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ARTICLE 

Monte Carlo criticality analysis of random media under bounded fluctuation driven 

by normal noise 

Taro Ueki*† 

Japan Atomic Energy Agency, Nuclear Safety Research Center, 

Abstract 

In Monte Carlo criticality analysis under material distribution uncertainty, it is necessary to 

evaluate the response of neutron effective multiplication factor (keff) to the 

space-dependent random fluctuation of volume fractions within a prescribed bounded 

range. Normal random variables, however, cannot be used in a straightforward manner 

since the normal distribution has infinite tails. To overcome this issue, a methodology has 

been developed via forward-backward-superposed reflection Brownian motion (FBSRBM). 

Here, the forward-backward superposition makes the variance of fluctuation spatially 

constant and the reflection Brownian motion confines the fluctuation driven by normal 

noise in a bounded range. In addition, the power spectrum of FBSRBM remains the same 

as that of Brownian motion. FBSRBM was implemented using Karhunen-Loève expansion 

(KLE) and applied to the fluctuation of volume fractions in a model of UO2-concrete 

media with stainless steel. Numerical results indicate that the non-negligible and 

significant fluctuation of keff arises due to the uncertainty of media formation and just a 

few number of terms in KLE are enough to ensure the reliability of criticality calculation. 
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Karhunen-Loève expansion 
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1. Introduction 

In many cases of engineering analysis, it is necessary to evaluate system responses to the 

random fluctuation of some parameter within a prescribed range with upper and lower bounds. 

It is known in information theory [1] that normal random variables have the largest entropy 

under the constraint of a fixed value of variance. Engineers are thus motivated to utilize 

normal noise in the response evaluation. However, the infinite tails of normal distribution 

have been a major hurdle to the modeling of bounded fluctuation, and this issue arises in the 

criticality analysis of debris as well. The present work proposes a methodology for the 

bounded fluctuation driven by normal noise and demonstrates numerical results for its 

application to the spatial fluctuation of volume fractions in a model of UO2-concrete media 

with stainless steel precipitates. The methodology can be utilized as a tool for Monte Carlo 

(MC) criticality analysis under material distribution uncertainty in addition to the randomized 

Weierstrass function (RWF) developed previously [2]. 

The log normal transformation has been traditionally utilized for the modeling of 

one-sided-bounded fluctuation originated from normal noise. In the nuclear engineering 

disciplines, the log normal transformation is investigated in computational radiation transport 

[3]. As opposed to these popularities, a different approach must be pursued for the modelling 

of the spatial variation of volume fractions since volume fractions are strictly bounded above 

and below, respectively, by 100% and 0%. The model and mechanism chosen for this pursuit 

are Brownian motion (BM) [4] and the equivalence in likelihood between the original and 

reflected BM paths [5]. Previous work based on the reflection of BM path is found in the 

disciplines of operations research and management science within the context of the 

asymptotic variance of a stationary simulation output process [6]. In the present work, 

multiple reflections are justified based on the strong Markov property in stochastic analysis 

[5] and the reflected BM path is shown to have the same power spectrum as that of the BM 

path characterized by the inverse-square law [7]. Other noteworthy aspect of BM is the linear 
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growth of variance [4]. If forward and backward BM paths are independently superposed, the 

synthesized path has constant variance throughout the domain. Based on these approaches 

with reflection and superposition, it is possible to generate replicas of the path with constant 

variance driven by normal noise and characterized by a strictly bounded fluctuation range. 

The methodology developed is to be termed the forward-backward-superposed reflection 

Brownian motion (FBSRBM).  

An ideal approach often ends up with some compromise for a feasibility reason. In the 

present work, the Karhunen-Loève expansion (KLE) [8,9] of stochastic processes is chosen to 

approximate a BM path. The reason for this choice is that the eigenvalue spectrum 

decomposition of BM covariance function in KLE matches very well with the inverse-square 

power spectrum of BM [7]. The integrated error minimality at expansion truncation is also a 

favorable aspect of KLE [8]. Numerical results are demonstrated for the MC criticality 

calculation of the UO2-concrete media with stainless steel precipitates where the mean 

volume ratio of UO2 to concrete is set close to the optimal moderation condition [10]. Voxel 

mesh overlay is a mechanism for handling stainless steel precipitates. 

Before concluding this section, it is worthwhile mentioning other motivation behind the 

development of FBSRBM. In the previous work on MC criticality analysis under material 

distribution uncertainty [2], the random media modeling with RWF was compared against the 

deterministic spatial fluctuation modeling with the strict conservation of the total volume of 

each constituent material. Its numerical results indicate that the largest neutron effective 

multiplication factor is obtained for a deterministic trigonometric fluctuation although the 

total volume of UO2 is not conserved in the RWF modeling. Similar comparison should be 

conducted for different random media modeling before making any conclusion on random 

media versus deterministic fluctuation. It is thus necessary to develop random modeling 

different from RWF. To that end, FBSRBM is chosen because of three target characteristics; 

1) upper and lower fluctuation bounds, 2) constant variance, and 3) normal noise.  
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2. Brownian Motion, Reflection and Superposition 

BM was originally proposed as an idealized model of the phenomenon discovered in a 

continual swarming motion of pollen-grains in water. In the modern probability theory, BM is 

a non-stationary stochastic process with the stationary increments of normal distribution. Its 

formal definition is [4]:  

Definition (BM): 

(A) For 0 1 20 mx x x x     , 0( )MB x , 1 0( ) ( )M MB x B x , 2 1( ) ( )M MB x B x , , 

1( ) ( )M m M mB x B x   are independent, 

(B) 1/2 2( ( ) ( ) ) (2 ) exp( / (2 ))
z

R M MP B x h B x z h u h du


      , 0x  , 0h  , 

(C) ( (0) 0) 1R MP B    and ( )MB x  is continuous with probability 1 for 0x  , 

where ( )MB x  stands for BM with the argument x as the explicit indication of domain 

variable and implies the path value evaluated at x; RP  stands for probability. Three different 

proofs exist for the existence of BM [5].  

Two aspects of BM deserve immediate attention. First, as stated in Definition (BM-A), 

the increments ( , ) ( ) ( )M M MB x h B x h B x     are independent for all 0x   and 0h   if 

the intervals ( , ]x x h  do not overlap. Second, the law of normal distribution in Definition 

(BM-B) implies that ( , )MB x h Y    and ( , )MB x h Y    are equally likely to occur. For 

these reasons, ( )MB x  and its reflection at ( )MB x Y  are both paths that are equally likely 

to occur. This property of BM is formally based on the following theorem: 

 

(Theorem) Define inf{ 0; ( ) }Y MS x B x Y   . Then, with ( ) ( ) ( )M M Y M YB x B S x B S     

for 0x  , the process MB  is also BM; ( )MB x  follows the laws in Definitions (BM-A, B, 

C). 

 

(Remark) According to stochastic analysis, SY belongs to two classes of random variables 

called optional time and stopping time. The above theorem holds for the optional time due to 
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the strong Markov property of BM. The details can be found in the proof of 6.16 Theorem in 

Chapter 2 in [5]. 

 

Definition (BM) and the symmetry of normal distribution imply that the path defined by

( )MB x  for Yx S  and ( )M YY B x S   for Yx S  is also a path of BM. If this path 

reaches the level Y after x increases by a finite amount S, Theorem is again applied to generate 

the new BM path starting afresh as ( ) ( ) ( )M M MB x B S x B S     , 0x  . Then, the path 

defined by ( )MB x  for Yx S , ( )M YY B x S   for Y YS x S S    and ( )M YY B x S S    

for Yx S S   is also a path of BM. In this manner, whenever BM crosses the level Y, its 

path is reflected and the resulting path remains BM. Such a mechanism can be utilized to 

realize paths confined above the level Y1 (<0) and below the level Y2 (>0). 

For demonstration, it is worthwhile to show ( )MB x  and its reflection path. Since the 

covariance of BM is [4] 

 1 2 1 2 1 2 1 2

1
[ ( ) ( )] min( , ) [ | |]

2M ME B x B x x x x x x x       (1) 

where E denotes expectation, the covariance matrix ,( )j kCC  is introduced as 

 , [ ( ) ( )] min( , )j k M j M k j kC E B x B x x x  , , , , 1, ,j k
j kx x j k n
n n

    . (2) 

The symmetry and positive definiteness of covariance matrices allow one to express the 

matrix C as the product of a lower triangular matrix L and its transpose LT: 

 T
,( )i jC C LL . (3) 

Let 1 2( , , , )nV V VV   be a vector of independent random variables under the standard 

normal distribution satisfying E[Vj]=0, E[(Vj)2]=1 and E[VjVk]= for jk where the subscripts 

of Vj and Vk corresponds to xj and xk. The covariance matrix of LV becomes equal to TC LL . 

A replica of BM path, denoted as ˆ ( )MB x , is generated as 

  1 2
ˆ ˆ ˆ( ), ( ), , ( ) ( )T

M M M nB x B x B x  LV . (4) 
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Note that once ˆ ( )MB x  is obtained for 0 1x  , ˆ ( )MB x  can also be obtained for 0 x X   

using the equivalence in distribution between ( )MB Xx  and 1 2 ( )MX B x  [4]. Only the 

number of domain values n matters. Figure 1 shows a path ˆ ( )MB x  generated by Eq (4) with 

n=20000 and its reflection path at the level 1Y   . As argued earlier, both paths are equally 

likely to occur. The power spectrum of ˆ ( )MB x  can be computed as [7] 

 
2

1

1ˆ ˆ( ; ) exp 2
n

M Mj

j jB f B i f
n n n

         
   

   (5) 

where f is the frequency domain variable and i in the argument of exponential is the imaginary 

unit ( 2 1i   ). For BM, power spectrum is known to follow the inverse square law [11,12] 

 
2

1ˆ( ; )MB f
f

  .  (6) 

Therefore, it is worthwhile checking if both paths in Figure 1 follow Eq (6). Figure 2 shows 

the power spectrum computed by Eq (5) for the original and reflection path in Figure 1. It is 

seen that both paths almost follow the law in Eq (6). Figure 3 shows slope estimates of 

ˆ( ; )MB f  for 200 replicas of BM independently generated by Eq (4). Figure 3 also presents 

the p-value of these estimates by the normality test of Shapiro-Wilk [13] extended by Royston 

[14]. It is seen that the deviation of 0.28 from 2.01 is likely to occur with 95% significance. 

Taking this into account, one is led to conclude that two power spectra in Figure 2 both 

follows the inverse-square law in Eq (6) and thus the reflection path in Figure 1 is indeed a 

realization of BM path. 

The developments thus far demonstrate that the reflections at Y    can generate BM 

paths confined in [ , ]  . On the other hand, it is also essential to have the capability of 

producing a fluctuation whose variance is constant over the domain. In order to realize a 

normal fluctuation with constant variance, one can utilize the linear growth property of 

variance implied in Eq (1) with 1 2x x . Let independent forward and backward BMs be 

denoted by ( )F
MB x  and ( )B

MB X x , respectively, where the capital letter X corresponds to 



 7

the domain size. Then, the variance of their superposition is easily shown to be constant using 

their independence and zero mean properties and Eq (1): 

 2[( ( ) ( )) ]F B
M ME B x B X x x X x X      .  (7) 

Similarly, the covariance of this superposed process is obtained as 

 

1 1 2 2

1 2 1 2

1 2

[( ( ) ( ))( ( ) ( ))]

[ ( ) ( )] [ ( ) ( )]

| | .

F B F B
M M M M

F F B B
M M M M

E B x B X x B x B X x
E B x B x E B X x B X x
X x x

   

   
  

  (8) 

It is clear from Eqs (1) and (8) that the covariance of ( ) ( )F B
M MB x B X x   is not equal to that 

of ( )MB x . This disagreement about covariance may make the power spectrum of 

( ) ( )F B
M MB x B X x   deviate from the inverse square law in Eq (6). Figure 4 shows power 

spectrum for a replica of ( ) (1 )F B
M MB x B x  , i.e., ˆ ˆ( ( ) (1 ); )F B

M MB x B x f   . Although f- 

plots in Figure 4 appear to be more scattered than those of Figure 2, the slope of

ˆ ˆ( ( ) (1 ); )F B
M MB x B x f    still follows the inverse square law in Eq (6). This can be 

qualitatively explained as follows. The power spectrum of ˆ ˆ( ) (1 )F B
M MB x B x   is computed as  

 

2

1

2

1

1 0

2

1

1 ˆ ˆ 1 exp 2

ˆ (1)1 1ˆ ˆexp 2 1 exp 2

1 1ˆ ˆexp 2 1 exp

n F B
M Mj

B
n nF B M

M Mj j

n F B
M Mj

j j jB B i f
n n n n

Bj j j jB i f B i f
n n n n n n n

j j jB i f B
n n n n n





 



                     

                     
       

              
     



 


2

1

0

1

1 0

2

1 1ˆ ˆ2 Re exp 2 1 exp 2

(1/ )

n

j

n nF B
M Mj j

ji f
n

j j j jB i f B i f
n n n n n n

O n







 

   
 

                            




 

  (9) 

where ˆ (0) 0B
MB   is used at the first equality and the fourth term after the second equality is 

the big-oh notation about the order of magnitude; ( ) /O x x  stays finite as 0x  . Since ˆ B
MB  

is real and | exp( 2 ) | 1i f  , the second term after the second equality can be manipulated as  

 
1 1

0 0
ˆ ˆ1 exp 2 exp 2

n nB B
M Mj j

j j n j n jB i f B i f
n n n n

 

 

                    
       

   . (10) 
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By Eqs (6) and (10), the first two terms after the second equality of Eq (9) follow the inverse 

square law with respect to f. Similarly, the absolute values of 

 
1

1 ˆ exp 2
n F

Mj

j jB i f
n n n

       
   

   (11) 

and  

 
1 1

0 0

1 exp( 2 )ˆ ˆ1 exp 2 exp 2
n nB B

M Mj j

j j i f n j n jB i f B i f
n n n n n n

 

 

                    
       

    (12) 

are both proportional to 1 / f  by Eq (6). The third term after the second equality of Eq (9) is 

thus proportional to 21/ f  and accompanied by a f-dependent phase shift. Therefore, taking 

Eq (8) into account, ( ) (1 )F B
M MB x B x   can be viewed as a stationary approximation to the 

process of the 21/ f  power spectrum with a phase-shift-related fluctuation. This 

characterization of ( ) (1 )F B
M MB x B x   agrees with nearly the same f- plots in Figures 2 and 

4. 

Based on these developments, one can generate a superposed-BM-path driven by normal 

noises and confined in [ , ]  . Let the initial value be ˆ ˆ ˆ( ) ( ) (1 )F B
M MF x B x B x    and 

evaluate the final value of ˆ ( )F x  by the algorithm below: 

 

Algorithm (Reflection): 

ˆ ˆ ˆ( ) ( ) (1 )F B
M MF x B x B x   ; 

while ( ˆ| ( ) |F x   ) { 

if ( ˆ ( )F x   ) { ˆ ˆ( ) 2 ( );F x F x   }  

else if ( ˆ ( )F x   ) { ˆ ˆ( ) 2 ( );F x F x    } 

} 

 

Since ˆ ˆ ˆ ˆ2( ) ( ( ) (1 )) 2( / 2) ( ) 2( / 2) (1 )F B F B
M M M MB x B x B x B x           , the successive 

reflections of ˆ ( )F
MB x  and ˆ (1 )B

MB x  at / 2Y    occur in the above computation until 
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ˆ| ( ) |F x    is satisfied. This path realization method is to be termed the 

forward-backward-superposed reflection Brownian motion (FBSRBM). Note that FBSRBM 

is an approximate 1/f2-spectrum fluctuation of constant variance. This approximation has been 

shown directly from the defining formula of power spectrum while the randomized 

Weierstrass function in previous work [2] is connected indirectly to a family of 1/f2+1 power 

spectrum ( 0 1   ) via moment properties and fractal dimension. 

3. Karhunen-Loève Expansion of Brownian Motion 

The storage space for a replica of BM path computed by Eq (4) can be prohibitively large 

for real applications. To overcome this efficiency issue, candidate techniques to look at can be 

searched among well-defined series expansion methods of stochastic processes. One of such 

methods is KLE utilized for uncertainty quantification [8,9]. Suppose that 1 2( , )GC x x  is the 

covariance function of a stochastic process ( )G x  with zero mean, 

 [ ( )] 0E G x  .  (13) 

The eigenvalue problem of CG is 

 
max

min
1 2 2 2 1( , ) ( ) ( )

x

G m m mx
C x x g x dx e g x ,  (14) 

where the eigenvalues e are non-negative and ordered as 1 2e e   and the eigenfunctions 

g are an orthonormal set of functions. The KLE of ( )G x  is then 

 
1

( ) ( )m m mm
G x e g x


  ,  (15) 

where m  are independent random variables with zero mean and unit variance. KLE was 

introduced in the nuclear engineering disciplines by Williams [15] and has been actively 

investigated for non-normal uncertainties [16]. The application of KLE to finite dimensional 

sample data can be viewed as the principal component analysis [9]. 

For BM, the substitution of Eq (1) in 1 2( , )GC x x  in Eq (14) yields the eigenvalue 

problem 
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1

0
min( , ) ( ) ( )m m mt u g t dt e g u  . (16) 

Eq (16) can be rewritten as 

 
1

0
( ) ( ) ( )

u

m m m mu
tg t dt u g t dt e g u   .  (17) 

Differentiate with respect to u: 

 
1

( ) ( )m m mu
g t dt e g u .  (18) 

Differentiate once more: 

 
1

( ) ( )m m
m

g u g u
e

   .  (19) 

The general solution of Eq (19) is 

 ( ) sin cosS C
m m m

m m

u ug u A A
e e

   
       

   
 . (20) 

Since (0) 0mg   by Eq (16), 0C
mA  . Eq (18) also implies (1) 0mg  , which leads to 

 21 / ( ( 0.5))me m   .  (21) 

Eq (20) becomes 

 ( ) sin( ( 0.5) )S
m mg u A m u   . (22) 

and the normalization condition 
1 2

0
[ ( )] 1mg u du   yields 

 2S
mA  .  (23) 

In Eqs (21) and (22), the eigenfunctions are trigonometric and the eigenvalue spectrum is of 

inverse-square nature, which matches very well with the inverse-square power spectrum 

displayed in Eq (6).  

It is known that 1) the finite dimensional distribution of 0( )MB x , 1( )MB x , , ( )M kB x  

is jointly normal [5] and 2) if the finite dimensional distribution of 0 0( ) ( )MG x B x , 
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1 1( ) ( )MG x B x , , ( ) ( )k M kG x B x  is normal,   in Eq (15) are normal random variables 

[17]. Eqs (15) and (21)-(23) then yield  

 
1

sin(( 0.5) )
( ) 2 , 0 1

( 0.5)M mm

m xB x x
m





 
   

  , (24) 

where   are independent normal random variables with zero mean and unit variance. It is 

worth mentioning that if the half-integer m-0.5 is replaced by the integer m, Eq (24) becomes 

the KLE of Brownian bridge [7]. 

It is important to check if 2[( (1)) ] 1E B   is satisfied as required by Definitions 

(BM-B,C). According to Euler [18], 

 
2

2 2 2

1 1 1

1 2 3 6


      (25) 

which implies 

 
2

2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 4 6 2 1 2 3 24

         
 

  . (26) 

Taking into account the independence, zero mean and unit variance of  , Eqs (24)-(26) yield 

 
2 2

2
2 2 2 2 2

8 1 1 1 8
[( (1)) ] 1

1 3 5 6 24ME B
               

   (27) 

as required.  

BM paths approximated by KLE are shown in Figure 5 for various numbers of expansion 

terms. It is clearly seen that the overall trend of BM path is already realized for 20~100 

expansion terms. Figure 6 shows the slope of power spectrum for six replicas of the 

KLE-approximated BM path for various numbers of expansion terms. The slope estimates 

appear to converge within the two sigma uncertainty range in Figure 3 for numbers of 

expansion terms larger than or equal to 2000. Lower slope estimates for smaller numbers of 

expansion terms indicate that zig-zag paths due to high frequency components will not be 

realized for the KLE-approximated BM paths with smaller number of expansion terms. 
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Figure 7 shows the power spectrum of a replica of the KLE-approximated BM path for 100 

and 5000 expansion terms. The power spectrum for 5000 expansion terms exhibits a nice 1/f2 

shape as displayed in Figure 2. This is consistent with the convergent behavior in Figure 6. On 

the other hand, the power spectrum for 100 expansion terms in Figure 7 exhibits steeper slope 

than 1/f2 and appears to indicate the lack of stochasticity nature to be observed for data in high 

frequencies. However, for a lower frequency domain of 10<f<50, the power spectrum for 100 

terms shows a 1/f2 shape within the tolerance determined by the fluctuations in Figure 3. 

Therefore, in Section 4, numerical results concerning replicas of FBSRBM will be displayed 

for the KLE-approximated ˆ F
MB  and ˆ B

MB  from 100 expansion terms. 

BM can be expanded in many ways as found in mathematics literatures; wavelet 

approach [19], an orthonormal basis expansion constructed from trigonometric and Bessel 

functions [20], and a basis expansion based on the orthonormality in Cameron-Martin 

subspace in stochastic analysis [21]. Each of these expansions is a well-established approach 

with a firm foundation. However, in this work, KLE has been chosen in terms of the 

minimality of integrated mean square error as explained below. Let the expansion of G and its 

residual at N-th term be 

 
1

( ) ( )j jj
G x a g x


 ,  (28) 

 
1

( ) ( )N j jj N
R x a g x

 
 .  (29) 

The orthonormality of { }jg  yields 

 
max

min

( ) ( )
x

l m lmx
g x g x dx   ,  (30) 

 
max

min

( ) ( )
x

j jx
a G x g x dx  ,  (31) 

where lm  is the Kronecker delta. For simplicity, the symbol denoting stochasticity such as 

  in probability theory and ^ for a realization is dropped from ja  and G . Also note that  

 [ ] 0jE a    (32) 
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 1 2 1 2( , ) [ ( ) ( )]GC x x E G x G x .  (33) 

since G(x) was assumed to be zero mean in Eq (13). The mean square error due to truncation 

is evaluated as the variance of the residual, 

max max

min min

max max

min min

2

1 1

1 2 1 2 1 21 1

1 2 1 2 1 21 1

[( ) ] [( ( ))( ( ))]

[ ( ) ( ) ( ) ( ) ] ( ) ( )

( , ) ( ) ( ) ( ) ( )

N j j k kj N k N

x x

j k j kj N k N x x

x x

G j k j kj N k N x x

E R E a g x a g x

E G x G x g x g x dx dx g x g x

C x x g x g x dx dx g x g x

 

   

 

   

 

   







 
   
   

  (34) 

where Eq (31) and (33) are used at the second and third equalities, respectively. The 

integration of Eq (34) from minx x  to maxx x  and the orthonormality in Eq (30) give the 

integrated mean square error, 

 
max max max

min min min

2
1 2 1 2 1 21

[( ) ] ( , ) ( ) ( )
x x x

N N G j jj Nx x x
IMSE E R dx C x x g x g x dx dx

 
    .  (35) 

Introduce the Lagrangian multipliers j  for the minimization of NIMSE  with the constraint 

of the normalization condition in Eq (30): 

max max max

min min min

2
1 2 1 2 1 21

( , ) ( ) ( ) ( ( ( )) 1) .
x x x

N G j j j jj N x x x
LAG C x x g x g x dx dx g x dx

 
           (36) 

Pick some integer k larger than N and compute the variation of LAGN due to the change of 

( )kg x  to ( ) ( )kg x h x  : 

  max max

min min

max max max

min min min

1 2 2 2 1 1 1

2 2
1 1 2 2 2 1

[ ] [ ]

2 ( , ) ( ) ( ) ( )

( ) ( , ) ( ) ( ( ))

N k N k

x x

G k k kx x

x x x

G kx x x

LAG g h LAG g

C x x g x dx g x h x dx

h x C x x h x dx dx h x dx

  

     
     

 

  

  (37) 

where the symmetry of the covariance function 1 2( , )GC x x  is used. The condition of 

stationarity requires that the coefficient of  is zero for any h, which leads to 

 
max

min
1 2 2 2 1( , ) ( ) ( )

x

G k k kx
C x x g x dx g x  .  (38) 
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This is the same equation as Eq (14) [8]. In order to show the minimality of NIMSE , one 

must argue if the coefficient of 2  is positive for the solutions of Eq (38). To this end, 

introducing the L2-norm of h as 

  max

min

1/2
2

2
( ( ))

x

x
h h x dx  ,  (39) 

Eq (37) is rewritten as, under Eq (38) ( k ke    in Eq (14)),  

 
max max

min min

2 2 1 2
1 2 2 12

2 2

( ) ( )
[ ] [ ] ( ) ( , )

x x

N k N k G kx x

h x h xLAG g h LAG g h C x x dx dx
h h

 
      

  
  . (40) 

For sufficiently large eigenmodes k and an arbitrarily fixed h with a finite L2-norm, the 

coefficient of2 in Eq (40) is positive because of the positive definiteness of covariance 

functions and the following result in functional analysis: since the left hand side of Eq (14) 

(Eq (38)) defines a compact Hermite operator, the set of eigenvalues is a countable set and 

can have the accumulation point only at zero ( 0k  ) [22]. For example, 

2( 0.5)k ke k      for BM by Eq (21). Moreover, if h is comprised of the eigenfunctions 

retained in KLE such that 

 1 1( ) ( ) ( )N Nh x h g x h g x   , 2 2 2
1 2

( ) ( ) ( )Nh h h   ,  (41) 

Eq (40) becomes 

 2 2 2 2
1 1 2

[ ] [ ] ( ) ( ) ( ) 0N k N k N N kLAG g h L g h h h               (42) 

since k N . This implies that NIMSE  is minimized with respect to the eigenfunction 

variation in the residual by any eigenfunction retained in KLE. In this framework, KLE can be 

viewed as the integrated error minimality choice for truncation and is thus preferable to other 

expansions referred to earlier. 

4. Monte Carlo Criticality Calculation of Random Media 

In this section, numerical results are shown for a model of concrete-UO2 debris with 

stainless steel precipitates. The model geometry is the same as that appeared in previous work 

[2]; as shown in Figure 8, a cube of 100×100×100 cm3 is situated at the center of a cube of 
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140×140×140 cm3 with their corresponding faces parallel to each other. The inner cube is a 

mixing zone and the surrounding peripheral part is occupied by concrete. In the mixing zone, 

concrete and UO2 are continuously mixed while stainless steel precipitates in a discrete 

manner. This discrete treatment is different from that of previous work [2] where stainless 

steel was also mixed continuously with concrete and UO2. 

4.1. Preliminary Performance Analysis of Voxels and Delta-Tracking 

The precipitates are handled by voxels and delta-tracking [23]. The computational 

efficiency of this handling is demonstrated for a cube of 140×140×140 cm3 consisting of 

concrete and UO2 fuel at 12 GWd/t (5.0 wt% initial 235U enrichment) with the mean volume 

ratio of (concrete):(UO2)=7:1. The one-group cross sections with isotropic scattering in 

previous work [2] were used. The schematic description of particle tracking through voxels is 

shown in Figure 9 and the numerical result for its performance is shown in Figure 10. It is 

seen that the elimination of boundary crossing checks and the binary search through voxel 

indices significantly enhance the efficiency of calculation as appeared in the log-linear growth 

of computational time with respect to memory usage. Note that the above analysis was solely 

intended to examine the performance of the delta tracking with the binary search through 

voxel indices. Therefore, the computation in Figure 10 was conducted without stainless steel 

precipitates and the Case 1 in Figure 9 always occurred as a result of the identification of the 

destination voxel index. As explained in the next subsection, the computations in Figures 11 

and 12 were conducted with stainless steel precipitates. 

4.2. Test Problem Description and Cross Section Generation 

The test problem is shown in Figure 8. Table 1 lists two-group cross sections computed 

by MVP [24]. Here, the group energy boundary was taken to be 4.5eV because this energy is 

the upper limit of thermal up-scattering in MVP and is sufficiently away from the resonance 

peak of 238U at 6.67eV and the gigantic resonance peak of 240Pu at 1.06eV. The isotopic 

abundances based on SUS304 data [25] were employed for stainless steel. The material data 
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in Ref [10] were employed for concrete and UO2 fuel at 12 GWd/t (5.0 wt% initial 235U 

enrichment). The geometry and material assignment in the calculation of two group cross 

sections by MVP were as follows. For SUS304, UO2 and concrete in the mixing zone, cubes 

of 1×1×1 cm3, 1.077217×1.077217×1.077217 cm3 and 2.020620×2.020620×2.020620 cm3 

were set up with the common center and their corresponding faces parallel to each other. 

These cubes define the inner, middle and outer regions with the volume ratio of 1:0.25:7 

because 13=1, 1.0772173-1=0.25 and 2.0206203-1.0772173=7. UO2, SUS304 and concrete 

were assigned in that order to the inner, middle and outer regions. Specular reflection was 

applied to the exterior surface of the cube 2.020620×2.020620×2.020620 cm3. The cross 

sections computed for the inner, middle and outer regions are the cross sections of UO2, 

SUS304 and concrete in the mixing zone in Figure 8. For concrete in the peripheral zone, 

cubes of 1×1×1 cm3, 2×2×2 cm3 and 3×3×3 cm3 were set up with the common center and 

their corresponding faces parallel to each other. UO2, concrete and concrete were assigned in 

that order to the inner, middle and outer regions. The cross sections computed for the outer 

region are the cross sections of concrete in the peripheral region in Figure 8. It is seen in Table 

1 that the thermal-group cross sections significantly differ for concretes in the mixing and 

peripheral zones. All these calculations by MVP were carried out using JENDL 4.0 libraries 

[26]. 

In the MC criticality calculation of the model in Figure 8, voxels were overlaid and 

particle tracking was conducted as shown in Figure 9. Voxels in the mixing zone are randomly 

and independently selected for stainless steel (SUS304) and concrete-UO2-media, 

respectively, with the ratio of 0.25:(1+7)=1:32. The selection of voxels were made before MC 

calculation. Two independent sequences of standard normal random variables were also 

sampled for FBSRBM before MC calculation. In other words, a replica of random media was 

created, that replica was fixed, and MC criticality calculation was conducted. The process of 

replica creation and subsequent MC criticality calculation was repeated many times to 



 17

evaluate the fluctuation of neutron effective multiplication factor (keff) due to the uncertainty 

inherent in random media formation. The voxels in the peripheral zone were always assigned 

concrete. When the destination of particle movement during delta tracking was in the voxels 

for concrete-UO2-media, volume fractions of concrete and UO2 were computed using 

FBSRBM and KLE, cross sections were determined, and the collision processing specific to 

delta-tracking was carried out based on the non-analog technique by Spanier [23]. The cross 

section for the sampling of distance to next collision was simply chosen as the maximum total 

cross section over 4 materials in Table 1, i.e., the total cross section of SUS304. The cross 

section determined in this way is always larger than the cross section of any mixture of 

materials under consideration. 

The details of the cross section computation at the voxels for concrete-UO2 media in the 

mixing zone are described as follows. First, upon collision, ˆ ( )F
MB x  and ˆ (1 )B

MB x  were 

computed using KLE. Second, setting the initial value of ˆ ( )F x  as ˆ ˆ( ) (1 )F B
M MB x B x  , the 

final value of ˆ ( )F x  was computed with 3   in Algorithm (Reflection). This means that 

the likelihood of reflection is 1% for any x. Finally, the cross sections are assigned as 

 
2

1 2 3 1

1

ˆ( , , ) [1 (1/ 8)(1 (1/ ) ( /100))]

ˆ(1/ 8)(1 (1/ ) ( /100) )

Concrete
R R

UO
R

x x x f F x

f F x

     

   
,  (43) 

where  denotes cross section, the subscript R stands for reaction type, f is a constant 

satisfying 0 1f  , 1/8 is the mean volume ratio of UO2 in concrete-UO2 media, the 

superscript of  on the righthand side corresponds to material, and 1 2 3( , , )x x x  are 

coordinates values in Figure 8. Note that  

 1
ˆ0 (1/ ) | ( /100) | 1F x     (44) 

and 1
ˆ(1/ 8) (1/ ) ( /100)f F x  is the space-dependent part of the volume fraction of UO2 in 

concrete-UO2 media. This yields 

 2 2 (1/8)(1- )  UO  volume fraction in concrete-UO  media  (1/8)(1+ )f f    (45) 
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Only the spatial variation in x1-direction was considered although MC criticality calculation 

was conducted in three-dimensions. 

4.3. Numerical Results for keff 

Numerical results are shown for cases where voxels of size 1×1×1 cm3 were overlaid in 

Figure 8, f = 0.25 and 0.5 in Eq (43), and the first 100 terms in KLE were computed for each 

of ˆ ( )F
MB x  and ˆ ( )B

MB x  in the initial value assignment to 1
ˆ ( /100)F x . Figure 11 shows keff 

for 100 replicas of the random media in the mixing zone in Figure 8. Each replica creation in 

two sub-figures in Figure 11 used the same sequence of random numbers. In other words, a 

sequence of random numbers in the replica m creation on left (f = 0.25 in Eq (43)) is the same 

as a sequence of random numbers in the replica m creation on right (f = 0.5 in Eq (43)). It is 

seen that the fluctuation over replicas is non-negligible and increases as f increases. The 

p-value in the normality test of Shapiro-Wilk [13] extended by Royston [14] indicates that the 

distribution of keff’s does not follow the normal distribution. This result can be attributed to 

the employment of a near optimal neutron moderation condition concerning the volume 

fractions of concrete:UO2=7:1 [10]; the indication of upper limit due to such an optimality is 

more apparent in the large fluctuation on right (f = 0.5). MC calculation for each replica 

consisted of 5000 generations and 40000 particles per generation with the initial 1000 

generations discarded. The standard deviation of keff was computed for each replica by 

orthonormally weighted standardized time series [27], turned out to be about 

0.00005~0.00010 and thus were smaller than the marker sizes. Figure 12 shows keff versus the 

number of terms in KLE for replica 1, 92 and 47 in Figure 11 where replica 1, 92 and 47 

yielded a middle value, the largest value and the smallest value among 100 replicas. Here, it is 

to be noted that one term in KLE means one term in KLE for each of forward and backward 

BMs, i.e., two terms. It is clearly seen that the first ten terms are sufficiently enough to ensure 

the reliability of keff calculation. Upon close inspection, the maximum and minimum keff 

values for the number of terms larger than or equal to 10 are 0.95024±0.00007 and 
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0.95007±0.00006 for replica 1, 0.96107±0.00007 and 0.96077±0.00007 for replica 92, 

0.93225±0.00006 and 0.93207±0.00007 for replica 47. Here, these errors are standard 

deviation. For the maximum-minimum pairs among 23 computed keff values for numbers of 

terms larger than or equal to 10, two- error bars contain common values for replicas 1 and 47, 

and three  error bars do the same for replica 92. Such fast-converging behaviors of keff for 

KLE approximations may be attributed to the global balance nature of keff, the integrated error 

minimality mentioned at the end of Section 3, the superposition of forward and backward 

BMs, and the inverse square decrease of the eigenvalues of BM covariance function. However, 

the theoretical investigation of their combined effect is beyond the scope of the present work. 

Since the results in Figure 12 indicate that 10 terms in KLE are enough for MC criticality 

calculation, it is possible to significantly reduce the number of terms in KLE from 100 and 

implement three-dimensional cross section variation as  

2

1 2 3 1 1 2 2 3 3

1 1 2 2 3 3

ˆ ˆ ˆ( , , ) [1 (1/ 8)(1 (1/ 3 )( ( /100) ( /100) ( /100)))]

ˆ ˆ ˆ(1/ 8)(1 (1/ 3 )( ( /100) ( /100) ( /100)))

Concrete
R R

UO
R

x x x f F x F x F x

f F x F x F x

       

     
 (46) 

where the subscripts 1, 2 and 3 in F̂  imply three independent computations of F̂  by 

Algorithm (Reflection). 

5. Conclusion and Future Work 

In the present work, a practically implementable method was developed for the modeling 

of random media using the bounded fluctuation driven by normal noise. The method is free of 

log-normal transformation, utilizes the superposition of forward and backward Brownian 

motion (BM) with path reflection, and is applicable to the fluctuation with upper and lower 

bounds. The method has been termed forward-backward-superposed reflection BM 

(FBSRBM), and it is possible to efficiently implement FBSRBM by the Karhunen-Loève 

expansion of stochastic processes [8,9]. FBSRBM was applied to the space-dependent 

fluctuation of the volume fractions of UO2-concrete media in a system comprised of UO2, 

concrete and stainless steel. Numerical results for neutron effective multiplication factor (keff) 
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demonstrate the uncertainty of keff due to the uncertainty inherent in debris formation. 

Therefore, FBSRBM is a valuable media randomization tool in Monte Carlo criticality 

analysis under material distribution uncertainty in addition to the randomized Weierstrass 

function (RWF) developed previously [2]. The mathematical methodology in FBSRBM is 

sufficiently general and can be adapted and further developed to model other randomization 

techniques. Surface randomization will be an important next-step research endeavor in terms 

of criticality safety in debris drilling. 

BM is a special case of fractional Brownian motion (FBM) which covers a wide range of 

correlation functions [28]. It is thus natural to proceed to the random media modeling with 

FBM. The challenging issue will be the analytical unsolvability of the eigenvalue problem of 

FBM covariance function except for the special case of BM. An approximation other than 

Karhunen-Loève Expansion should be sought after. To this end, it will be worth investigating 

practical use of the Wavelet expansion of FBM [19].  
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Table 1: Two-group cross sections of concrete, UO2 and stainless steel (T: total, A: absorption, 

C: capture, F: fission,  mean number of neutrons released per fission, S: scattering) 

 

Table 1. Two-group cross sections of concrete, UO2 and stainless steel (T: total, 

A: absorption, C: capture, F: fission,  mean number of neutrons released per 

fission, S: scattering) 

location mixing zone (inside inner cube) peripheral 
zone 

material UO2
 1) concrete SUS304 concrete 

epithermal 

(group 1) 


T,1

 0.43760 0.39080 1.04822 0.38962 


A,1

 0.03282 0.00030 0.00398 0.00031 


C,1

 0.02495 0.00030 0.00398 0.00031 


F,1

 0.02040 0.0 0.0 0.0 


S,11

 2) 0.40402 0.37924 1.04236 0.37608 


S,

2) 0.00076 0.01126 0.00188 0.01323 

thermal 

(group 2) 


T,2

 0.71865 0.69644 1.34126 0.79054 


A,2

 0.31838 0.00523 0.13289 0.00722 


C,2

 0.12258 0.00523 0.13289 0.00722 


F,2

 0.49878 0.0 0.0 0.0 


S,21

 2) 0.00003 0.00001 0.00008 0.0 


S,22

 2) 0.40024 0.69120 1.20829 0.78332 

1) 12 GWd/t, 5.0wt% initial 235U enrichment 

2) isotropic scattering 
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Figure 1. Brownian motion path and its refection path generated via 20000-by-20000 

covariance matrix (n=20000) 

 

Figure 2. Power spectra of Brownian motion path and its refection path generated via 

20000-by-20000 covariance matrix (n=20000) 

 

Figure 3. Slope estimate of power spectrum for Brownian motion path in [0,1] generated via 

20000-by-20000 covariance matrix 

 

Figure 4. Power spectrum of forward and backward superposed path from two independent 

replicas of Brownian motion 

 

Figure 5. Brownian motion path constructed by Karhunen-Loève expansion with various 

numbers of expansion terms 

 

Figure 6. Slope of power spectrum evaluated on frequency domain variables in [10, 1000] for 

Brownian motion paths constructed by Karhunen-Loève expansions with various numbers of 

terms 

 

Figure 7. Power spectrum of Brownian motion path constructed by Karhunen-Loève 

expansion for replica 1 in Figure 6 

 

Figure 8. Concrete-UO2 and stainless-steel debris model. 

 



 26

Figure 9. Delta tracking in voxels 

 

Figure 10. Performance evaluation of delta tracking through voxels with binary search 

 

Figure 11. Effective multiplication factor (keff) over replicas of the continuously-varying 

concrete-UO2 medium constructed by forward-backward-superposed reflection Brownian 

motion containing randomly-distributed voxels of stainless steel of size 1×1×1 cm3; 100 terms 

in Karhunen-Loeve expansion in each of forward and backward Brownian motions; in each 

replica, 1000 initial generations discarded, followed by 4000 active generations, and 40000 

particles per generation. 

 

Figure 12. Neutron effective multiplication factor (keff) versus number of terms in 

Karhunen-Loève expansion for three replicas in right-subfigure (f=0.5) in Figure 11. 
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Figure 1. Brownian motion path and its refection path generated via 20000-by-20000 

covariance matrix (n=20000) 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 2. Power spectra of Brownian motion path and its refection path generated via 

20000-by-20000 covariance matrix (n=20000) 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 3. Slope estimate of power spectrum for Brownian motion path in [0,1] generated via 

20000-by-20000 covariance matrix 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 4. Power spectrum of forward and backward superposed path from two independent 

replicas of Brownian motion 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 5. Brownian motion path constructed by Karhunen-Loève expansion with various 

numbers of expansion terms 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 6. Slope of power spectrum evaluated on frequency domain variables in [10, 1000] for 

Brownian motion paths constructed by Karhunen-Loève expansions with various numbers of 

terms 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 7. Power spectrum of Brownian motion path constructed by Karhunen-Loève 

expansion for replica 1 in Figure 6 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 8. Concrete-UO2 and stainless-steel debris model. 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 9. Delta tracking in voxels 

 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 

  



 36

 

 

 

 

Figure 10. Performance evaluation of delta tracking through voxels with binary search 
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Figure 11. Effective multiplication factor (keff) over replicas of the continuously-varying 

concrete-UO2 medium constructed by forward-backward-superposed reflection Brownian 

motion containing randomly-distributed voxels of stainless steel of size 1×1×1 cm3; 100 terms 

in Karhunen-Loève expansion in each of forward and backward Brownian motions; in each 

replica, 1000 initial generations discarded, followed by 4000 active generations, and 40000 

particles per generation. 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 
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Figure 12. Neutron effective multiplication factor (keff) versus number of terms in 

Karhunen-Loève expansion for three replicas in right sub-figure (f=0.5) in Figure 10. 

 

T. Ueki: 

Monte Carlo criticality analysis of random media modeled by bounded fluctuation driven by 

normal noise 

 


