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Electric field control of magnetic domain wall motion
via modulation of the Dzyaloshinskii-Moriya interaction
Tomohiro Koyama1*, Yoshinobu Nakatani2, Jun’ichi Ieda3, Daichi Chiba1*

We show that the electric field (EF) can control the domainwall (DW) velocity in a Pt/Co/Pd asymmetric structure. With
the application of a gate voltage, a substantial change in DW velocity up to 50m/s is observed, which is much greater
than that observed in previous studies. Moreover, modulation of a DW velocity exceeding 100m/s is demonstrated in
this study. An EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (DMI) up to several percent is
found to be the origin of the velocity modulation. The DMI-mediated velocity change shown here is a fundamentally
different mechanism from that caused by EF-induced anisotropy modulation. Our results will pave the way for the
electrical manipulation of spin structures and dynamics via DMI control, which can enhance the performance of spin-
tronic devices.
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INTRODUCTION
In a ferromagneticmetal (FM)/heavymetal (HM) layered structure, the
interfacial Dzyaloshinskii-Moriya interaction (DMI) (iDMI) resulting
from structural inversion asymmetry (SIA) and spin-orbit coupling
stabilizes a Néel domainwall (DW)with fixed chirality (1, 2) and also
a skyrmion (3, 4). The iDMI counters a substantial reduction in DW
velocity v because the magnetization precession inside the DW nor-
mally caused by the Walker breakdown is suppressed (5, 6). More-
over, the invariance of the chiral DW originating from the iDMI is
indispensable for its motion driven by the current-induced spin-orbit
torque (7–9) and ensures the high-speed and robust operation of a race
track memory (10).

An additional application of an external electric field (EF) to the
FM/HM structure represents a method of tuning the SIA and thus
can provide a route to efficiently control the DW dynamics via the
modulation of the iDMI. A capacitor structure is used to apply an
EF to the FM surface through a dielectric layer, and the resultant
change in interface magnetism has been reported using various FM
thin films (11–22). However, control of the DW motion caused by
an “electrical iDMI gating” has never been achieved. In this study,
we demonstrate that an EF application can gate the DW velocity in
an iDMI-assisted flow regime. Further experiments clarify that the
EF modulation of the iDMI magnitude D rather than the magnetic
anisotropy explains the results.
RESULTS
Sample preparation and experimental setup
An asymmetric Pt/Co/Pd layered structure capped by a 2-nm-thick
MgO layer deposited on a thermally oxidized Si substrate was used
for the experiments (see also Materials and Methods). Two samples
with different nominal Co thickness tCo (0.78 and 0.98 nm) were
prepared. Because of the interfacial magnetic anisotropy at the Pt/Co
and Co/Pd interfaces, both samples exhibit perpendicular magnetic
anisotropy (PMA). In this structure, a magnetic moment is induced
in both the bottom Pt and top Pd layers because of the ferromagnetic
proximity effect. The whole part of the Pd layer is expected to be mag-
netized because its thickness is only 0.4 nm (19). Figure 1 shows the
schematic image of the device and experimental setup used in this
study. The EF was applied to the sample surface through a HfO2 di-
electric layer formed by atomic layer deposition (see also Materials
and Methods). Here, we defined a positive (negative) gate voltage
VG as corresponding to the direction of the increase (decrease) in
the electron density near the sample surface. All experiments shown
below were performed at room temperature.

The DW displacement under the application of VG was observed
using a polar magneto-optical Kerr effect (MOKE) microscope. A
pulsed perpendicular magnetic field Hz with a duration t of 150 ns
was applied to nucleate a magnetic domain and drive the DW
surrounding it (see also Materials and Methods). The value of v was
determined by the following procedure. After making the sample a
single-domain state, a domain with an opposite polarity was nucleated
by applying a Hz pulse (|m0Hz| = 210 mT was used to nucleate a do-
main). Then, aHz pulse was again applied to expand the nucleated do-
main. The MOKE images were taken before and after the domain
expansion. A typicalMOKE image after subtracting twoMOKE images
is shown in Fig. 1. The dark-colored part corresponds to the region
swept by the DW. From the DW displacement (L) indicated on the
image, v (= L/t) can be determined.

DW velocity under application of gate voltage
First, we discuss theHz dependence of v. Figure 2 (A and B) shows the
v − m0Hz characteristics for both samples measured at VG = 0, +15,
and −15 V. By applying highHz, v over 100 m/s is obtained, indicating
that the DW motion is in the flow regime (23). According to the
conventional one-dimensional (1D) model for DWmotion, which rea-
sonably describes a free domain expansion in unconfined systems (24),
v increases linearly with Hz in the flow regime. This behavior was also
confirmed experimentally in a symmetric Pt/Co/Pt system (24). In con-
trast, v remains almost saturated for the present asymmetric samples
with tCo = 0.78(0.98) nm above m0Hz ~210(~160) mT. This saturation
of v in a high-field regime originated from the iDMI, which has been
recently discussed in different asymmetric FM/HM systems (5, 6).

Our results show that the v − m0Hz curve is modulated by the VG

application. For example, a significant v modulation of up to 50 m/s
is achieved around the DW depinning region. Such a large v change
has never been reported using the EF effect (11–13). The EF-induced
variation of v for the thermally activated creep regime has been in the
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range from 10−3 to 10−5 m/s (11–13). For the flow regime, only a few
meters per second of v change was observed in the Ta/CoFeB/MgO sys-
tem (14). The most important point here is that the saturation v (vs) is
changed by the EF application. The insets in Fig. 2 (A andB) show the vs
as a function ofVG. The ratios of vs change betweenVG = ±15 V are 8.2
and 6.7% for the tCo = 0.78 and 0.98 nm samples, respectively.

In the saturation v region, the DW propagates with maintaining its
structure as just before theWalker breakdown. It is because in the system
with the DMI, the energy dissipation occurs not through the magnetiza-
tion precession (Walker breakdown) but through the instantaneous nu-
cleation and annihilation of the Bloch lines or small bubbles. Thus, using
theWalker breakdown fieldHW, vs is expressed as vs = gDHW/a, where g
is the gyromagnetic ratio, D is the DWwidth, and a is the damping con-
stant. In the large DMI system, HW ≈ paHD/2 (6, 7), where HD is the
DMI effective field. Because HD = Dt/(m0MstD) (7), vs is finally given by

vs ¼ p
2
g
Dt
Mst

ð1Þ

where t is the effective thickness of a ferromagnetic layer, andDt andMst
correspond to the areal iDMI magnitude (25) and the areal saturation
magnetic moment, respectively. vs for the Pt/Co system with large
DMI can be well explained by Eq. 1, as shown in a previous report (6).
Thus, thismodel is considered to be applicable to our Pt/Co/Pd structure.
vs is independent of Ku, i.e., a change in Ku by the EF does not affect vs
(we have also confirmed this in a 2D case; see section S2). Because the
ratio of theMst change for both samples is below 1% (see section S1),
the EFmodulation ofDt is the major factor underlying the vs change.
In the creep regime experiment, the change in the effective PMA is
discussed as a possible origin of the creep vmodulation (12). Thus, the
mechanism of the EFmodulation of the flow regime v presented here,
i.e., vmodulation via theDMI change, is largely different from the creep
vmodulation case. Using Eq. 1, VG dependence of Dt is quantitatively
determined, as shown in Fig. 3 (A and B). TheDt for the sample with
tCo = 0.78(0.98) nm is 0.51(0.49) pJ/m atVG = 0V, and themodulation
ratio between ±15 V is ~8.3(~6.6)%. The modulation ratio of the iDMI
in the tCo = 0.78 nm sample is larger than that for the tCo = 0.98 nm
Koyama et al., Sci. Adv. 2018;4 : eaav0265 21 December 2018
sample, indicating that the EF effect on the iDMI might be more effec-
tive in the thinner films. The origin of this may be, for example, the
difference in the electron structure of the top Pd caused by the tCo-
dependent built in strain in the Pd (also see section S1). In this exper-
iment, VG of ±15 V corresponds to the EF strength applied to the Pd
surface of ±0.29 V/nm in consideration of the total thickness of the di-
electric layer. Thus, the efficiencies of the Dtmodulation by the EF are
calculated to be 7.8 × 10−11 (tCo = 0.78 nm) and 5.2 × 10−11 (0.98 nm)
pJ/V, respectively. These values are close to the previous study using
the Au/Fe/MgO system (18).

Gate voltage effect on the DMI effective field
To investigate the EF effect on the iDMI more directly, the magni-
tude of HD, which acts on the local magnetizations inside the DW,
was determined from the Hz-driven DW motion under additional
static in-plane magnetic fields (5, 6, 23). Figure 4A shows the static
x-fieldHx dependence of v obtained at |m0Hz| = 178 mT for the sam-
ple with tCo = 0.98 nm under VG = 0 V. Two different situations
where the negatively polarized (N domain) and positively polarized
(P domain) domain expands were investigated. As shown in the sub-
tracted MOKE image in Fig. 4A, the DW displacement along the x axis
is asymmetric when Hx is applied. v increases with the positive m0Hx

when the N domain expands. The opposite m0Hx dependence is ob-
served in the case of the P domain expansion. The asymmetric m0Hx

dependence of v manifests that the magnetization inside the DW
Fig. 1. Experimental setup. The capacitor structure consists of the Pt/Co/Pd
asymmetric layers, 50-nm HfO2 gate insulator, and Cr/Au electrode. A pulsed perpen-
dicular magnetic field Hz was applied to drive the DW. The Hz was generated using a
500-mm-diameter coil placed on the sample. The DW motion was observed using a
MOKE microscope. The typical MOKE image obtained by subtracting two MOKE
images taken before and after the application of the pulsed Hz is shown. The DW ve-
locity v was calculated from the DW displacement L by the Hz application.
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Fig. 2. Perpendicular magnetic field dependence of DW velocity. v as a function
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surrounding the N (P) domain directs outward (inward) normal to the
DW plane, i.e., the left-handed chiral Néel DW is formed in our Pt/Co/
Pd systems. The type of DW chirality in the present Pt/Co/Pd system is
consistent with that for the Pt/Co systems (2, 26). Next, VG application
effect is checked. Here, the situation in which the N domain expanded
byHz is focused. In the experiments shown in Fig. 4B, DWmotion was
induced by a |m0Hz| of 100 mT under the application ofHx. In both VG

cases (+15 and −15V), v decreased with negativeHx because of the DW
chirality. For this sample, the vminimum in the v − m0Hx characteristics
appears at approximately m0Hx = −88(−95)mT (≡ m0Hx

min) forVG = +15
(−15)V,where |Hx

min| corresponds to theHD of this sample (6, 23). The
position of Hx

min depends on VG, i.e., HD is modulated by the
application of VG. The ratio of the change in Hx

min between VG =
±15 V is ~8%.

Within the framework of the 1D analytical model, HD is also pro-
portional to Dt as follows (7)

HD ¼ Dt
MstD

ð2Þ

where D (=
ffiffiffiffiffiffiffiffiffiffiffiffi
A=Ku

p
) is the DW width parameter (Ku and A are the

PMA energy density and exchange stiffness, respectively). Thus, the
changes in Ku and A can represent another factor for the EF-induced
HD change. Figure 3 (C and D) shows the VG dependences of Kut for
tCo = 0.78 and 0.98 nm samples, respectively. Kut increases with pos-
itive VG in both samples, and the difference in Kut between VG = ±15 V
for the sample with tCo = 0.98 nm is 0.7%, as shown in Fig. 3D (see
section S1). In this case, the A change must be ~17% if the EF-induced
change in HD obtained here was only caused by the modulation of D.
However, the EF-induced change in A (or the exchange coupling) is
Koyama et al., Sci. Adv. 2018;4 : eaav0265 21 December 2018
expected to be a few percent at most (20, 21). Thus, the EF change inHD

was most likely caused by the VG modulation of Dt. From the experi-
mental HD value, the Dt determined from Eq. 2 was 0.32(0.35) pJ/m
for VG = +15(−15) V by assuming a constant A = 1.6 × 10−11 J/m
(6, 7). The magnitudes of Dt determined from vs and HD measure-
ments are consistent within a factor of ~1.5. The assumption of A
may provide one reason for this slight difference.
DISCUSSION
The iDMI of the present sample is mainly dominated by the Pt/Co and
Co/Pd interfaces. Because of the screening effect, the EF is almost
shielded in the top Pd layer, i.e., the EF is hindered from reaching the
deeper metallic layers (Co and Pt). Thus, the EF effect on the electronic
structure (27) in the Pd layer plays amajor role in themodulation of the
iDMI (particularly the iDMI only at the Co/Pd interface). It is known
that the iDMI in the FM/HM layered structure is attributed to the
d-electron states at the Fermi level of the HM (28). Thus, in this exper-
iment, the modulation of the outermost 4d electron state in the Pd is
considered to be caused by the EF application, resulting in the change
in the iDMI at the Co/Pd interface. The EF application also results in
a change in the Co/Pd interfacial PMA energy. Although the iDMI is
expected to positively correlate with the PMA if they originated at
the same interface (9), the opposite EF response between Dt and
Ku was observed in the present experiment (see Fig. 3). One possible
explanation for this contradiction is as follows: the Dt (Kut) in the
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Fig. 3. Gate voltage dependence of the areal iDMI and PMA. VG dependence of
the areal iDMI magnitudeDt for the sample with tCo = (A) 0.78 nm and (B) 0.98 nm is
shown. Dt is determined using the vs and areal magnetic moment of the sample
following Eq. 1. a.u., arbitrary units. The error bar indicates the error of vs. Areal
PMA energy Kut as a function of VG for the tCo = (C) 0.78 nm and (D) 0.98 nm samples
is shown.
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present sample is the sum of the iDMIs (interfacial PMAs) at the
Co/Pd and Pt/Co interfaces

Dt ¼ jDPttj � jDPdtj
Kut ¼ K Pt

u t þ K Pd
u t

ð3Þ

whereDPt(Pd)t [Ku
Pt(Pd)t] is the areal iDMI (areal PMA energy) at the

Pt/Co (Co/Pd) interface. Note that the negative sign before the |DPdt|
term is due to the inverted stacking of Pt/Co and Co/Pd. Equation 3
shows that the EF-induced increase in |DPdt| results in a decrease in
the total iDMI (Dt) of the entire system because |DPtt|, which is the
iDMI at the deeper interface, should be unchanged because of the
screening effect. On the other hand, the increase in Ku

Pdt simply results
in the enhancement of total PMA energy (Kut). This may represent a
scenario for understanding the opposite response of Dt and Kut to the
EF. In addition to the above interpretation, the change in iDMI and
PMA may have originated at the Pd/MgO interface instead of the
Co/Pd interface. In this case, the EF-induced change in the interfacial
Rashba effect (29, 30) may be important for understanding the result.

In summary, we demonstrate the gating control of DW motion
using Pt/Co/Pd asymmetric systems. The iDMI-stabilized v and HD

are modulated by the EF application. The change in v via the modula-
tion of theDMI has a fundamentally different origin comparedwith the
PMA-mediated case as reported in the Ta/CoFeB/MgO system (14).
The electrical manipulation of the DMI demonstrated here is expected
to provide a novel function for future spintronic devices based on chiral
DWs or skyrmions.
 on D
ecem

ber 24, 2018
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MATERIALS AND METHODS
Film deposition and device fabrication
Layers composed of Ta(2.6 nm)/Pt(2.4)/Co(tCo)/Pd(0.4)/MgO(2.0)
were deposited on a thermally oxidized Si substrate using radio frequen-
cy sputtering. The base pressure of the sputter chamber was below 1.0 ×
10−6 Pa, and Xe process gas was used for the deposition. The x-ray dif-
fraction profile indicated that the Pt layer has a face-centered cubic
(111) texture. To fabricate the capacitor structure, a 50-nm HfO2 gate
dielectric layer was deposited on the film at 150°C in an atomic layer
deposition chamber. Subsequently, a Cr(2)/Au(10) gate electrode with
a size of 300 × 300 mmwas formed by a lift-off process. The magnitude
of the leakage current under the application of VG = ±15 V was below
500 pA. Note that the Pd layer on the Co layer acts to suppress un-
wanted domain nucleation; in the sample without the Pd layer, the
distances between nucleated domains were too short to measure the
DW velocity under the high-field regime.

Pulsed field application
Hzwas generated using a small coil with a diameter of 500 mmplaced on
the device (see Fig. 1). To generateHz, a pulsed current supplied from a
customizedhigh-voltage pulse generatorwas injected into the small coil.
A rectangular-shaped pulse was confirmed by monitoring the voltage
across the resistor connected with the coil in series.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaav0265/DC1
Section S1. EF effect on areal magnetic moment and anisotropy energy
Koyama et al., Sci. Adv. 2018;4 : eaav0265 21 December 2018
Section S2. Numerical calculation of the saturation DW velocity
Fig. S1. Schematic illustration of the capacitor structure for the areal magnetization
measurement.
Fig. S2. In-plane magnetization curves for the studied samples.
Fig. S3. Simulated DW velocities as a function of external magnetic field and the anisotropy
and DMI dependences of the DW velocity.
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