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Using the entire Belle data sample of 980 fb−1 of eþe− collisions, we present the results of a study of
excited Ωc charmed baryons in the decay mode Ξþ

c K−. We show confirmation of four of the five narrow
states reported by the LHCb Collaboration: the Ωcð3000Þ, Ωcð3050Þ, Ωcð3066Þ, and Ωcð3090Þ.
DOI: 10.1103/PhysRevD.97.051102

The Ω0
c [1] charmed baryon is a combination of css

quarks. Charmed baryons can be treated as a heavy (c)
quark and a light (in this case ss) diquark [2–4]. The ground
state of Ω0

c can be considered as a spin-1 diquark in
combination with the charm quark, as symmetry rules do
not allow a spin-0 diquark. Thus, the ground-state Ωc,
although weakly decaying, has a quark structure analogous
to the Σc and Ξ0

c rather than Λc and Ξc baryons. Until
recently, the only excited state of the Ω0

c observed was
the J ¼ 3

2
þ state known as the Ω�0

c [5,6], which decays
electromagnetically into the ground state. All excitations
have restricted decay possibilities, because the decay
Ω�0

c → Ω0
cπ

0 would violate isospin conservation.
However, provided there is sufficient mass, strong decays
into ΞcK̄, Ξ0

cK̄, and Ξ�
cK̄ are possible.

Recently, the LHCb collaboration announced the dis-
covery of five narrow resonances in the final state Ξþ

c K−

[7]. In addition they showed a wide enhancement at the
higher mass of 3.188 GeV/c2, which may comprise more
than one state. Here we present the results of an analysis of
the same final state using data from the Belle experiment,
and confirm many of the LHCb discoveries.
This analysis uses a data sample of eþe− annihilations

recorded by the Belle detector [8] operating at the KEKB
asymmetric-energy eþe− collider [9]. It corresponds to an
integrated luminosity of 980 fb−1. The majority of these
data were taken with the accelerator energy tuned for
production of the ϒð4SÞ resonance, as this is optimum for
investigation of B decays. However, the excited charmed
baryons in this analysis are produced in continuum charm
production and are of higher momentum than those that are
decay products of B mesons, so the data set used in this
analysis also includes the Belle data taken at beam energies
corresponding to the other ϒ resonances and the nearby
continuum (eþe− → qq̄, where q ∈ fu; d; s; cg).
The Belle detector is a large-solid-angle spectrometer

comprising six sub-detectors: the Silicon Vertex Detector
(SVD), the 50-layer Central Drift Chamber (CDC), the
Aerogel Cherenkov Counter (ACC), the Time-of-Flight
scintillation counter (TOF), the electromagnetic calorim-
eter, and the KL and muon detector. A superconducting
solenoid produces a 1.5 T magnetic field throughout the
first five of these sub-detectors. The detector is described in
detail elsewhere [8]. Two inner detector configurations
were used. The first comprised a 2.0 cm radius beam pipe
and a 3-layer silicon vertex detector, and the second a
1.5 cm radius beam pipe and a 4-layer silicon detector and a
small-cell inner drift chamber.

In 2016, Belle published [10] the results of an analysis of
excited Ξc states decaying into Ξþ/0

c and a photon and/or
pions. To do this, seven different Ξþ

c decay modes
(Ξ−πþπþ, ΛK−πþπþ, Ξ0πþ, Ξ0πþπ−πþ, ΣþK−πþ,
ΛK0

Sπ
þ, and Σ0K0

sπ
þ) were reconstructed. The analysis

presented here uses the identical reconstruction chains and
the same selection criteria to reconstruct these same ground
state Ξþ

c baryons. The Ξþ
c candidates are made by kine-

matically fitting the decay daughters to a common decay
vertex. The position of the interaction point (IP) is not
included in this vertex, as the small decay length associated
with the Ξþ

c decays, though very short, is not completely
negligible. The χ2 of this vertex is required to be consistent
with all the daughters having a common parent. Those
combinations with a measured mass within 2 standard
deviations of the nominal mass of the Ξþ

c [11] are then
constrained to that mass and retained for further analysis.
The resolution of the Ξþ

c signals depends on the decay
mode and has a range of 3.2–15.0 MeV/c2. In Fig. 1, we
show the yield and signal-to-noise ratio of the reconstructed
Ξþ
c candidates by plotting the “pull-mass”, i.e., the differ-

ence in the reconstructed mass of the candidate and the
nominal mass of the Ξþ

c divided by the resolution, for all
the modes together. The candidates in this distribution have
a requirement on the scaled momentum, xp ¼
p�c/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s/4 −M2c4

p
of xp > 0.65, where p� is the momen-

tum of the combination in the eþe− center-of-mass frame, s
is the total center-of-mass energy squared, M is the
invariant mass of the combination, and c is the speed of

σ))/+
cΞ(M-M(
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FIG. 1. The distribution of the “pull-mass”, that is
ðMmeasured −MðΞþ

c ÞÞ/σ, for all reconstructed modes of Ξþ
c

baryons. There is a requirement of xp > 0.65.
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light. This requirement is not applied as part of the final
analysis as we prefer to place an xp cut requirement only on
the Ξþ

c K− combinations; however, it serves to display the
approximate signal-to-noise ratio of our reconstructed Ξþ

c
baryons.
To investigate resonances decaying into Ξþ

c K−, Ξþ
c

candidates obtained as described above are combined with
an appropriately charged kaon candidate not contributing to
the reconstructed Ξþ

c . The kaons used to make these
combinations are identified using the same criteria as in
the Ξþ

c reconstruction. That is, they are selected using the
likelihood information from the tracking (SVD, CDC) and
charged-hadron identification (CDC, ACC, TOF) systems
into a combined likelihood, LðK∶hÞ ¼ LK/ðLK þ LhÞ
where h is a proton or a pion, with requirements of
LðK∶pÞ > 0.6 and LðK∶πÞ > 0.6. These requirements
are approximately 93% efficient.
To optimize the mass resolution, a vertex constraint of

the particles is made with the IP included. All decay modes
of the Ξþ

c are considered together. We then place a

requirement of xp > 0.75 on the Ξþ
c K− combination.

This requirement is typical for studies of orbitally excited
charmed baryons as they are known to be produced with
much higher average momenta than the combinatorial
background.
Figure 2(a) shows the invariant mass distribution of the

Ξþ
c K− combinations in the mass range of interest, which

starts at the kinematic threshold. A fit is made to this
spectrum, comprising six signal functions and a back-
ground threshold function of the form A

ffiffiffiffiffiffiffiffi
ΔM

p þ BΔM,
whereΔM is the mass difference from threshold, and A and
B are free parameters. Each of the signal functions is a
Voigtian function (a Breit-Wigner function convolved with
a Gaussian resolution). The masses and intrinsic widths of
all six are fixed to the values found by LHCb [7]. The
resolutions are obtained from Monte Carlo simulation, and
vary from 0.72 MeV/c2 for the lowest-mass peak to
1.96 MeV/c2 for the high-mass wide resonance. We use
an unbinned likelihoood fit. Figure 2(b) shows the same
distribution for wrong-sign, i.e., Ξþ

c Kþ combinations. The
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FIG. 2. (a) The Ξþ
c K− invariant mass distribution. The fit shown by the solid line is the sum of a threshold function (dashed line) and

six Voigtian (Breit-Wigner convolved with Gaussian resolution) functions, with fixed masses, intrinsic widths and resolutions (dotted
lines). (b) A threshold function fit to the Ξþ

c Kþ (wrong-sign) invariant mass distribution. (c) A threshold function fit to the invariant mass
distribution for sidebands to the Ξþ

c candidates in combination with K− candidates.
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background function, with floating values of A and B, fits
well to this distribution. Figure 2(c) shows the same
distribution using Ξþ

c candidates with reconstructed masses
between three and five standard deviations from the
canonical mass. Again, this sideband distribution shows
no significant peaks, and the background function, with
floating values of A and B, fits the distribution well.
Table I shows the yield for each of the five narrow

resonances and the wide enhancement reported by
LHCb. The significance of each signal is calculated by
excluding that one peak from the fit, finding the change in
the log-likelihood (Δ½logðLÞ�), and expressing the signifi-
cance in terms of standard deviation using the formula
nσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ½logðLÞ�p

. Systematic uncertainties are included
by calculating the significances using a series of different
fits and choosing the lowest resultant significance value.
The differences in the fits considered are the use of different
masses and widths within the uncertainties of the LHCb
result, allowing the presence or not of an extra CΔM2 term
in the threshold function, changing the functions fitting the
peaks from Voigtian functions to s-wave relativistic Breit-
Wigner functions convolved with the resolution functions,
and lastly adding or not extra functions representing
possible feed-down from Ωcð3066Þ, Ωcð3080Þ and
Ωcð3119Þ decays to Ξ0þ

c K− as seen by LHCb, with shapes
found by Monte Carlo simulation, and floating yields.
It is clear that these data unambiguously confirm the

existence of the Ωcð3066Þ and Ωcð3090Þ. Signals of
reasonable significance are seen for the Ωcð3000Þ and
the Ωcð3050Þ, but no signal is apparent for the Ωcð3119Þ.
We note that, for the four narrow signals seen, we find the
ratio of yields with respect to LHCb to be ≈0.036. If this
were also to hold for the Ωcð3119Þ, we would expect an
Ωcð3119Þ signal yield of ≈17, whereas we find 3.6� 6.9.
Thus our nonobservation of this particle is not in disagree-
ment with LHCb. There is an excess in the Belle data
around 3.188 GeV/c2, which may (as was the case in the
LHCb data) be due to one or more particles.
We can measure the masses of the five confirmed signals,

by fitting the same distribution without constraining the
masses. In all cases, the masses we find are consistent with
the LHCb values, as shown in Table I. The systematic
uncertainty in the reconstruction of these masses is smaller

than the statistical uncertainties. The uncertainty due to
the knowledge of the momentum scale is less than
0.05 MeV/c2, which is small compared with the other
uncertainties. The systematic uncertainties in Table I are
dominated by the variations of the measured masses when
fitting with different values of the intrinsic widths as
defined by the uncertainties in the LHCb measurements,
and the use of different—yet reasonable—background
functions in the fit as was done when calculating the
significances of the signals. In addition to the uncertainties
shown in Table I, there is an important systematic uncer-
tainty of ðþ0.3;−0.4Þ MeV/c2 common to the Belle and
LHCb mass measurements, due to the mass measurement
of the ground state Ξþ

c [11].
Five states, each with one unit of orbital angular

momentum between the diquark and the charm quark,
are naturally predicted by the heavy-quark–light-diquark
model of baryons [2]. Since the LHCb observation, there
have been several theoretical interpretations of the five
narrow states found [12–16], either in terms of these five
states or by other configurations of the quarks. The wide
state at higher mass appears to fit the pattern of wide states
at around 500 MeV/c2 above the ground-state charmed
baryons (the Λþ

c ð2765Þ and Ξþ/0
c ð2970Þ). A possible

explanation is that they are the radial excitations of the
ground state, with JP ¼ 1

2
þ.

To conclude, of the five narrow resonances observed in
the Ξþ

c K− mass spectrum by LHCb, we strongly confirm
the Ωcð3066Þ and Ωcð3090Þ with very similar parameters
and confirm two more—the Ωcð3000Þ and Ωcð3050Þ—
with less significance, but cannot confirm the Ωcð3119Þ. In
addition, we present indications that there is wide excess,
consistent with that found by LHCb, at higher mass.
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