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We report a measurement of the cross section for K0
S pair production in single-tag two-photon collisions,

γ�γ → K0
SK

0
S, for Q

2 up to 30 GeV2, where Q2 is the negative of the invariant mass squared of the tagged
photon. The measurement covers the kinematic range 1.0 GeV < W < 2.6 GeV and j cos θ�j < 1.0 for the
total energy and kaon scattering angle, respectively, in the γ�γ center-of-mass system. These results are
based on a data sample of 759 fb−1 collected with the Belle detector at the KEKB asymmetric-energy eþe−

collider. For the first time, the transition form factor of the f02ð1525Þ meson is measured separately for the
helicity-0, -1, and -2 components and also compared with theoretical calculations. We have derived the
cross section for the process for W < 2.6 GeV from 121 signal candidate events. Finally, the γ�γ partial
decay widths of the χc0 and χc2 mesons are measured as a function of Q2 based on 10 candidate events in
total.

DOI: 10.1103/PhysRevD.97.052003

I. INTRODUCTION

Single-tag two-photon production of a hadron pair,
γ�γ → hh0, provides valuable information on the nature
of hadrons by exploiting an additional degree of freedom,
Q2, which is the negative of the invariant mass squared of
the tagged photon. These processes can be studied through
the reaction eþe− → e�ðe∓Þhh0, where ðe∓Þ implies an
undetected electron or positron, and provide vital input on
hadron structure and properties, in the context of quantum
chromodynamics (QCD).
In the framework of perturbative QCD, Kawamura

and Kumano, using generalized quark distribution
amplitudes, emphasized the importance of exclusive
production in single-tag two-photon processes as a
way to unambiguously identify the nature of exotic
hadrons [1]. They showed, for example, that studies of
γ�γ → hh̄, where h is the f0ð980Þ or the a0ð980Þ meson,
could clearly reveal whether the f0ð980Þ and the
a0ð980Þ states were tetraquarks. In addition, a data-
driven dispersive approach was suggested that allows a
more precise estimate of the hadronic light-by-light
contribution to the anomalous magnetic moment of
the muon (g − 2) [2,3].
Recently, we have performed a measurement of the

differential cross section for single-tag two-photon pro-
duction of π0π0 [4]. There, we derived for the first time the
transition form factor (TFF) of both the f0ð980Þ and the
f2ð1270Þ mesons for helicity-0, -1, and -2 components at
Q2 up to 30 GeV2.

In this paper, we report a measurement of the process
eþe− → e�ðe∓ÞK0

SK
0
S, where one of the e� is detected

together with K0
SK

0
S, while the other e

∓ is scattered in the
forward direction and undetected.
A Feynman diagram for the process of interest is shown

in Fig. 1, where the four-momenta of particles involved
are defined. We consider the process γ�γ → K0

SK
0
S in the

center-of-mass (c.m.) system of the γ�γ. We define the
x�y�z�-coordinate system as shown in Fig. 2 at fixedW and
Q2, where W is the total energy in the γ�γ c.m. frame.
One of the K0

S mesons is scattered at polar angle θ� and
azimuthal angle φ�. Since the final-state particles are
identical, only the region where θ� ≤ π=2 and 0 ≤ jφ�j ≤
π is of interest. The z� axis is defined along the incident γ�

and the x�z� plane is defined by the detected tagging e�
such that ptagx� > 0, where ptag is the three-momentum of
the tagging e�.
The differential cross section for γ�γ → K0

SK
0
S taking

place at an eþe− collider is calculated using the helicity-
amplitude formalism as follows [4,5]:

dσðγ�γ → K0
SK

0
SÞ

dΩ
¼

X2
n¼0

tn cosðnφ�Þ; ð1Þ

q

e

1

q
2

k 1

p
1

p'
2p

2

p'
1

k 2

e

K 0
S

K 0
S

FIG. 1. Feynman diagram for the process eþe− → eðeÞK0
SK

0
S

and definition of the eight four-momenta.
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with

t0 ¼ jMþþj2 þ jMþ−j2 þ 2ϵ0jM0þj2; ð2Þ

t1 ¼ 2ϵ1ℜ½ðM�þ− −M�þþÞM0þ�; ð3Þ

t2 ¼ −2ϵ0ℜðM�þ−MþþÞ; ð4Þ

where Mþþ, M0þ, and Mþ− are separate helicity ampli-
tudes; þ, −, 0 indicate the helicity state of the incident
virtual photon along, opposite, or transverse to the quan-
tization axis, respectively, and ϵ0 and ϵ1 are given by

ϵ0 ¼
1 − x

1 − xþ 1
2
x2

; ð5Þ

ϵ1 ¼
ð2 − xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1 − xÞ

q
1 − xþ 1

2
x2

: ð6Þ

Here, x is defined as

x ¼ q1 · q2
p1 · q2

; ð7Þ

where q1, q2, and p1 are the four-momenta of the virtual
and real photons and an incident lepton, respectively, as
defined in Fig. 1. When Eq. (1) is integrated over φ�, we
obtain

dσðγ�γ → K0
SK

0
SÞ

4πdj cos θ�j ¼ jMþþj2 þ jMþ−j2 þ 2ϵ0jM0þj2: ð8Þ

The total cross section is obtained by integrating Eq. (8)
over cos θ�, and can be written as

σtotðγ�γ → K0
SK

0
SÞ ¼ σTT þ ϵ0σLT; ð9Þ

where σTT (σLT) corresponds to the total cross section in
which both photons are transversely polarized (one photon

is longitudinally polarized and the other is transversely
polarized).
A K0

S pair produced in the final state of the process
eþe− → e�ðe∓ÞK0

SK
0
S is a pure C-even state and has no

contribution from single-photon production (“bremsstrah-
lung process”), whose effect must otherwise be considered
in two-photon production of KþK−.
Schuler, Berends, and van Gulik (SBG) have calculated

mesonic TFFs based on the heavy-quark approxima-
tion [6]. They found that their calculations were also
applicable to light mesons with only minor modifications.
The predicted Q2 dependence of the TFFs for mesons with
JPC ¼ 0þþ and 2þþ is summarized in Table I, where W is
replaced by the equivalent mass M.
In this paper, we report a measurement of γ�γ → K0

SK
0
S,

extracting for the first time the Q2 dependence of the
production cross section in the charmonium mass region
(specifically for the χc0 and χc2 mesons), near the K0

SK
0
S

mass threshold, and also the separate helicity-0, -1, and -2
TFF of the f02ð1525Þ meson up to Q2 ¼ 30 GeV2. These
measurements complement our earlier measurements for
the corresponding no-tag process γγ → K0

SK
0
S over the

range 1.05 GeV ≤ W ≤ 4.0 GeV [7].

II. EXPERIMENTAL APPARATUS
AND DATA SAMPLE

We use a 759 fb−1 data sample recorded with the Belle
detector [8,9] at the KEKB asymmetric-energy eþe−
collider [10,11]; this data sample is identical to that used
for the previous γ�γ → π0π0 measurement [4].

A. Belle detector

A comprehensive description of the Belle detector is
given elsewhere [8,9]. In the following, we describe only
the detector components essential for this measurement.
Charged tracks are reconstructed from the drift-time
information in a central drift chamber (CDC) located in
a uniform 1.5 T solenoidal magnetic field. The z axis of
the detector and the solenoid is opposite the positron
beam. The CDC measures the longitudinal and transverse
momentum components, i.e., along the z axis and in the rφ
plane perpendicular to the beam, respectively. The trajec-
tory coordinates near the collision point are measured by a

FIG. 2. Definition of the γ�γ c.m. coordinate system for
γ�γ → K0

SK
0
S. The “incident” γ� has momentum along the z�

axis with pz� > 0, the tagging e� is in the x�z� plane with
ptagx� > 0, and the forward-going K0

S (i.e., having pKz� > 0) is
produced at angles (θ�, φ�).

TABLE I. Predicted Q2 dependence of mesonic transition form
factor for various helicities of the two colliding photons [6]. Each
term has a common factor of ð1þQ2=M2Þ−2.

Q2 dependence ½÷ð1þ Q2

M2Þ2�
JPC Helicity-0 Helicity-1 Helicity-2

0þþ (1þ Q2

3M2) – –
2þþ Q2ffiffi

6
p

M2

ffiffiffiffiffi
Q2

pffiffi
2

p
M

1
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silicon vertex detector. A barrel-like arrangement of time-
of-flight (TOF) counters is used to supplement the CDC
trigger for charged particles and to measure their time of
flight. Charged-particle identification (ID) is achieved by
including information from the CDC, the TOF, and an array
of aerogel threshold Cherenkov counters. Photon detection
and energy measurements are performed with a CsI(Tl)
electromagnetic calorimeter (ECL) by clustering the ECL
energy deposits not matched to extrapolated CDC charged
track trajectories. Electron identification is based on E=p,
the ratio of the ECL calorimeter energy to the CDC track
momentum.

B. Triggers

The triggers that are important for this analysis are the
ECL-based [12] HiE (high-energy threshold) trigger and
the Clst4 (four-energy-cluster) energy triggers. The HiE
trigger requires that the sum of the energies measured
by the ECL in an event exceed 1.15 GeV, but that the event
topology not be similar to Bhabha scattering (“Bhabha
veto”); the latter requirement is enforced by the absence
of the CsiBB trigger, which is designed to identify back-
to-back Bhabha events [12]. The Clst4 trigger requires at
least four separated energy clusters in the ECL with each
cluster energy above 0.11 GeV; this trigger is not vetoed
by the CsiBB. Five clusters are expected in total in the
signal events of interest if all the final-state particles are
detected within the fiducial volume of the ECL trigger
(18.5° < θ < 128.6°).
Belle employs many distinct track triggers that require

anywhere from two to four CDC tracks, in conjunction with
pre-specified TOF and/or ECL information. Among these
track triggers, the Bhabha veto is applied to the two-track
triggers only.
The candidate signal topology nominally has five tracks

and one high-energy cluster from the electron. Over the
entire kinematic range of interest, the trigger efficiency is in
general quite high, owing to the trigger requirements
demanding two or three CDC tracks with TOF and ECL
hits, with the exception of the lowest Q2 region probed in
this analysis, where the particles tend to scatter into very
small polar-angle regions. The typical trigger efficiency is
95%, with slightly lower efficiency (around 90%) for
events having both W ≤ 1.5 GeV and Q2 ≤ 5 GeV2.

C. Signal Monte Carlo

We use the signal Monte Carlo (MC) generator,
TREPSBSS, which has been developed to calculate the
efficiency for single-tag two-photon events, eþe− →
eðeÞX, as well as the two-photon luminosity function for
γ�γ collisions at an eþe− collider, following our previous
π0π0 study [4,13].
We choose fifteen different W points between 1.0 GeV

and 3.556 GeV, including two χcJ (J ¼ 0, 2) mass points,

for the calculation of the luminosity function and event
generation. The luminosity function is defined as the
conversion factor from the eþe−-based differential cross
section, d2σee=dWdQ2, to the γ�γ-based cross section,
σðW;Q2Þ [4]. The scattering angle of the K0

S is uniformly
distributed in the γ�γ c.m. system in the MC sample. To
properly weight our MC sample by the beam-energy
distributions used for the data analysis, we generate
4 × 105 events [8 × 104 events] for the beam energy point
of ϒð4SÞ [ϒð5SÞ].
We use a GEANT3-based detector simulation [14] to

study the propagation of the generated particles and their
daughters through the detector. The K0

S pairs decay
generically in the detector simulator. The same code used
for analysis of true data is used for reconstruction and
selection of the MC simulated events.

III. EVENT SELECTION

Event selection parallels that of our previous π0π0

analysis [4]. Here, we also present comparisons between
data and simulation for our selected K0

SK
0
S samples.

A. Selection criteria

A candidate eþe− → eðeÞK0
SK

0
S signal event with K0

S
decaying to πþπ− contains an energetic tagging electron
and four charged pions. The kinematic variables are
calculated in the laboratory system unless otherwise noted;
those in the eþe− or γ�γ c.m. frame are identified with an
asterisk in this section.
We require exactly five tracks satisfying pt > 0.1GeV=c,

dr < 5 cm, and jdzj < 5 cm. Among these, at least two
tracks must satisfy pt > 0.4 GeV=c, −0.8660 < cos θ <
0.9563, and dr < 1 cm. Here, pt is the transverse momen-
tum in the laboratory frame, θ is the polar angle of the
momentum, and (dr, dz) are the cylindrical coordinates of
the point of closest approach of the track to the nominal
eþe− primary interaction point; all four variables are
measured with respect to the z axis.
One of the tracks having pt > 0.4 GeV=c and p >

1.0 GeV=c must also be electron- (or positron-) like.
This is ensured by requiring that the ratio of the candidate
calorimeter cluster energy, using the cluster-energy correc-
tion outlined previously [4], relative to the absolute
momentum satisfy E=p > 0.8.
We search for exactly two K0

S candidates, each of
which is reconstructed from a unique charged-pion pair.
Each pion satisfies the K=π particle ID separation criterion
LK=ðLK þ LπÞ < 0.8, which is applied for the likelihood
probability ratio for the hadron identification hypotheses
obtained by combining information from the particle-ID
detectors. The invariant mass of the K0

S candidates at the
reconstructed decay vertex must be within�20 MeV=c2 of
the nominal K0

S mass, 0.4976 GeV=c2 [15].
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After the two K0
S candidates are found, we refine the

event selection by additionally requiring that the average
of, and difference between, the masses of the two K0

S’s be
within�5 MeV=c2 from the nominalK0

S mass, and smaller
than 10 MeV=c2, respectively [7]. Each K0

S decay vertex
must lie within the cylindrical volume defined by 0.3 cm <
rVK < 8 cm and −5 cm < zVK < þ7 cm, where (rVK ,
zVK) is the decay-vertex position of the K0

S.
We do not require the characteristic relation between the

z component of the observed total momenta and the charge
of the tagging lepton that was used in the previous π0π0

analysis [4], as this results in no effective additional
background reduction; the background from eþe− annihi-
lation is already very small, given our distinctive event
topology.
We apply an acoplanarity cut between the c.m. momenta

of the electron and the two-K0
S system, namely, that their

opening angle projected onto the rφ plane must exceed
π − 0.1 radians.
Finally, we apply kinematic selection using the Eratio and

pt-balance variables just as was done for the π0π0 selection
[4]. Those definitions of Eratio and pt balance are repro-
duced here for completeness. The energy ratio is

Eratio ¼
E�measured
K0

SK
0
S

E�expected
K0

SK
0
S

; ð10Þ

where E�measured
K0

SK
0
S

(E�expected
K0

SK
0
S

) is the eþe− c.m. energy of

the K0
SK

0
S system measured directly (as expected by

kinematics, assuming no radiation). The pt-balance jΣp�t j
is defined by

jΣp�t j ¼ jp�t;e þ p�t;K1 þ p�t;K2j: ð11Þ

We require that the quadratic combination of the two
variables (Eratio and jΣp�t j) satisfyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Eratio − 1

0.04

�
2

þ
� jΣp�t j
0.1 GeV=c

�
2

s
≤ 1: ð12Þ

We assign four kinematic variables—Q2, W, j cos θ�j,
and jφ�j—to each candidate event, similar to the π0π0

analysis [4].

B. Distributions of the signal candidates and
comparison with the signal-MC events

In this subsection, we present various distributions of the
selected signal candidates. The backgrounds are expected
to be quite low in the experimental data. Some of the data
distributions are compared with those of the signal-MC
samples, where a uniform angular distribution and a
representative Q2 dependence [4] are assumed.

The experimental W distribution for events passing our
selection criteria is shown in Fig. 3 for W ≤ 3.8 GeV. A
structure corresponding to the tensor f02ð1525Þ resonance
is clearly visible. We also note an apparent enhancement
near the K0

SK
0
S mass threshold, that may be associated

with the f0ð980Þ and/or the a0ð980Þ mesons. We find
124 (14) events in the region W < 3.0 GeV and
3 GeV2 < Q2 < 30 GeV2 (3.0 GeV < W < 3.8 GeV and
2 GeV2 < Q2 < 30 GeV2).
We now focus on events having W ≤ 2.6 GeV and the

two χcJ(J ¼ 0, 2) mass regions, where we detect the signal
process with a high efficiency and a good signal-to-noise
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FIG. 3. The experimental W distributions of the signal candi-
dates at 2 GeV2 (3 GeV2) < Q2 < 30 GeV2 as indicated by
the asterisks (dashed histogram). Backgrounds have not been
subtracted.
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FIG. 4. (a) The Q2 distributions for the data samples at
W ≤ 4.0 GeV. The asterisks and the dashed histogram are for
the p-tag and e-tag samples, respectively. (b) The corresponding
distributions from the signal MC events. Statistics of the MC
figures are arbitrary, but the scale is common for the e- and p-tags
in each panel, so that their ratio can be compared between MC
and data.
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ratio. For the same reason, we also constrain the Q2 region
to 3 GeV2 ≤ Q2 ≤ 30 GeV2 (2 GeV2 ≤ Q2 ≤ 30 GeV2)
for W ≤ 2.6 GeV (the χcJ mesons).
For comparison, the corresponding distributions from

the signal MC in this kinematic regime are shown in
Figs. 4–6. In our analysis, we sometimes differentiate
electron-tag (e-tag) from positron-tag (p-tag) to facilitate
studies of systematics. We find that the p-tag has a much
higher efficiency than that of the e-tag in the lowest Q2

region, where the cross section is large (Fig. 4).
Figure 5 compares the measured distributions of the

reconstructed πþπ− invariant mass at each K0
S-candidate

decay vertex with MC in three different W ranges, as
indicated above each panel pair. All the selection criteria,
except those related to the reconstructed K0

S invariant

masses (MKi), have been applied to the sample. Non-K0
S

background is seen to be small.
Figure 6 shows the cosine of the polar angle of the

tagging electron, that of the neutral kaon, and the energy
of the neutral kaon in the laboratory frame for the sample
at W < 3.0 GeV and 3 GeV2 ≤ Q2 ≤ 30 GeV2. They all
show satisfactory agreement, given the approximateQ2 and
isotropic angular dependence in the signal-MC sample.
Two-dimensional plots for pt balance (jΣp�t j) vs.

Eratio are shown in Fig. 7. We find that there are back-
grounds with a slightly smaller Eratio and slightly larger pt
imbalance for the data at W < 1.3 GeV. These are con-
sidered to arise from the nonexclusive backgrounds
γ�γ → K0

SK
0
SX, where X is a π0 or some combination of

otherwise undetected particles. We discuss and subtract the

MKi (GeV/c2)

MKi (GeV/c2)

Exp. (a)

Signal MC  (d)

Exp. (c)

Signal MC  (f)

Exp. (b)

Signal MC  (e)

W < 1.3 GeV W = 1.3 - 3.0 GeV W = 3.0 - 4.0 GeV

N
um

be
r 

of
 k

ao
ns

/0
.5

M
eV

/c
2

FIG. 5. (a),(b),(c) Reconstructed πþπ− invariant mass, as measured at each determined decay vertex for the data, in three different W
ranges, as indicated above each panel. (d),(e),(f) The corresponding distributions from the signal MC.
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FIG. 6. The distributions for experimental signal candidates (top row) and signal MC (bottom row) for (a),(d) the cosine of the
laboratory polar angle of the tagging electron, (b),(e) the cosine of the laboratory polar angle of the two K0

S candidates (two entries per
event), and (c),(f) the laboratory energy of the two K0

S candidates (two entries per event).
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background contamination of this component in the next
sections. Such a large background contamination is not
observed for W > 1.3 GeV.

IV. BACKGROUND ESTIMATION

A. Non-K0
S background processes

Backgrounds may arise from events in which there are
either zero or only one true K0

S. The latter may include
contributions from K0

SK
�π∓. The backgrounds from these

processes are expected to be largely eliminated by require-
ments on the invariant mass and flight length for each of the
neutral kaon candidates.
If such a background component were present in the data,

we would expect an event concentration at rVKi < 0.2 cm,
based on studies of nonresonant πþπ−πþπ− and K0

SK
�π∓

processes, using both the MC and background-enriched data
samples. In Figs. 8(a) and 8(b), we show the distribution of
rVKi for the case rVKj > 0.3 cm (j ≠ i) for experimental
events where the criteria other than rVKi have been applied,
separately for the two W regions. These are consistent with
the signal-MC distributions shown in Figs. 8(c) and 8(d).
According to this study, the background from this source is
estimated to be less than one event in the entire data sample,
so we neglect its contribution.

B. Nonexclusive background processes

The nonexclusive background processes, eþe− →
eðeÞK0

SK
0
SX, where X denotes one or multiple hadrons,

are in general subdivided into two-photon (C-even) and
virtual pseudo-Compton (bremsstrahlung, C-odd) proc-
esses, although these may interfere with each other if the
same X is allowed for both processes. The majority of such
background events populate the small-Eratio and large-pt
imbalance region, e.g., ðEratio<0.8Þ∩ðjΣp�t j>0.1GeV=c).
This feature is distinct from the aforementioned back-
ground processes that can populate the region near
Eratio ¼ 1 and peak near jΣp�t j ¼ 0.
To further assess background contributions, we consider

the correlation between these two variables in the exper-
imental sample, as illustrated in Fig. 7. We estimate the
relative ratio of the number of nonexclusive background
events to the signal yield by counting the number of events
in the control region outside the signal region, that is,
ð0.87<Eratio < 0.93Þ ∩ ð0.1 GeV=c < jΣp�t j< 0.2 GeV=cÞ
where the background component would be relatively
large, as well as in the selected signal region [Fig. 7(a)].
The W dependence of the number of events thus obtained
in the signal and control regions is shown in Figs. 9(a)
and 9(b), respectively. The peak in the 1.0–1.2 GeV region
for the control samples implies that the signal samples
include a significant background in the same W region.
We generate background K0

SK
0
Sπ

0 final-state MC events,
which distribute uniformly in phase space, to estimate
the background contamination in the signal region. The
estimation using this process, which corresponds to the
minimum particle multiplicity of X, leads to a conservative
(i.e., on the larger side) estimate for the background

Eratio

Σ
p

t*
 (

G
eV

/c
)

                     (b)
W = 1.3 - 2.6 GeV

              (a)
W < 1.3 GeV

FIG. 7. Distribution of pt balance vs. Eratio for the experimental
samples to which the selection criteria other than those related to
the illustrated variables have been applied. The W region for the
samples is shown in each panel. The half-ellipse and the rectangle
in (a) show the signal and control regions, respectively.
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FIG. 8. (a),(b) Experimental distribution of rVKi (r coordinate
of the πþπ− vertex point for a K0

S candidate) for an event in which
the other kaon-vertex coordinate satisfies the selection criterion
rVKj > 0.3 cm. The W region for each sample is shown in each
panel. The vertical arrows indicate the selection criterion. (c),
(d) The corresponding distributions from the signal-MC samples.
Statistics of the MC figures are arbitrary.
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fraction, since such backgrounds tend to distribute them-
selves close to the signal region.
The expected ratio of the background magnitude in the

signal region to that in the control region (fbs) is 13%.We also
estimate the ratio of the signal events falling in the control
region to that in the signal region (fsc) to be 5.6%. We
determine the expected background-component ratio in the
sample in the signal region, fbsnb=Ns, by solving simulta-
neous linearequations,Ns ¼ ns þ fbsnb andNc¼fscnsþnb,
whereNs ðNcÞ is the number of observed events in the signal
(control) region, and ns ðnbÞ is the number of the signal
(background) events in the signal (control) region. The
background component thus obtained is 14% of the entire
candidate event sample atW < 1.3 GeV.Above 1.3GeV, the
background is less than 1% and is negligibly small.

V. DERIVATION OF THE CROSS SECTION

Similarly to the derivation of the π0π0 cross section [4],
we first define and evaluate the eþe−-based cross section
separately for the p-tag and e-tag samples. After confirming
the consistency between the p- and e-tag measurements to
ensure validity of the efficiency corrections, we combine
their yields and efficiencies. We then convert the eþe−-
incident-based differential cross section to that based on
γ�γ-incident by dividing by the single-tag two-photon
luminosity function d2Lγ�γ=dWdQ2, which is a function
of W and Q2. We use the relation

σtotðγ�γ → K0
SK

0
SÞ

¼ 1

2
d2Lγ�γ
dWdQ2

×
YðW;Q2Þ

ð1þ δÞεðW;Q2ÞΔWΔQ2
R
LdtB2

; ð13Þ

where Y is the yield and ε is the efficiency obtained by the
signal MC. Here, the factor δ corresponds to the radiative
correction,

R
Ldt is the integrated luminosity of 759 fb−1,

and B2 ¼ 0.4789 is the square of the decay branching
fraction BðK0

S → πþπ−Þ. The measurement ranges of W
and Q2, and the corresponding bin widths ΔW and ΔQ2,
are summarized in Table II. Our measurement extends
down to the mass threshold W ¼ 2mK0

S
, where mK0

S
is the

mass of K0
S [15], and is based on the 121 candidate events

for W < 2.6 GeV, in total. For bins for W > 1.2 GeV, the
cross section is first calculated with ΔW ¼ 0.05 GeV, and
then its values in two or four adjacent bins are combined,
with the point plotted at the arithmetic mean of the entries
in that combined bin.

A. Efficiency plots and consistency check
for the p-tag and e-tag measurements

Figure 10 shows the aggregate efficiencies, as a function
of W for the selected Q2 bins of the p- or e-tag samples,
including all event selection and trigger effects. These
efficiencies are obtained from the signal-MC events, which
are generated assuming an isotropicK0

S angular distribution
in the γ�γ c.m. frame.
Our accelerator and detector systems are asymmetric

between the positron and electron incident directions
and energies, and separate measurements of the p-tag
and e-tag samples provide a good internal consistency
check for various systematic effects of the trigger, detector
acceptance, and selection conditions. Figure 11 compares
the eþe−-based cross section measured separately for the
p- and e-tags. They are expected to show the same cross
section according to the C symmetry if there is no
systematic bias. In this figure, the estimated nonexclusive
backgrounds are subtracted, fixing the ratio of the values
from the p- and e-tag measurements.
The results from the two tag conditions are consistent

within statistical errors. We therefore combine the p- and
e-tag sample results using their summed yields and aver-
aged efficiencies.
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FIG. 9. The W distribution of experimental-data events in
(a) the signal region and (b) the control region.

TABLE II. The measurement range and bin widths defining the
bins in the two-dimensional ðW;Q2Þ space.

Variable Measurement range Bin width Unit
Number
of bins

W 0.995ð2mK0
S
Þ − 1.05 0.055 GeV 1

1.05–1.2 0.05 3
1.2–1.6 0.1 4
1.6–2.6 0.2 5

Q2 3.0–7.0 2.0 GeV2 2
7.0–10.0 3.0 1
10.0–15.0 5.0 1
15.0–30.0 15.0 1
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B. Derivation of angle-integrated
γ�γ → K0

SK
0
S cross section

We apply a radiative correction of 2% to the total cross
section. This value is the same as that evaluated in the
analogous case of single pion production [16]. This
correction depends only slightly on W and Q2, and is
treated as a constant. The radiative effect in the event
topology is taken into account in the signal-MC event
generation and is reflected in the efficiency calculation.
To account for the nonlinear dependence on Q2, we

define the nominal Q2 for each finite-width bin Q̄2, using
the formula

dσee
dQ2

ðQ̄2Þ ¼ 1

ΔQ2

Z
bin

dσee
dQ2

ðQ2ÞdQ2; ð14Þ

where ΔQ2 is the bin width. We assume an approximate
dependence of dσ=dQ2 ∝ Q−7 for this calculation [16],
independent ofW. The Q̄2 values thus obtained are listed in
Table III. We use the luminosity function at a given Q̄2

point to obtain the γ�γ-based cross section for each Q2 bin.
We also list the central value of the Q2 bins; these are used
for convenience to represent the individual bins in tables
and figures.

Q2 = 12.5 GeV2 Q2 = 22.5 GeV2

Q2 = 8.5 GeV2Q2 = 6.0 GeV2Q2 = 4.0 GeV2
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FIG. 11. The efficiency-corrected and background-subtracted W dependence of the eþe−-based cross section in each Q2 bin. The
black closed (red open) circles with error bars are for the e-tag (p-tag) measurements. The red p-tag points have been shifted slightly to
the right for enhanced visibility.
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TheQ2 value measured for each event can differ from the
trueQ2 for two primary reasons: the finite resolution in our
Q2 determination and/or the reduction of the incident
electron energy due to initial-state radiation (ISR).
However, the relative Q2 resolution in the measurement,
typically 0.7%, which is estimated using the signal-MC
events, is much smaller than the typical bin sizes and
therefore has a negligible effect. The ISR effect is also
negligibly small in this analysis owing to the tight Eratio
selection criterion, which rejects events with high-energy
radiation. Thus, we do not apply the Q2-unfolding pro-
cedure in this analysis, which was applied in the previous
analysis where the corresponding selection condition was
less restrictive [4].
The eþe−-based differential cross sections thus mea-

sured are converted to γ�γ-based cross sections, corre-
sponding to σtotðγ�γ → K0

SK
0
SÞ ¼ σTT þ ϵ0σLT, using the

luminosity function as described above. Figure 12 shows
the total cross sections (integrated over angle) for the
single-tag two-photon production of K0

SK
0
S, as a function of

W in five Q2 bins.

C. Helicity components and angular dependence

We now estimate ϵ0 and ϵ1, the factors that appear in
Eqs. (2)–(4), in each ðW;Q2Þ bin. We use the mean value of
ϵ0 (ϵ1) as calculated by Eq. (5) [Eq. (6)] for the selected
events from the signal-MC samples, as they depend only
very weakly on Q2 and W. The numerical values in the
kinematic rangeW < 1.8 GeV are summarized in Table IV,
where we neglect the W dependence because it is small
(within �2%); here, we apply the partial-wave analysis
of Sec. VI.
For analysis of the three helicity components 0, 1, and 2

described in Sec. VI C, we use a normalized angular-
differentiated cross section (integrated over Q2) ðd2σ=
dj cos θ�jdjφ�jÞ=σ, which is derived as follows. We assume
that the angular dependence of d2σ=dj cos θ�jdjφ�j follows
NEXPðj cos θ�j; jφ�jÞ=NMCðj cos θ�j; jφ�jÞ in each W bin
integrated in the Q2 ¼ 3–30 GeV2 region and take this
to be the angular dependence at Q2 ¼ hQ2i ¼ 6.5 GeV2,
where hQ2i is the mean value of Q2 for all the selected
experimental events. For this purpose, we use four W bins
starting at the mass threshold: 0.995–1.2, 1.2–1.4,
1.4–1.6, and 1.6–1.8 GeV. The angular bin sizes are
Δj cos θ�j ¼ 0.2 and Δjφ�j ¼ 30°. We use the normaliza-
tion

R
1
0 dj cos θ�j

R
π
0 djφ�j½ðd2σ=dj cos θ�jdjφ�jÞ=σ� ¼ 1.

D. Derivation of the partial decay
width of the χ cJ mesons

We find a clear excess of events in the mass region
of the χcJ (J ¼ 0, 2) mesons as shown in Fig. 3. We
define signal regions to be 3.365–3.465 GeV=c2 and
3.505–3.605 GeV=c2 for the χc0 and χc2 mesons, res-
pectively, and note that the process χc1 → K0

SK
0
S is pro-

hibited by parity conservation. We measure over the range
2 GeV2 ≤ Q2 ≤ 30 GeV2, and expect a much better
efficiency in the χcJ mass region at small Q2 than in the
lower-W region.

The charmonium yields in the Q2 range are 7 and 3 for
the χc0 and χc2 mesons, respectively; we assume, given
the evident absence of background, that they are pure
contributions from charmonia. Based on studies of no-
tag K0

SK
0
S [7] and single-tag π0π0 [4] measurements, we

similarly estimate less than one background event for the
total of the two charmonium regions.

TABLE III. The nominal Q2 value (Q̄2) for each Q2 bin.

Q2 bin (GeV2) Bin center (GeV2) Q̄2 (GeV2)

2–3 2.5 2.42
3–5 4.0 3.81
5–7 6.0 5.87
7–10 8.5 8.30
10–15 12.5 12.1
15–30 22.5 20.6
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FIG. 12. Total cross sections (integrated over angle) for γ�γ →
K0

SK
0
S in the five Q2 bins indicated in each panel.

TABLE IV. The values of the ϵ0 and ϵ1 parameters, as a
function of Q2, at W < 1.8 GeV.

Q2 bin (GeV2) ϵ0 ϵ1

3–5 0.92 1.33
5–7 0.91 1.32
7–10 0.89 1.30
10–15 0.87 1.28
15–30 0.82 1.23
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We first determine the eþe−-based cross section in the
two χcJ mass regions. This is then translated to the product
of the two-photon decay width and the branching fraction
into the K0

SK
0
S final state using the relation

dσee
dQ2

¼ 4π2
�
1þ Q2

M2
R

� ð2J þ 1Þ
M2

R

2d2Lγ�γ

dWdQ2

× Γγ�γðQ2ÞBðK0
SK

0
SÞ; ð15Þ

which is valid for a narrow resonance after integrating over
W, where MR is the resonance mass. It is not possible to
present the χcJ production rate as a function of σγ�γðW;Q2Þ
because we know that each of the χcJ mesons has a narrow
but finite width that is comparable to the resolution of our
measurement. Instead, we present the two-photon decay
width Γγ�γðQ2Þ with the above formula, which we define
similarly to the TFF in Eq. (19) with respect to the
functional dependence on Q2.
Note that the three independent helicity amplitudes are

effectively added in this definition, assuming unpolarized
eþe− collisions for the χc2 meson, and this formula can be
considered as the definition of Γγ�γðQ2Þ at Q2 > 0; we
adopt it as such in what follows.
Figure 13 shows the Q2 dependence of Γγ�γ=Γγγ for the

χc0 and χc2 mesons, where Γγγ is the value for the real two-
photon decay, which is extracted from the ΓγγBðK0

SK
0
SÞ

world-average values of ð7.3� 0.6Þ eV and ð0.291�
0.025Þ eV for the χc0 and χc2 mesons, respectively [15].
This is the first measurement of χcJ charmonium produc-
tion in high-Q2 single-tag two-photon collisions.
These measurements are compared to the SBG [6]

predictions evaluated at the χcJ mass and also the expect-
ation using a vector-dominance model (VDM) [17] with the
ρmass in the factor ð1þQ2=m2

ρÞ−2. As can be clearly seen,

the low statistics notwithstanding, we obtain reasonable
agreement with SBG prediction at the charmonium-mass
scale.

E. Systematic uncertainties

We estimate systematic uncertainties in the measurement
of the differential cross section as summarized in Table V.

1. Uncertainties in the efficiency evaluation

The detection efficiency is evaluated using signal-MC
events. However, our simulation has some known mis-
matches with data that translate into uncertainties in the
efficiency evaluation.
Charged particle tracking has a 2% uncertainty for five

tracks, which is estimated from a study of the decays
D�� → D0π�, D0 → K0

Sð→ πþπ−Þπþπ− (0.35% per track)
including an uncertainty in the radiation by an electron
within the CDC volume (about 1%, added in quadrature).
The electron identification efficiency in this measure-

ment is very high, around 98%, and a 1% systematic
uncertainty is assigned to it. Detection of the πþπ− pairs for
reconstructing two K0

S mesons has a 2% uncertainty due to
the requirement to identify four charged pions, and another
3% for K0

S reconstruction and selection dominated by a
possible difference in the mass resolution for the recon-
structed K0

S between the experiment and the signal MC.
Our kinematic condition based on the Eratio and pt

balance has an accompanying uncertainty of 4%. In
addition, imperfections in modeling detector edge locations
and other geometrical-description effects result in an
uncertainty of 1%.
The uncertainty of the trigger efficiency is estimated

using different types of subtrigger components, with
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FIG. 13. Q2 dependence of Γγ�γ for the (a) χc0 and (b) χc2
mesons normalized to Γγγ (at Q2 ¼ 0) [15]. The data point
without a dot is based on a zero-event observation, and the upper
edge of its error bar corresponds to the value for one event. The
overall uncertainties due to the normalization errors of the
ΓγγBðK0

SK
0
SÞ are not shown. The solid and dashed curves,

respectively, show the SBG [6] prediction and also one motivated
by VDM, assuming ρ dominance.

TABLE V. Sources of systematic uncertainties. The values are
indicated for specific W ranges. DCS stands for the differential
cross section.

Source Uncertainty (%)

Tracking 2
Electron-ID 1
Pion-ID (for four pions) 2
K0

S reconstruction (for two K0
S’s) 3

Kinematic selection 4
Geometrical acceptance 1
Trigger efficiency 1–3
Background effect for the efficiency 2
Angular dependence of DCS 6–22
Background subtraction 3–7
No unfolding applied 1
Radiative correction 3
Luminosity function 4
Integrated luminosity 1.4
Total 13–24
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special attention given to events satisfying multiple trigger
conditions. We select four kinds of primary subtriggers
whose efficiencies are well-studied. The first two are
distinct possible two track triggers: one requires total
energy activity in the ECL exceeding 0.5 GeV, and the
other requires an ECL cluster as well as two TOF hits. The
other two trigger lines are the neutral triggers, namely HiE
and Clst4.
More than half of the signal candidates are triggered by

two or more distinct triggers. We estimate the uncertainty
on the trigger inefficiency as a fractional difference of the
efficiencies between the cases for which all the subtrigger
components are ORed and the case where at least one of the
selected four triggers is fired. This uncertainty is estimated
to be 3% for W < 2.6 GeV and 1% for the χcJ charmo-
nium-mass region.
Backgrounds overlapping with the signal events may

reduce the efficiency; this effect is accounted for in MC
simulations by embedding hits from a nontriggered event
(“random” or “unbiased” triggers) in each signal-MC event.
We evaluate this effect separately for each different beam-
condition state and run period. The corresponding effect on
the efficiency is estimated to be 2%.
We take into account an uncertainty on the efficiency-

correction factor arising from the angular dependence of
the differential cross section. This correction arises when
both the selection efficiency and differential cross sections
have angular nonuniformities. As we do not measure the
angular dependence of the differential cross section for
different kinematic regions owing to limited statistics, we
assume several typical angular dependences of the differential
cross section based on the spherical-harmonic functions of
J ≤ 2: proportional to cos θ�, cos2 θ�, ð3 cos2 θ� − 1Þ2,
sin4 θ�, (1þ 0.5 cosφ�), and (1þ 0.5 cos 2φ�).
We examine the efficiency differences for these angular-

dependence shapes from that of the isotropic-efficiency
case using simulated events, and assign its typical variation
size, taking a quadratic sum of the cos θ� and φ� contri-
butions, to the systematic uncertainty from this source. The
W-dependent estimated error magnitude is 6%—22%:
this dependence originates purely from the difference in
the degree of nonuniformity in the efficiency.

2. Uncertainties from other sources

We assign 7%, half of the magnitude of the subtraction
itself, as the uncertainty in the background subtractions
arising from K0

SK
0
SX nonexclusive processes for W <

1.3 GeV. We assign 3% as the uncertainty for the other
W regions. Other background sources are negligibly small.
The omission of the Q2-unfolding procedure introduces

an uncertainty of 1%. The radiative correction has an
uncertainty of 3%. The evaluation of the luminosity function
gives anuncertainty of 4%, including amodel uncertainty for
the form factor of the untagged side (2%) [4]. The integrated
luminosity measurement has an uncertainty of 1.4%.

The systematic uncertainties are added in quadrature
unless noted above. The total systematic uncertainty is
between 13% and 24%, depending on the W bins.

VI. MEASUREMENT OF THE TRANSITION
FORM FACTOR

In the measurement of the no-tag mode of the process
γγ → K0

SK
0
S [7], the f02ð1525Þ resonance with a structure

corresponding to the f2ð1270Þ and the a2ð1320Þ mesons,
and their destructive interference, were observed.
In the present single-tag measurement (Fig. 12), a

structure corresponding to the f02ð1525Þ state is clearly
visible. A structure near the threshold of K0

SK
0
S is also

visible that may be associated with the f0ð980Þ and the
a0ð980Þ mesons. We do not find any prominent enhance-
ment at the f2ð1270Þ or the a2ð1320Þmass, and this feature
is consistent with destructive interference.
In this section, we extract the Q2 dependence of the

helicity-0, -1, and -2 TFF of the f02ð1525Þ meson and
compare it with theory. We also compare the Q2 depend-
ence of cross sections near the threshold with theory.

A. Partial wave amplitudes

The helicity amplitudes in Eq. (8) can be written in terms
of S and D waves in the energy region W ≤ 1.8 GeV,
identical to the expressions presented in our similar study
of π0π0 production [4]. For completeness, we reproduce
here the expression of the t0, t1, and t2 amplitudes in
Eqs. (2) to (4) in terms of S and D waves:

t0 ¼ jSY0
0 þD0Y0

2j2 þ jD2Y2
2j2 þ 2ϵ0jD1Y1

2j2;
t1 ¼ 2ϵ1ℜ½ðD�

2jY2
2j − S�Y0

0 −D�
0Y

0
2ÞD1jY1

2j�;
t2 ¼ −2ϵ0ℜ½D�

2jY2
2jðSY0

0 þD0Y0
2Þ�; ð16Þ

where S is the S-wave amplitude, D0, D1, and D2 denote
the helicity-0, -1, and -2 components of the D wave,
respectively, [18] and Ym

J are the spherical harmonics. We
use the absolute values for the spherical harmonics since
the helicity amplitudes are independent of φ� [5].
After integrating over the azimuthal angle, the differ-

ential cross section can be expressed as

dσðγ�γ → K0
SK

0
SÞ

4πdj cos θ�j ¼ jSY0
0 þD0 Y0

2j2

þ 2ϵ0jD1 Y1
2j2 þ jD2 Y2

2j2: ð17Þ

The angular dependence of the cross section is contained
in the spherical harmonics, while the W and Q2 depend-
ences are determined by the partial waves. The Q2

dependence is governed by the transition form factors of
the resonances and the helicity fractions in D waves. TheW
dependence is expressed by the relativistic Breit-Wigner
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function and the energy dependence of the nonresonant
backgrounds.

B. Parametrization of amplitudes

We extract the Q2 dependence of Ff2pðQ2Þ, the TFF of
the f02ð1525Þ meson, by parametrizing S, D0, D1, and D2

and fitting the event distribution in the energy
region 1.0 GeV ≤ W ≤ 1.8 GeV.
Both isoscalar f and isovector a mesons contribute to

two-photon production of a K0
S pair. The relative phase

between the f2ð1270Þ and the a2ð1320Þ mesons was found
to be fully destructive in the previous no-tag measurement
of this process [7]. Correspondingly, we assume the phase
to be 180°, independent of Q2.
The partial-wave amplitudes S and Diði ¼ 0; 1; 2Þ are

parametrized as follows:

S ¼ ABWeiϕBW þ BSeiϕBS ;

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rifaðQ2Þ

q
ðAf2ð1270Þ − Aa2ð1320ÞÞeiϕfaDi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rifpðQ2Þ

q
Af0

2
ð1525ÞeiϕfpDi

þ BDieiϕBDi ; ð18Þ

where Af2ð1270Þ, Aa2ð1320Þ, and Af0
2
ð1525Þ are the amplitudes

of the f2ð1270Þ, the a2ð1320Þ, and the f02ð1525Þ mesons,
respectively, and ABW is an S-wave amplitude, as explained
below. The parameters rifaðQ2Þ and rifpðQ2Þ designate the
fractions of the f2ð1270Þ=a2ð1320Þ and the f02ð1525Þ-
contribution in the Di wave, respectively, with the unitarity
constraint of r0j þ r1j þ r2j ¼ 1, and rij ≥ 0, where j
stands for fa or fp. BS and BDi are nonresonant “back-
ground” amplitudes for S and Di waves; ϕBS, ϕBDi, ϕBW ,
and ϕjDi are the phases of these S-wave and Di-wave
background amplitudes, of the amplitude ABW , and of the
amplitudes of the f2ð1270Þ=a2ð1320Þ and the f02ð1525Þ-
contribution in Di wave; they are assumed to be indepen-
dent of Q2 and W. The overall arbitrary phase is fixed by
taking ϕfiD0 ¼ 0.
Here, we describe the parametrization of the f2ð1270Þ,

the a2ð1320Þ, and the f02ð1525Þ mesons. The relativistic
Breit-Wigner resonance amplitude AJ

RðWÞ for a spin-J
resonance R of mass mR is given by

AJ
RðWÞ ¼ FRðQ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

m2
R

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πð2J þ 1ÞmR

W

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓtotðWÞΓγγðWÞBðK0

SK
0
SÞ

q
m2

R −W2 − imRΓtotðWÞ ; ð19Þ

where FRðQ2Þ is the TFF of the resonance R, and is defined
by the above formula in relation to the tagged two-photon
cross section [4] (see also Eq. (C13) and (C28) in Ref [19]).

The energy-dependent total width ΓtotðWÞ is given by
Eq. (38) in Ref [4].
Since the TFF and the fractions of the f2ð1270Þ meson

have been measured [4], we accordingly fit the data with a
smooth function of Q2. We have used the obtained func-
tions for Eq. (19), viz. Ff2ðQ2Þ¼1=ð1þ3.3×Q2Þ0.94,
r0faðQ2Þ ¼ 0.015 ×Q2 þ 0.30, and r1faðQ2Þ ¼ 0.15×
ðQ2=9.6Þ−0.2, with Q2 in GeV2. Since the a2ð1320Þ and
the f2ð1270Þ mesons are so close in mass, we assume they
have identical TFFs.
In the γγ → K0

SK
0
S reaction, a peak structure near the

threshold is predicted even though a destructive interfer-
ence between the f0ð980Þ and the a0ð980Þ states is
expected to suppress such events [20]. Thus, we employ
a Breit-Wigner function or a power-law function, shown in
the first line of Eq. (21) in the description of the S wave. In
the case of the Breit-Wigner function, the amplitude ABW is
parametrized as

ABWðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8πmS

W

r
fS

m2
S −W2 − imSgS

×
1

ðQ2=m2
0 þ 1ÞpS

; ð20Þ

where mS is the mass of the resonance, fS parametrizes the
amplitude size, and gS is the total width of the resonance.
We assume a power-law behavior for the Q2 dependence,
where pS is the power. We take mS ¼ 0.995 GeV=c2 by
assuming that the resonance coincides with the KK̄
threshold.
We assume a power-law behavior in W for the back-

ground amplitudes, which are then multiplied by the
threshold factor β2lþ1 (with l denoting the orbital angular
momentum of the two-K0

S system), and with an assumed
Q2 dependence for all the waves:

BS ¼
βaSðW0=WÞbS
ðQ2=m2

0 þ 1ÞcS ;

BD0 ¼
β5aD0ðW0=WÞbD0

ðQ2=m2
0 þ 1ÞcD0

;

BD1 ¼
β5Q2aD1ðW0=WÞbD1

ðQ2=m2
0 þ 1ÞcD1

;

BD2 ¼
β5aD2ðW0=WÞbD2

ðQ2=m2
0 þ 1ÞcD2

; ð21Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K0
S
=W2

q
is the K0

S velocity divided

by the speed of light. We take W0 ¼ 1.4 GeV and
m0 ¼ 1.0 GeV=c2. Note that BD1 has an additional factor
of Q2 to ensure that this amplitude vanishes at Q2 ¼ 0. We
set ai ≥ 0ði ¼ S;D0; D1; D2Þ to fix the arbitrary sign of

M. MASUDA et al. PHYS. REV. D 97, 052003 (2018)

052003-14



each background amplitude, thereby absorbing the sign
into the corresponding phase.
All parameters of the f2ð1270Þ, the a2ð1320Þ, and the

f02ð1525Þ mesons are fixed at the PDG values [15]. The
normalization of the TFF is such that Ff2pð0Þ ¼ 1.00�
0.07; the error reflects the uncertainty of its two-photon
decay width at Q2 ¼ 0 [15].

C. Extracting the TFF of the f 02ð1525Þ meson

We employ a partial wave analysis to extract the TFF of
the f02ð1525Þ meson separately for helicit y ¼ 0, 1, and 2,
realizing that there is a fundamental limitation due to the
inherent correlation in S, D0, D1, and D2 [4]. To overcome
this limitation, we simultaneously fit both theQ2-integrated
differential cross sections and the total cross section. The
former is a function ofW, j cos θ�j, and jφ�j while the latter
is a function of W and Q2.
The Q2-integrated differential cross sections are divided

into six jφ�j bins, of equal 30° width, five j cos θ�j bins with
a bin width of 0.2, and five W bins covering 1.0–1.2, 1.2–
1.4, 1.4–1.6, 1.6–1.8, and 1.8–2.6 GeV. The average value
of Q2, hQ2i, is 6.5 GeV2.
The Q2-integrated differential cross sections together

with the total cross sections are fitted with the parametri-
zation described above. In the fit, the usual χ2 is replaced by
χ2P with its equivalent Poisson-likelihood quantity λ defined
in Ref. [21]:

χ2P ≡ −2 ln λ ¼ 2
X
i

�
pi − ni þ ni ln

�
ni
pi

��
; ð22Þ

where ni and pi are the numbers of events observed and
predicted in the i-th bin and the sum is over all bins.
We minimize the sum of two χ2P values for the Q2-

integrated differential and total cross sections:

χ2comb ¼ χ2PðW; j cos θ�j; jφ�jÞ þ χ2PðW;Q2Þ: ð23Þ

In the first term, the predicted number of events in each
W bin is normalized such that the differential cross section
integrated over j cos θ�j and jφ�j is equal to the total cross
section in each W bin. In the second term, the predicted
cross section value is converted to the number of events by
multiplying by a known conversion factor. These two
subsets of data are obtained from the same data sample,
but the correlation between the two is negligible. The effect
of limited statistics in using this combined χ2P is negligible
since the Q2-integrated differential cross sections and the
total cross sections are almost independent. We float the
normalization factors in the Q2-integrated differential cross
sections and fix them in the total cross sections so as to
minimize the correlation between the two sets of data in
the fit.
Here, we include zero-event bins in calculating the χ2P

given in Eq. (22). In fitting using Eq. (22), systematic

uncertainties on the cross section are not taken into account.
Their effects are detailed separately in Sec. VI D.
The TFFs for the f02ð1525Þ meson are floated in each Q2

bin, while r0fpðQ2Þ, r1fpðQ2Þ, and r2fpðQ2Þ are assumed
such that

r0fp∶r1fp∶r2fp ¼ k0Q2∶k1
ffiffiffiffiffiffi
Q2

p
∶1; ð24Þ

where the parameters k0 and k1 are floated. This para-
metrization is motivated by SBG [6] (Table I) and repro-
duces well the measured data on the f2ð1270Þ meson [4].
In this procedure, three categories of fits are conducted:

category 1 (ABW ≠ 0 ⋂ BS ¼ 0), category 2 (ABW ¼ 0 ⋂
BS ≠ 0), and category 3 (ABW ¼ BS ¼ 0). We have
assumed that the S wave is described only with a Breit-
Wigner function in category 1 and a power-law behavior in
W in category 2. The S wave is assumed not to be present in
category 3. We have also assumed BD0 ¼ BD1 ¼ BD2 ¼ 0
in all cases, and later assess the systematic errors associated
with this assumption. In each category, we fit the data under
the condition that either k0 and k1 are both floated, or one is
floated with the other magnitude set to zero.
In category 1, the condition k0 ≠ 0 ⋂ k1 ≠ 0 admits two

solutions with χ2=ndf of 152.4=150 and 159.8=150,
respectively, where ndf is the number of degrees of
freedom in the fit. Because they are smaller than the value
of 173.1=151 obtained by setting k0 ¼ 0, or 166.4=151
obtained by setting k1 ¼ 0, only the two solutions corre-
sponding to k0 ≠ 0 ⋂ k1 ≠ 0 are shown in Table VI; these
are denoted as solution 1a and 1b. In category 2, the
condition of k0 ≠ 0 ⋂ k1 ≠ 0 gives two solutions with
χ2=ndf values of 154.9=151 (solution 2a) and 156.1=151
(solution 2b), respectively. Here again, setting k0 ¼ 0 or
k1 ¼ 0 give a much larger χ2 value. In category 3, only the
solution giving the minimum χ2 for k0 ≠ 0 ⋂ k1 ≠ 0 is
listed in Table VI.
These fit results show that there is a significant helicity-0

component of the f02ð1525Þ meson in two-photon produc-
tion when one of the photons is highly virtual, and also
favor a nonzero helicity-1 component of the f02ð1525Þ
meson. One of the solutions of a Breit-Wigner model for
the S wave gives the global-minimal χ2; nevertheless, we
cannot conclude definitively that the threshold enhance-
ment is of the Breit-Wigner type.
To extract each helicity component of the f02ð1525Þ

meson, we use the values of k0, k1, and the TFF of the
f02ð1525Þ meson that best match our data. Both solutions
(1a and 1b) in category 1 with k0 ≠ 0 ⋂ k1 ≠ 0 are shown
in Table VI. Solutions 1a and 1b give only slight differences
in their fitted values, except for the phases ϕfiD1 (which are
opposite one another) and solution 1a gives 7.4 smaller
units of χ2 than solution 1b. Solutions 2a and 2b are
identical to solution 1a within errors except for the phases
ϕfiD1, and give 2.5 and 3.7 larger units of χ2 than solution
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1a, respectively. Thus, we take solution 1a as the nominal
fit result instead of combining these solutions statistically.
Figure 14 shows the Q2-integrated differential cross

sections as a function of j cos θ�j for the four W bins
indicated in each panel. The values of the S, D0, D1, and D2

waves obtained in the nominal fit (at hQ2i ¼ 6.5 GeV2)
are shown for comparison. It seems that the S wave is
dominant in the energy region of W near 1.1 GeV. The
amplitudes D0, D1, and D2 appear to be nonzero in the
energy region of W near 1.5 GeV; i.e., close to the mass of
the f02ð1525Þ meson.
Figure 15 shows the Q2-integrated differential cross

sections as a function of jφ�j for the four W bins indicated
in each panel. The t0, t1 cos jφ�j, and t2 cos 2jφ�j functions
obtained in the nominal fit (at hQ2i ¼ 6.5 GeV2) are shown
in the figure as well.
The total cross sections (integrated over angle) for

γ�γ → K0
SK

0
S are presented in Fig. 16 in the five Q2 bins

(in GeV2) shown in each panel. The results from the
nominal fit are also shown.

The obtained Q2 dependences of the helicity-0, -1, and
-2 TFF, ffiffiffiffiffiffiffiffirifp

p Ff2p (i ¼ 0, 1, 2), for the f02ð1525Þ meson
obtained from the nominal fit are shown in Table VII and
Fig. 17. Also shown is the Q2 dependence predicted by
SBG [6]. Note that we have assumed Eq. (24) in the fit,
without which fits often fail due to the limited statistics.
With this caveat, the measured helicity-0 and -2 TFFs of the
f02ð1525Þmeson agree well with SBG [6] and the helicity-1
TFF is not inconsistent with prediction.

D. Estimation of systematic uncertainties
of the TFF

In this subsection, we estimate systematic uncertainties
for the TFF of the f02ð1525Þ meson. These arise primarily
from the overall�7% normalization uncertainty on Γγγ that
affects all Q2 bins uniformly and the individual uncertain-
ties that vary in each Q2 bin. The individual systematic
uncertainties in the helicity-0, -1, and -2 components of the
TFF of the f02ð1525Þ meson are evaluated by shifting the

TABLE VI. Fitted parameters of cross sections and the number of solutions obtained under the conditions noted below. In each
category, only solutions assuming k0 ≠ 0 ⋂ k1 ≠ 0 are shown. Only the single solution that gives the minimum χ2 in category 3 is
shown, while two viable solutions in categories 1 and 2 are shown.

Parameter Category 1 Category 2 Category 3

Conditions ABW ≠ 0 ⋂ BS ¼ 0 ABW ¼ 0 ⋂ BS ≠ 0 ABW ¼ BS ¼ 0

Number of solutions 2 2 3

Solution 1a Solution 1b Solution 2a Solution 2b

χ2P=ndf 152.4=150 159.8=150 154.9=151 156.1=151 293.9=155

k0 (GeV−2) 0.30þ0.31
−0.14 0.31þ0.34

−0.15 0.31þ0.34
−0.15 0.29þ0.31

−0.14 0.33þ0.31
−0.14

k1 (GeV−1) 0.27þ0.30
−0.14 0.27þ0.44

−0.15 0.29þ0.33
−0.15 0.24þ0.29

−0.13 0.23þ0.25
−0.12

Ff2pð0.0Þ; ð×10−2Þ 100� 7

Ff2pð4.0Þ; ð×10−2Þ 24.1þ2.6
−2.5 24.4þ2.7

−2.6 24.3þ2.6
−2.5 24.4þ2.6

−2.5 27.1þ2.7
−2.6

Ff2pð6.0Þ; ð×10−2Þ 13.4þ2.6
−2.5 13.9þ2.5

−2.4 14.3þ2.5
−2.3 14.4þ2.5

−2.3 15.5þ2.5
−2.4

Ff2pð8.5Þ; ð×10−2Þ 11.2þ2.3
−2.2 11.3þ2.3

−2.2 11.5þ2.3
−2.2 11.6þ2.3

−2.1 12.4þ2.3
−2.2

Ff2pð12.5Þ; ð×10−2Þ 6.3þ2.1
−1.9 6.3þ2.1

−1.9 6.3þ2.1
−1.9 6.3þ2.1

−1.9 7.0þ2.1
−1.9

Ff2pð22.5Þ; ð×10−2Þ 4.6þ1.9
−1.7 4.6þ1.9

−1.7 4.6þ1.9
−1.7 4.7þ1.9

−1.7 5.1þ2.0
−1.8

ϕfpD1ð°Þ 33þ28
−81 177þ27

−27 112þ23
−35 108þ24

−37 47þ24
−33

ϕfpD2ð°Þ 199þ34
−75 218þ27

−29 209þ30
−35 213þ28

−33 218þ23
−27

ϕfaD1ð°Þ 137þ27
−34 328þ34

−39 18þ28
−30 340þ33

−33 234þ22
−24

ϕfaD2ð°Þ 166þ30
−32 180þ29

−29 162þ29
−32 182þ27

−28 0 (fixed)

fS (
ffiffiffiffiffi
nb

p
GeV2);ð×10−2Þ 1.3þ1.1

−0.6 0.9þ0.8
−0.4 0 (fixed) 0 (fixed)

gS (GeV) 0.10þ0.05
−0.04 0.06þ0.05

−0.05 0 (fixed) 0 (fixed)
pS 0.06þ0.25

−0.24 0.01þ0.26
−0.25 0 (fixed) 0 (fixed)

ϕBWð°Þ 297þ21
−21 150þ35

−24 0 (fixed) 0 (fixed)

aSð
ffiffiffiffiffi
nb

p Þ; ð×10−3Þ 0 (fixed) 4.3þ12.5
−5.9 2.2þ5.7

−3.0 0 (fixed)
bS 0 (fixed) 19.6þ4.6

−4.1 21.9þ6.0
−4.0 0 (fixed)

cS 0 (fixed) 0.00þ0.23
−0.06 0.00þ0.21

−0.05 0 (fixed)
ϕBSð°Þ 0 (fixed) 99þ19

−21 311þ20
−18 0 (fixed)
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cross-section values according to the size of the systematic
uncertainties for the differential cross sections obtained in
Sec. V E and the systematic uncertainties of the input
parameters in the formulation of the TFF. The results
of TFF of the f02ð1525Þ meson including the overall

systematic errors, the individual systematic errors, and
the statistical errors which are obtained in the χ2 fit errors
in the nominal fit, are summarized in Table VII and shown
in Fig. 17.
Individual uncertainties are estimated for the TFF as

follows. The uncertainties of the normalization factor in the
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differential cross sections are estimated by shifting the
value corresponding to 1σ of the fit. The systematic
uncertainties of the measured total cross sections are taken
into account by refitting the cross sections with the error
shifted. The properties such as the mass, the width, and the
branching fraction to KK̄ of the f2ð1270Þ, the a2ð1320Þ,
and the f02ð1525Þ mesons are shifted by the uncertainties
given in the PDG [15]. The m2

0 in ABW is changed to
ð1.0� 0.5Þ GeV2. For BDi, they are turned on individually
and their effects are taken as uncertainties.

Systematic uncertainties due to various possible distor-
tions in the distributions of W, Q2, j cos θ�j, and jφ�j
studied below are evaluated parametrically. The effect of a
shift of�10% in the total and the differential cross sections
over the full range of W is estimated by multiplying the
cross sections by [1� 0.25 × ðW − 1.4 GeVÞ]. The effect
of a shift of �5% in the total cross sections over the full
range of Q2 is evaluated by multiplying by [1� 0.006×
ðQ2 − 12.2 GeV2Þ]. Additional uncertainties considered
are those arising from changing the range of W, from
1.0–1.8 to 1.0–2.0 or 1.0–1.6 GeV. The effect of a shift
of �10% in the differential cross sections as a function
of cos θ� is evaluated by multiplying by [1� 0.2×
ðj cos θ�j − 0.5Þ]. The effect of a shift of �10% in the
differential cross sections as a function of jφ�j is evaluated
by multiplying by [1� 0.0011 × ðjφ�j − 90°Þ]. The uncer-
tainty in the convex or concave shape of cos θ� is evaluated
by multiplying by [1.1 − 0.8 × ðj cos θ�j − 0.5Þ2], or [0.9þ
0.8 × ðj cos θ�j − 0.5Þ2], respectively. Similarly, the uncer-
tainty in the convex or concave shape of jφ�j is evaluated
by multiplying by [1.1 − 2.5 × 10−5 × ðjφ�j − 90°Þ2] or
[0.9þ 2.5 × 10−5 × ðjφ�j − 90°Þ2], respectively.

E. Q2 dependence of cross sections near
the K0

SK
0
S threshold

In the γγ → K0
SK

0
S reaction, a peak structure near

K0
SK

0
S threshold is expected, based on a comprehensive

amplitude analysis using the data of γγ → ππ and KK̄ [20].
In Refs. [22,23], it is predicted that this peak structure
persists even if the f0ð980Þ and the a0ð980Þ mesons
interfere destructively. Experimentally, there have been
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f02ð1525Þ meson as a function of Q2, assuming Eq. (24). Short
(long) vertical bars indicate statistical (combined statistical and
systematic) errors. The shaded band corresponds to the overall
uncertainty arising from the known errors on Γγγ . The solid line
shows the predicted Q2 dependence in SBG [6].

TABLE VII. Transition form factors of the f02ð1525Þ meson
(×10−2) for each helicity and combined. The first and second
uncertainties are statistical and systematic, respectively. The
normalization of the TFF is such that Ff2pð0Þ ¼ 1. There is
an additional overall systematic uncertainty of �7% due to the
error in the tabulated two-photon decay width Γγγ of the f02ð1525Þ
state.

Q̄2ðGeV2Þ Helicity-0 Helicity-1 Helicity-2 Total

3.51 15.8þ2.4
−2.5

þ4.1
−5.1 10.6þ1.9þ2.8

−2.0−7.3 14.8þ3.3þ4.1
−3.6−6.6 24.1þ2.6þ6.0

−2.5−8.2
5.87 9.7þ2.0þ2.2

−2.0−3.6 5.8þ1.3þ1.3
−1.4−4.2 7.3þ2.1þ1.8
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−1.8−1.2 4.7þ1.1þ1.0
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no measurements to date of the two-photon cross section in
the energy region of W below 1.05 GeV.

The nominal fit shows that S wave can be expressed by a
Breit-Wigner function with a mass of 0.995 GeV=c2.
Motivated by this, we have plotted the Q2 dependence
of the total cross sections in the energy bins at 1.023, 1.075,
and 1.125 GeV as shown in Fig. 18. We also show the
Q2 dependence for a JP ¼ 0þ state predicted with M ¼
0.98 GeV=c2 in SBG [6] normalized by the points at
Q2 ¼ 0, which are translated from the data of the no-tag
measurement of this process [7] assuming an isotropic
angular dependence. These data are available at the two
higher-W regions. The measured cross sections are slightly
larger than the predicted values, though not inconsistent
with them given the large statistical errors. The cross
sections increase as W approaches the mass threshold,
which may signify the threshold enhancement suggested
in Ref. [20].

VII. SUMMARY AND CONCLUSION

We have measured the cross section of K0
S-pair produc-

tion in single-tag two-photon collisions, γ�γ → K0
SK

0
S up

to Q2 ¼ 30 GeV2 based on a data sample of 759 fb−1

collected with the Belle detector at the KEKB asymmetric-
energy eþe− collider. The data covers the kinematic
range 1.0 GeV < W < 2.6 GeV and the angular range of
j cos θ�j < 1.0 and 0 ≤ jφ�j ≤ 180° in the γ�γ c.m. system.
For the first time, we find the f02ð1525Þ, χc0ð1PÞ, and

χc2ð1PÞ mesons in high-Q2 γ�γ scattering. These resonan-
ces are most visible in the corresponding no-tag mode [7].
We have estimated the χc0 and χc2 partial decay widths

Γγ�γ as a function of Q2. The Q2 dependences of Γγ�γ are
normalized to Γγγ at Q2 ¼ 0 and compared with SBG [6],
as shown in Fig. 13. They are in agreement, albeit with very
limited statistics.
A partial-wave analysis has also been conducted for

the γ�γ → K0
SK

0
S event sample. The helicity-0, -1, and -2

transition form factors (TFFs) of the f02ð1525Þ meson are
measured for the first time for Q2 up to 30 GeV2 and are
compared with theoretical predictions. The measured
helicity-0 and -2 TFFs of the f02ð1525Þ meson agree well
with SBG [6], and the helicity-1 TFF is not inconsistent
with prediction.
We have also compared the total cross section near

the K0
SK

0
S mass threshold as a function of Q2 with the

prediction for a JP ¼ 0þ state with M ¼ 0.98 GeV=c2 in

SBG [6], although our limited statistics currently preclude
quantitative description of the threshold enhancement and
theoretical explanation of its origin.
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