avoid this

(a) n=(mA-mB)/2

θ
y

z

x
φ

mA

mB

A

B

t

λ

mA

mB

(b)

tλ’

-λ’

mA

mB

(c)x

y

Fig. 1. (Color online) Schematic view of a system with the sublattice
moments mA and mB. (a) The direction of the Néel order parameter n is
specified by the Euler angles θ and ϕ. Inversion symmetry is broken along
the z axis, which is perpendicular to the film plane. Models of a 2D square
lattice for nearest-electron hopping t with (b) global Rashba coupling λ and
(c) local Rashba coupling ��0 depending on the sublattices.
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complexity, we compute Eq. (5) directly, as shown in
Fig. 2(b), for 	 ¼ �=2 with 
 ¼ 0 (n k ½100�), �=8, and �=4
(n k ½110�). EMAE is continuous and has an inflection point at
� ¼ �c. In the inset of Fig. 2(b), we show the ϕ dependence
of EMAE, which reveals that the [100] and [010] directions are
equivalent easy directions. We also observe that the in-plane
MAE is well-fitted by sin2ð2
Þ for � < �c, whereas it
becomes anharmonic for � > �c.

Next, we consider a simple 2D model of noncentrosym-
metric AFMs that has been introduced to study current-
induced manipulation of Dirac fermions by spin–orbit
torques in CuMnAs.25) The tetragonal CuMnAs lattice,
which can be stabilized by molecular beam epitaxial growth
on GaAs or GaP,31) is inversion-symmetric, whereas its Mn
spin sublattices form noncentrosymmetric inversion partners,
supporting the presence of the staggered RSO interaction for
intrasublattice electron hopping. To model this system, we
consider a tetragonal primitive structure with a bipartite
square lattice in the x–y plane whose sublattice atoms, labeled
A and B, are buckled in the z-direction, as shown in Fig. 1(c).
(We omit here the next-nearest hopping t0 and the dispersion
along the z-direction for simplicity.) The RSO interaction
adopted here is defined for hopping between the same
sublattice sites and changes sign depending on the sublattice:

HL
R ¼ i�0

X

hhijii
ð�1Þi�ij � cyi �̂cj; ð9Þ

where hhijii denotes the next-nearest neighbors. The
Hamiltonian (1) is now H0 ¼

P
k c

y
kH0ck, with

H0 ¼ � 0k�̂x � ½�0ðsin kx�̂y � sin ky�̂xÞ � Jsdn � �̂��̂z; ð10Þ

where � 0k ¼ �2t cosðkx=2Þ cosðky=2Þ. The eigenvalues

�0k�ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 0k

2 þ J2
sd þ �02�2k � 2�0�kS0kðnÞ

p
; ð11Þ

with S0kðnÞ ¼ Jsd sin 	 sinð
k � 
Þ, are doubly degenerate for
all the k points owing to PT symmetry.

The MAE is defined similarly to Eq. (5):

E0
MAE ¼ 2

Xocc:

k�

�0k�ðnÞ � 2
Xocc:

k�

�0k�ðẑÞ; ð12Þ

where the factor of 2 comes from the PT degeneracy. Using
Eq. (11), we expand Eq. (12) around 	 � 0 and obtain

E0
MAE ¼ K0 sin2 	; ð13Þ

where

K0 ¼ �
Xocc:

k�

�J2
sd�

02�2k sin
2ð
k � 
Þ

ð� 0k
2 þ J2sd þ �02�2kÞ3=2

: ð14Þ

This is the second key result of this paper. The linear term in
�0 appears in the expansion of Eq. (11), but it vanishes after
the k summation owing to the oddness of the directional
factor sinð
k � 
Þ. It is obvious that K0 > 0 for the partially
occupied energy bands; i.e., PMA is always favored in the
system with sublattice-dependent RSO coupling (9).
Figure 2(c) shows the RSO coupling dependence of K0 for
the half-filled band. For small values of �0, the anisotropy
constant K0 is proportional to the squared RSO coupling, �02,
and it deviates from a parabola owing to the denominator
in Eq. (14). We note that Kim et al. numerically studied a
similar system32) that supports the general tendency of our
analytical result [Eq. (14)].

It has been pointed out24,25) that when the Néel vector is
along the [100] or [010] direction, the energy bands (11)
possess two Dirac points, where the fourfold band degener-
acy is protected by the glide mirror plane symmetry in
addition to the PT symmetry. Once the Néel vector has a
z component, these Dirac points are gapped, resulting in
reduction of the total band energy. The s–d exchange field
along the z-direction plays a role similar to that of the
perpendicular magnetic field on the ordinary twofold Dirac
point. This is the physical picture of the PMA scenario for the
Dirac AFM system reflected in the present model.

Nanostructured AFMs exhibit a shape-induced MAE15)

that causes the orientation of the Néel vector to align with the
surface=interface plane. For example, antiferromagnetic spin
structure in tetragonal CuMnAs was investigated by a
combination of neutron diffraction and X-ray magnetic linear
dichroism (XMLD) measurements.33) These measurements
imply an easy-plane MAE. The authors of Ref. 33 argue that
their neutron data, supplemented by ab initio calculations,
imply that the Mn spins are confined in the (ab) plane. Recent
XMLD microscopy imaging of a tetragonal CuMnAs film
reveals an inhomogeneous domain structure at the submicron
level.34) The observed complex multidomain structure
implies the influence of a destabilizing factor on the in-plane
spin textures. The RSO-induced PMA described in this work
can be considered as part of that scenario.

In conclusion, we showed that the RSO interaction
produces the MAE for two-sublattice AFMs with broken
inversion symmetry. Two types of the Rashba coupling were

(a)

(b)

(c)

Fig. 2. (Color online) Rashba coupling dependence of the MAE for the
half-filled band. (a) Dots represent the magnetic anisotropy constant K in
Eq. (7) for the global RSO model. The solid curve and vertical dashed line
indicate the parabolic fit to the data and the critical value, � ¼ �c, defined in
the text, respectively. (b) MAE EMAE for the global RSO model, Eq. (5), for
	 ¼ �=2 with 
 ¼ 0, �=8, and �=4 (from bottom to top). The insets show the
ϕ dependence of EMAE for � ¼ 0:2 (left) and 0.6 (right), as indicated by the
arrows. (c) The dots represent the magnetic anisotropy constant K0 in
Eq. (14) for the sublattice-dependent RSO model. The solid curve indicates
the parabolic fit to the data. The energy unit is t, and we use Jsd ¼ 0:6 for all
the plots.
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considered. With regard to the Rashba coupling defined for
hopping between different sublattice sites, the uniaxial
magnetic anisotropy constant becomes negative for weak
Rashba coupling, and biaxial in-plane easy axes are
identified. This Rashba model is appropriate for a common
geometry for an antiferromagnetic thin film and other
materials with hybrid structures, where it is possible to
modulate the RSO coupling by attaching a nonmagnetic film
to an AFM, or, more directly, by electric field gating. In
contrast, for the Rashba coupling defined for hopping
between the same sublattice sites, PMA is favored, and a
band gap due to the s–d exchange interaction appears. This
feature is a potential obstacle to realization of a Dirac AFM,
as recently proposed24,25) for a similar model system, because
it requires the in-plane Néel vector configuration. Although
further investigation is needed to apply our simple model
study to realistic systems, our finding offers a way to tune the
magnitude of the MAE by a suitable choice of material
combinations and by electrical gating.
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