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Charmonium spectral functions in vector and pseudoscalar channels at finite temperature are investigated 
through the complex Borel sum rules and the maximum entropy method. Our approach enables us to 
extract the peaks corresponding to the excited charmonia, ψ ′ and η′

c , as well as those of the ground 
states, J/ψ and ηc , which has never been achieved in usual QCD sum rule analyses. We show the spectral 
functions in vacuum and their thermal modification around the critical temperature, which leads to the 
almost simultaneous melting (or peak disappearance) of the ground and excited states.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The particle consisting of a heavy quark and an antiquark Q Q̄ , 
“quarkonium”, has been a suitable target to study dynamics of QCD 
at short distance due to its large mass [1]. Furthermore, it was 
suggested and believed that quarkonia in an extremely hot and 
dense matter, quark gluon plasma (QGP), dissolve due to the color 
Debye screening caused by light deconfined quarks, so that such 
an event itself can be regarded as a signal for the existence of 
QGP [2]. Experimentally, this is indeed observed as the quarko-
nium suppression in heavy ion collisions at Relativistic Heavy Ion 
Collider (RHIC) at BNL and Large Hadron Collider (LHC) at CERN. 
On the theoretical side, this phenomenon can be understood as 
the thermal modification of Q Q̄ potential [2–12] or the disappear-
ance of peaks in the spectral function by the finite temperature 
effects. The temperatures at which the peaks completely disappear, 
“melting temperatures”,1 are one of the targets which should ide-
ally be calculated from the first principles of QCD. Recently, lattice 
QCD simulations with the maximum entropy method (MEM) [13]
enable us to check such a spectral function deformation and to 
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1 Actually, the “melting temperature” is not a well defined concept because the 

quarkonium wave function is gradually broadened by thermal effects, and the peak 
in the spectral function does not necessarily show abrupt disappearance. Therefore, 
in this work, we use this term just as a qualitative guideline concept.
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estimate the melting temperature. For instance, it was shown in 
such an approach that the lowest charmonium states ( J/ψ and 
ηc) survive above the temperature of 1.5 Tc [14] (cf. [15–21]). Sim-
ilarly, QCD sum rules [22,23] can study quarkonium suppression 
by incorporating finite temperature effects through the QCD con-
densates. Initially, the ground states of charmonia and bottomonia 
were analyzed by assuming a specific functional form for the spec-
tral functions [24–32], while recently they were reanalyzed with-
out such assumptions by the help of the MEM [33,34].

In the recent heavy-ion collision experiments, the suppression 
of charmonium excited states (ψ ′ or ψ(2S)) was also observed 
[35–40]. The experimental results show that the yield of the ex-
cited state is more strongly suppressed when more nucleons par-
ticipate in the collision. This indicates that in QGP the excited state 
melts at lower temperature than the ground state since the ex-
cited state suffers from the Debye screening more strongly due to 
the larger system size compared to the ground state. If this is the 
case, the second peak in the spectral function should disappear at 
lower temperature than the first peak also in a theoretical calcu-
lation. Actually some model studies demonstrate such a situation 
[2–10]. Also the studies of bottomonia at finite temperature us-
ing QCD sum rules with MEM find an indirect proof indicating the 
same effect, without explicitly reproducing the peaks correspond-
ing to the excited sates [34].

In general, it is a challenging problem to extract information 
on excited states (namely, second or higher peaks in the spectral 
function) from QCD sum rules. Therefore, the thermal modification 
of excited states have so far not been discussed within the usual
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Borel type QCD sum rules, although there exist many results for 
the ground states. Although MEM for QCD sum rules is a power-
ful tool to investigate the structure of spectral function, which has 
already been applied to various systems [33,34,41–46], it was diffi-
cult to reproduce the second peak with statistical significance from 
Borel sum rules. However, by using the combination of QCD sum 
rules on the complex Borel plane (CBSR) and MEM, it has recently 
become possible to extract excited states due to the improved res-
olution [47]. In Ref. [47], the excited φ meson peak in vacuum was 
reproduced with a mass consistent with the experimental value. 
The reproduction of excited charmonia from QCD sum rules is also 
one of main purposes of this paper.

In this work, we study charmonia in the vector and pseu-
doscalar channels at finite temperature by using CBSR with MEM, 
which has the ability to reproduce both the first and second peaks. 
Then we check whether there is a possible difference in the melt-
ing behaviors between the ground and excited states.

This paper is organized as follows. In Section 2, we explain the 
CBSR for charmonia at finite temperature. In Section 3, we show 
their spectral functions in vacuum and at finite temperature and 
discuss their thermal (melting) behavior. Section 4 is devoted to 
our conclusion and outlook.

2. Formalism

Let us here introduce our formalism of CBSR with MEM for the 
analysis of charmonium at finite temperature. Since CBSR is a gen-
eralization of real Borel sum rules even at finite temperature, we 
can take the same Borel sum rule formulation as done in the pre-
vious works, where we replace real Borel masses by complex ones, 
to construct CBSR. Here we will briefly summarize our formula-
tion; a more detailed explanation can be found in Refs. [33,34]. 
For specifying the domain of the complex Borel plane to be used 
in the MEM analysis, we propose an updated criterion.

2.1. The form of Borel sum rules

We calculate the correlation function for a meson system con-
sisting of charm quarks with a mass m that is larger than the 
typical QCD scale. Here, the dimensionless correlation functions in 
momentum space are defined by �̃V (q2) ≡ �

V ,μ
μ (q)/(−3q2) and 

�̃P ≡ �P (q)/q2 for vector and pseudoscalar channels, respectively. 
These can be calculated by the operator product expansion (OPE), 
and its Borel-transformed OPE with a real variable M2 takes the 
following shortened form:

G J (M2; T ) = 1

M2
e−ν A J (ν)

[
1+ αs(ν)a J (ν) + b J (ν)φb(T ) + c J (ν)φc(T )

]
, (1)

where ν is a dimensionless parameter defined as ν = 4m2/M2. The 
superscript J distinguishes the channel, vector or pseudoscalar. 
With this expression we construct sum rules at finite temperature 
as follows:

G J (M2; T ) = 1

M2

∞∫

0

e−s/M2
ρ(s; T )ds. (2)

Let us explain each part of Eq. (1). αs(ν) is a strong running 
coupling constant evaluated at the Borel mass scale M . The func-
tions, A J , a J , b J and c J are the Wilson coefficients. Their explicit 
form can be found in Ref. [28]. The first and second terms come 
from the usual perturbative result up to the first order in αs . The 
φ(T )’s are the condensates defined as
φb(T ) = 4π2

9(4m2)2
G0(T ), (3)

φc(T ) = 4π2

3(4m2)2
G2(T ), (4)

where G0(T ) and G2(T ) are the scalar and twist-2 gluon conden-
sates with dimension 4 at finite temperature. They are defined as 
the scalar and spin-2 components of the gauge independent gluon 
tensor:

〈αs

π
Gaμσ Ga ν

σ 〉T = 1

4
gμνG0(T ) + (uμuν − 1

4
gμν)G2(T ), (5)

where the expression 〈O 〉T means the Boltzmann average defined 
as 〈O 〉T = Tr(e−H/T O )/Tr(e−H/T ). u is the four velocity vector of 
the medium whose norm is unity.

2.2. Finite temperature effects

In this work we assume that all temperature dependence of 
the correlator enters through that of the gluon condensates. This 
assumption is valid as long as the temperature is smaller than 
the OPE separation scale, which is of the order of the Borel mass 
M ∼ 1 GeV. To proceed further, we therefore need to calculate the 
temperature dependences of the gluon condensates. In our formu-
lation, the strategy proposed in Refs. [24,25] is employed, in which 
we express the two gluon condensates as follows:

G0(T ) = G0(0) − 8

11
[ε(T ) − 3p(T )], (6)

G2(T ) = −αs(T )

π
[ε(T ) + p(T )], (7)

where ε , p and αs are the energy density, pressure and strong cou-
pling constant, respectively. Thus by estimating their dependences 
on temperature by using quenched (pure Yang–Mills) lattice QCD 
simulations [48,49], we finally get the temperature dependences of 
the condensates. Actually the value of the critical temperature of 
the chiral phase transition in the quenched approximation is about 
260 MeV, while the full QCD result leads to the cross-over temper-
ature being 145–165 MeV [50,51]. Such a quantitative difference 
caused by the quenched approximation should be discussed in fu-
ture works.

Let us here briefly discuss the possibility of extending our ap-
proach to full QCD, which would include dynamical quarks. Eqs. (6)
and (7) in fact are derived by matching the trace part and the 
symmetric traceless part of the energy momentum tensor, written 
either in terms of thermodynamic variables or the basic degrees of 
freedom of QCD. While in the quenched approximation, the energy 
momentum tensor of QCD can be written only with gluon fields, it 
will have terms such as mq〈q̄q〉 and 〈q̄γ μDνq〉, which will hence 
modify Eqs. (6) and (7). Once the temperature dependences of all 
these operators (and αs) are known in full QCD, it will become 
possible to perform a QCD sum rule calculation that goes beyond 
the quenched approximation.

2.3. The choice of the domain in the complex Borel mass plane

CBSR can be constructed simply by replacing the Borel mass 
M2 in Eqs. (1) and (2) by its complex generalization M2. As a fur-
ther task, we have to choose the domain of complex Borel masses 
used in the MEM analyses. Because spectral functions obtained 
from MEM generally depend on the choice of the domain, the 
domain used for each channel in our analyses should be kept con-
stant throughout the analyses at various temperatures, such that 
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Fig. 1. Domains in the complex Borel mass plane used for the MEM analysis in both vector (left plot) and pseudoscalar (right plot) channels. The lower and upper boundaries 
are determined according to Eq. (8) and Eq. (11), respectively.
the temperature dependence of the spectral function can be ex-
tracted without artificial effects. In our analyses, the domain is 
fixed to the one used in vacuum for each channel. By considering 
the convergence of the OPE, the lower boundaries are determined 
as follows:

|d4(M2; T = 0)|
|G J (M2; T = 0)| < 0.1, (8)

where d4(M2; T = 0) is the whole dimension 4 term of the OPE 
in vacuum.2

For the determination of the upper boundary, we employ an 
improved scheme as follows. In the originally proposed scheme 
[47], we employed a simple circular boundary on the complex 
Borel mass plane, whose radius M2

r is treated as a free parameter 
as follows: M2 < M2

r , where M2 = M2eiθ . However, it includes the 
region θ ∼ π

2 , where the damping by the kernels becomes weaker, 
as shown in the definitions

KR(M2; s) ≡ Re
[ 1

M2
e−s/M2

]

= 1

M2
e−(cos θ/M2)s cos

[
(sin θ/M2)s − θ

]
,

(9)

K I(M2; s) ≡ Im
[ 1

M2
e−s/M2

]

= 1

M2
e−(cos θ/M2)s sin

[
(sin θ/M2)s − θ

]
.

(10)

Because, in such a region, the integrals over the spectral function 
include large contributions from the continuum, it is natural to set 
a lower limit for the power of the exponential in these kernels as 
follows:

cos θ

M2
> r̃c . (11)

Such a limit can adequately control the contribution from higher 
energy regions of the spectral function. It leads to a curve bound-
ary on the complex Borel mass plane, as shown by the dashed line 
in Fig. 1. We choose the critical value r̃c such that the statistical 
significances of both the first and second peaks in vacuum become 
best. As a result, r̃c is equal to 1/2.2 GeV−2 and 1/2.0 GeV−2 for 
the V and PS channels, respectively. The actual domains for the 
V and PS channels determined by the above conditions, Eq. (8)
and Eq. (11), are shown in Fig. 1 as shaded regions, in which the 
discretized complex Borel masses are used as input for our MEM 
analyses.

2 This method of setting the lower boundaries was proposed in the first analysis 
using CBSR with MEM [47].
Table 1
Values and respective uncertainties of the condensates and 
other parameters used for evaluating the OPE of Eq. (1).
m̄c(m̄c) 1.273± 0.006 [52]

〈 αs
π G2〉 0.012± 0.0036 GeV4 [23,53]

�Q CD 0.213± 0.008 [54]

The default model, which is another MEM input (see e.g. 
Ref. [13]), is chosen as a constant fixed to the asymptotic value 
of the spectral function computed by perturbation theory [28]: 
the value of 1

π Im�
V ,P S
pert. (ω

2) at ω = ∞ for the V channel and 
ω = 10 GeV for the PS channel.3 The values of the other input 
parameters used in our analyses are summarized in Table 1.

3. Analysis results

3.1. In vacuum

The spectral functions of both V and PS channels in vacuum 
obtained by our analyses are shown in Fig. 2. The estimated er-
rors of the MEM results are shown by the three horizontal lines at 
each peak. It is observed that in both channels two clear peaks are 
generated. Both of them are statistically significant because their 
error bars lie between top and bottom of the peaks [13,41]. Note 
that, although a small third peak is also seen in both channels, 
it could be an artificial peak because it is not statistically signif-
icant. The positions of the first and second peaks agree with the 
experimental values with a precision of the order 50–150 MeV as 
shown in Table 2. Thus they are considered to correspond to the 
physical states, J/ψ , ψ ′ , ηc and η′

c , respectively. It is interesting to 
note that all our obtained masses are lower compared to the ex-
perimental values. It is possible that this situation could improve 
once higher order αs corrections to the Wilson coefficients are in-
cluded in the analysis. As such terms have no influence on the
temperature dependence of the gluon condensates, it is however 
not expected that they will qualitatively change our results about 
the temperature dependence of the peaks.

Let us note that, in an earlier study using conventional Borel 
sum rules with MEM [33], only one statistically significant peak 
was extracted for both channels, and it is widely distributed in the 
energy region between about 2.9 GeV and 3.6 GeV. This wide peak 
likely corresponds to a combination of the first and second peaks 
obtained in our analysis. In other words, by the help of the higher 

3 Because Im�P S
pert.(∞) diverges, we are forced to choose a finite energy to deter-

mine the “asymptotic value” of the spectral function. We checked that the obtained 
peaks do not strongly depend on the choice of this parameter.
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Fig. 2. The analysis results of the vector (left plot) and pseudoscalar (right plot) 
channels in vacuum. The solid lines show the spectral function extracted from MEM. 
The dashed lines show the default model.

Table 2
Positions of the charmonia peaks in vacuum, extracted from CBSR and MEM. The 
corresponding spectral functions are shown in Fig. 2.

V PS

1st [GeV] 2nd [GeV] 1st [GeV] 2nd [GeV]

This work 2.954 3.624 2.900 3.512
Experiment 3.096 3.686 2.983 3.639

resolution of CBSR, we are able to separate the degenerated of the 
previous work into two distinct peaks.

3.2. At finite temperature

Let us see how the peaks are deformed by finite temperature 
effects. Fig. 3 shows the spectral functions in the temperature 
range between 0.9 Tc and 1.2 Tc and also in vacuum for compari-
son. We observe in the figure that all the peaks tend to disappear 
with increasing temperature, that is, the charmonia melt by the 
temperature effects. In both channels, the spectral functions seem 
to be almost unchanged in the temperature range between 1.1 Tc
and 1.2 Tc . This observation may be interpreted as the fact that the 
complete melting of both states up to 1.1 Tc . On the other hand, 
the drastic changes of the spectral functions occur around at 1.0 Tc
for both peaks. This is understood to be caused by a sudden change 
of the G0(T ) and G2(T ) at about 1.0Tc (see e.g. Ref. [24]).

Since we are most interested in comparing the melting behav-
iors of ground and excited states, we next examine them more 
carefully in the temperature region around 1.0 Tc . The bottom pan-
els of Fig. 3 hence show spectral functions at temperatures be-
tween 0.96 Tc and 1.04 Tc with a interval of 0.02 Tc , while the 
energy range of the plot is limited to ω = 2–5 GeV. In this fig-
ure, however, we do not see any considerable difference between 
the ground and excited peaks: Both peaks seem to melt almost 
similarly with increasing temperature. On the other hand, in view 
of the MEM error estimation, we find that the second peak loses 
its statistical significance at a slightly lower temperature than that 
of the first peak, as shown in Table 3.

We note that the temperatures in Table 3 do not necessarily 
correspond to the original melting temperatures, but only indicate 
their “lower limits”. In Fig. 4, we show typical behaviors of error 
bars at finite temperature. At lower temperature T < T low, the peak 
has statistical significance, so that we can clearly conclude that it 
survives. At T = T low, the lower error bar of the peak reaches “the 
dip” at the high-energy side of the peak. At higher temperature 
T > T low, the statistical significance of the peak is lost, so that we 
cannot conclude anything about its existence. Thus, all we can say 
Fig. 3. The temperature dependence of the spectral functions in vector (left plot) 
and pseudoscalar (right plot) channels. The temperature ranges between 0.9 Tc and 
1.2 Tc (top) or 0.96 Tc and 1.04 Tc (bottom). In the bottom figure, the plotted range 
of horizontal axis is limited to ω = 2 GeV to 5 GeV.

Table 3
Lower limits of the melting temperature determined by the MEM error estimation.

V PS

1st peak [Tc ] 2nd peak [Tc ] 1st peak [Tc ] 2nd peak [Tc ]

1.01 0.99 1.01 0.99

is that the physical peak survives at least up to T = T low, and T low
merely indicates a lower limit of the original melting temperature. 
Therefore, the original melting temperatures might become larger 
than the lower limits in Table 3.

As shown in Fig. 3 it is worthwhile to note that the positions of 
both peaks shift to the lower energy side of the order of 50 MeV 
before they lose their statistical significances. Such a shift was al-
ready obtained in earlier studies using Borel sum rules with/with-
out MEM only for the ground states [24–34].4 In our analyses by 
CBSR with MEM, the same behavior is observed also for the ex-
cited states.

In MEM analyses, the shape of the obtained spectral function 
generally depends on the error of the input parameters. It is known 
that if the error grows larger, the spectral function tends to ap-
proach the default model, resulting in an unphysical suppression 
of a potential peak. In our QCD sum rule analysis with MEM, the 
error of the whole OPE becomes larger with increasing tempera-
ture through the growing uncertainties of G0(T ) and G2(T ). To test 
how large such unphysical effects are, we repeated the same anal-

4 We note that the scattering term used in Ref. [27], as shown in Appendix A of 
the reference, has an error.
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Fig. 4. Typical behaviors of spectral function error bars at finite temperature, ex-
tracted from the MEM analysis. Left (T < T low): Statistically significant peak. Middle 
(T = T low): Our definition of the lower limit of the melting temperatures, given in 
Table 3. Right (T > T low): Statistically non-significant peak.

yses at finite temperature by keeping the error fixed to T = 0.5 By 
comparing such a test analysis and the original one at each T , we 
confirmed that the behavior of the respective spectral functions is 
not changed. Therefore, we can conclude that the deformation of 
spectral function obtained by our analyses is caused not by un-
physical effects from the errors but by physically meaningful ones 
caused by the changing condensate values.

As a more quantitative analysis, we could fit the obtained spec-
tral functions by a functional form with some fitting parameters 
(e.g. two peaks and continuum), as performed in Ref. [34]. How-
ever we did not obtain a stable solution for the temperature 
dependence of residues due to the appearance of local minima 
around Tc , where the spectral structures are more complex than 
the form of one peak and continuum as the previous study [34]. 
Thus we do not discuss residues at finite temperature in this paper.

4. Conclusion and outlook

We have applied CBSR with MEM to the vector and pseu-
doscalar channels of charmonium spectra in vacuum and at finite 
temperature. With the help of the higher resolution of CBSR, two 
statistically significant peaks in both channels are extracted, which 
were not resolved in the earlier Borel sum rules with MEM analysis 
of Ref. [33]. Their peak positions agree well with the experimen-
tal values of J/ψ , ψ ′ , ηc and η′

c within 50–150 MeV. By intro-
ducing finite temperature effects through two dimension-4 gluon 
condensates, we have observed that all the obtained peaks are de-
formed to gradually disappear as the temperature increases. We 
have confirmed that this is not an artificial MEM effect induced 
by the increasing error. They completely melt at the temperature 
of T = 1.1 Tc since the spectral function does not largely change 
between 1.1 Tc and 1.2 Tc compared with drastic change around 
at 1.0 Tc . In both the channels, the first and second peaks seem 
to melt almost simultaneously. It is interesting to compare our 
predictions for excited states with recent experimental [35–40] or 
theoretical results [55–57].

To further improve the QCD sum rules, we can include higher 
dimensional terms in the OPE and their temperature depen-
dences. For example, recently, the temperature dependences of 
the dimension-6 gluon condensates were phenomenologically es-
timated in Refs. [31,32]. In the future, it would be worthwhile 
to precisely determine such higher dimensional condensates from 
lattice QCD simulations and to analyze QCD sum rules including 
these effects.

Finally, we comment on the possibility of studying bottomo-
nium channels within the same approach. Recent experimental re-

5 A similar analysis was performed also in Ref. [33].
sults from LHC show that the excited states, ϒ(2S) and ϒ(3S), are 
more strongly suppressed than the ground state ϒ(1S) [58–61]. Al-
though we have tried to reproduce the bottomonium spectra using 
CBSR with MEM, we just obtained one single peak, generated from 
the overlap of the three original peaks, meaning that the resolution 
of MEM was not good enough to disentangle the three states for 
the bottomonium case. This is the same situation as usual Borel 
sum rules with MEM in our previous study [34]. The reason for 
this difficulty is related to the fact that the ratio of the mass differ-
ences between ϒ(1S), (2S), and (3S) to the typical bottomonium 
mass scale ∼10 GeV is too small to separate these states by our 
approach, which is different from the analyses of charmonia with 
the mass difference of m2S −m1S > 500 MeV and the energy scale 
∼3 GeV. The task of further improving the resolution of CBSR and 
finally separating the bottomonium states is left for future studies.
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