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For an accurate calculation of the resistive-wall impedance of a resistive chamber, we must know
the conductivity of the resistive material. The conductivity of the material at a given frequency can
be evaluated by measuring the S-matrix of a propagation mode in a waveguide. However, in most
cases, only the absolute value of the S-matrix is used for evaluation under the assumption that the
conductivity is pure real, although both the S-matrix and the conductivity are complex numbers
in general. To evaluate complex conductivity from a measured complex S-matrix, we derive new
theoretical formulae for the S-matrix for the TE11 and TM01 modes of a waveguide and for the
quasi-TEM00 (quasi-transverse electromagnetic) mode of a coaxial waveguide, where complex
conductivity is assumed. In a reverse way, we can determine the conductivity of a material by
using it as a fitting parameter in a comparison of a measured S-matrix with those obtained using
theoretical formulae. The three independent methods facilitate triple-checking of the accuracy
of the measured conductivity.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

In recent years, non-evaporable getter (NEG) coatings on vacuum chambers have been successfully
used to achieve ultra-high vacuum in many accelerators such as CERN LHC and ESRF [1,2]. One
drawback of the NEG coating is its effect on resistive-wall impedance [3].An NEG coating comprises
a TiZrV ternary alloy (such as 30% titanium, 30% zirconium, and 40% vanadium) and its resistivity
is typically higher than that of the chamber material by a factor of ∼ 50. If a large proportion of
the beam chamber surface is coated with NEG, it may increase the resistive-wall impedance of the
machine significantly [4]. In synchrotron light sources [5,6], the bunch length varies from less than
1 mm to a few cm and we need to investigate the behavior of impedance over a wide range of
frequencies, even beyond 1 THz.

For accurately estimating the resistive-wall impedance of a resistive waveguide, we must determine
the conductivity of the resistive material and its frequency dependence.A common method to evaluate
the frequency dependence of conductivity involves measuring the scattering matrices of a waveguide
mode at various frequencies and comparing their absolute values with simulation results, assuming
that the conductivity is pure real (called the “waveguide method” hereinafter) [7,8]. However, since
conductivity is generally complex at high frequencies, we must use the complex scattering matrix.

© The Author(s) 2018. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Another measurement method to determine the complex dielectric constant (conductivity) is mea-
suring the propagation constant of TE10 mode in rectangular waveguides [9]. The measured scattering
matrix is converted to a diagonal T -matrix by implicitly assuming that the characteristic impedance
of cables connected to the waveguide is identical to that of the waveguide.

Consequently, new theoretical formulae are necessary to fill in the blanks between the complex
conductivity and the scattering matrix by solving the Maxwell equations for both transverse electric
(TE) and transverse magnetic (TM) modes.

In Sect. 2, we present formulae for computing the scattering matrix for the TE and TM modes in
the waveguide method measurement setup. Once the scattering matrices of the TE and TM modes
are measured at various frequencies using this setup, we can evaluate the frequency dependence of
conductivity by using it as a fitting parameter so that the theoretical and measured scattering matrices
agree with each other.

The frequency dependence of conductivity can also be evaluated by measuring the scattering matrix
of a quasi-transverse electromagnetic (quasi-TEM) mode in a coaxial waveguide (called the “wire
method” hereinafter) [10]. In the wire method, a single wire is stretched out at the center of the
resistive chamber sandwiched by two perfectly conductive chambers (mostly made of aluminum)
at both ends. Recently, the authors have developed a general theory to calculate the beam coupling
impedance of a ceramic break [11], sandwiched by two perfectly conductive chambers at both ends.
In Sect. 3, we present a rigorous theoretical formula for determining the scattering matrix of the
quasi-TEM mode with the wire method by generalizing this theory. This method can serve as an
extra layer of checking on the accuracy of the conductivity obtained using the waveguide method.

The wire method is often used to estimate the resistive-wall beam coupling impedances from
scattering matrices using the standard log-formula [12]. The question is how accurately the method
can reproduce the resistive-wall impedance of a beam (called the “resistive-wall beam impedance”
hereinafter) [13]. Many theories, including ours, are available for analytical calculation of the
resistive-wall beam impedance [4,14–27]. In Sect. 4, we compare the theoretical resistive-wall beam
impedance with the value obtained using the wire method by applying the standard log-formula to
simulated scattering matrices.

In Sect. 5, we discuss some intrinsic errors of the measurement setup of the wire method, and the
effects on the measurements at high frequency. The paper is concluded in Sect. 6.

2. Formulae for determining the scattering matrix using the waveguide method

Let us consider a 2D cylindrical chamber made of a resistive material with conductivity σc, whose
inner and outer radii are d and a, respectively. We adopt cylindrical coordinates (ρ, θ , z) for
this description. In this section, we present formulae for determining the scattering matrix of the
waveguide modes. To ensure that the derived formulae reproduce the conventional formulae at the
infinitesimal σc extreme [28], we assume that the outer surface of the resistive chamber is surrounded
by a perfectly conductive layer. This approximation is valid in the frequency region in which the
skin depth is smaller than the chamber width (a − d). In the following formulation, we assume that
all fields are proportional to ejωt−j�z, where j is the imaginary unit and ω is the angular frequency.
The parameter � depends on the waveguide mode (TE or TM).

2.1. Scattering matrix for the TE11 mode in a cylindrical waveguide

In this subsection, we present new formulae for determining the scattering matrix
((S11, S12), (S21, S22)) for the TE11 mode, including the conductivity of the resistive material.
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Derivations of the following formulae are given in Appendix A.1. They are expressed as follows:

S11 = S22 =
1

Z2
50

− 1
Z2

TE1,1

1
Z2

50
+ 1

Z2
TE1,1

+ 2
jZ50ZTE1,1 tan �TE

1,1g

, (1)

and

S21 = S12 =
2

jZ50ZTE1,1 sin �TE
1,1g

1
Z2

50
+ 1

Z2
TE1,1

+ 2
jZ50ZTE1,1 tan �TE

1,1g

, (2)

where the waveguide impedance is

ZTE1,1 = ωZ0

c�TE
1,1

, (3)

c is the velocity of light, Z0 = 120π � is the impedance of free space, g is the total length of the
waveguide chamber, and both ends of the waveguide are connected to cables with the characteristic
impedance Z50 (which is typically 50 �). The factor �TE

1,1 is the first non-trivial solution of

[I1(κd) − I ′
1(κa)

K ′
1(κa)

K1(κd)]J ′
1(
d)√

ω2

c2 − �2
+ 1

κ

[
I ′
1(κd) − I ′

1(κa)

K ′
1(κa)

K ′
1(κd)

]
J1(
d) = 0, (4)

for a given frequency, where

κ =
√

�2 − ω2

c2 + jωμ0σc, (5)


 =
√

ω2

c2 − �2, (6)

and μ0 is the permeability of vacuum. The functions Jn(z) and In(z), Kn(z) are the Bessel and
modified Bessel functions, respectively [29]. The prime of the functions denotes the differential with
respect to their arguments.

Especially when σc = 0 S/m, Eq. (4) reproduces the conventional eigenvalue condition:

J ′
1(
a) = 0, (7)

which is equivalent to

�n,1 =
√

ω2

c2 − j′21,n

a2 , (8)

which describes the eigenmode of a purely perfectly conductive waveguide chamber with the inner
radius a [28]. Here j′1,n is the nth zero of J ′

1(z).
Note that formulae (1) and (2) are general and can reproduce the conventional formulae for the

scattering matrix of a perfectly conductive material, i.e., σc = 0 S/m, because � is identical to Eq.
(8) in that case. It should be noted that Eq. (3) is identical to the conventional definition of waveguide
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Fig. 1. Dependence of S21 on mesh number Nmesh from 15.5 GHz to 16.5 GHz for a chamber with σc = 0
S/m, g = 100 mm, a = 5.5 mm, and d = 4.5 mm, which is surrounded by a perfectly conductive layer.
The upper-left, upper-right, and lower-left panels show the real part, imaginary part, and absolute value of
S21, respectively. The red •, black �, and purple � lines represent the results for Nmesh = 25 000, 27 000, and
34 000, respectively.

impedance in the TE1,1 mode [28], when the waveguide is made solely of a perfectly conductive
material.

Next, let us compare the theoretical results of S21 with the simulated ones for cases of σc = 0
S/m and σc = 0.1 S/m. We assume that the chamber length g is 100 mm long. The simulations
are performed using the frequency domain solver (F-Solver) of Microwave-Studio in CST Studio
Suite 2018 [30], where the resistive waveguide is sandwiched between two waveguide ports at both
ends. The time domain solver (T-Solver) of Microwave-Studio cannot calculate the scattering matrix
of a waveguide made of resistive material. T-Solver is applicable only to a perfectly conductive
waveguide in the case of the waveguide method.

The mesh-number Nmesh dependence of simulated S21 is shown in Fig. 1, which represents the
results for σc = 0 S/m, g = 100 mm, a = 5.5 mm, and d = 4.5 mm. The upper-left, upper-right, and
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Fig. 2. Theoretical (black •) and simulation (brown �) results of S21 for σc = 0 S/m, g = 100 mm, a = 5.5
mm, and d = 4.5 mm (this is the case of a perfectly conductive chamber with an inner radius of 5.5 mm.).
The upper-left, upper-right, and lower-left panels show the real part, imaginary part, and absolute value of S21,
respectively.

lower-left panels show the real part, imaginary part, and absolute value of the scattering matrices,
respectively. The red •, black �, and purple � lines in Fig. 1 show the results for Nmesh = 25 000,
27 000, and 34 000, respectively. They demonstrate that the simulation results are saturated with
these mesh numbers. In all CST calculations of this paper, we checked the convergence of the results
in this way.

First, let us compare the theoretical results (obtained using formulae (1) and (2)) with the simulated
ones for σc = 0 S/m. Their agreement should be perfect, because this is the simple perfectly
conductive waveguide case [28]. Figure 2 shows the theoretical S21 matrices (black •) and the
simulated ones (brown �). They are indeed in good agreement.

Next, let us compare the theoretical S21 matrices with the simulated ones for a finitely conductive
waveguide with σc = 0.1 S/m. This highly resistive case provides a test to check whether simulations
can reproduce the theoretical values when physical phenomena (such as skin depth effects) inside
the waveguide can be accurately expressed using a sufficiently small mesh size. The results are
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Fig. 3. Theoretical (black •) and simulation (brown �) results of S21 for σc = 0.1 S/m, g = 100 mm, a = 5.5
mm, and d = 4.5 mm. The upper-left, upper-right, and lower-left panels show the real part, imaginary part,
and absolute value of S21, respectively.

shown in Fig. 3, where the black • and brown � lines denote the theoretical and simulation results,
respectively. They are in good agreement again. Now the validity of the generalized theoretical
formulae (1) and (2) for the TE11 mode based on the waveguide method has been proved for two
different conductivities.

2.2. Scattering matrix for the TM01 mode by the waveguide method

In this subsection, we present new formulae for determining the scattering matrix
((S11, S12), (S21, S22)) for the TM01 mode, including the conductivity σc of the resistive material. The
derivation of the following formulae is described in Appendix A.2. They are expressed as follows:

S11 = S22 =

(
1

Z2
50

− C2
I

C2
V

)
1

Z2
50

+ C2
I

C2
V

+ 2CI
CV Z50j tan �TM

1,0 g

, (9)
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and

S21 = S12 =
2CI

CV Z50j sin �TM
1,0 g

1
Z2

50
+ C2

I
C2

V
+ 2CI

CV Z50j tan �TM
1,0 g

, (10)

where �TM
1,0 is the lowest root of

ωε0[I0(κd) − I0(κa)
K0(κa)

K0(κd)]J1(
d)

j


+ (σc + jωε0)J0(
d)[I1(κd) + I0(κa)
K0(κa)

K1(κd)]√
�2 − ω2

c2 + jωμ0σc

= 0, (11)

with Eqs. (5) and (6):

Z ′
c = 2j2

0,1c2Z2
0

ω�TM
1,0 a4J 2

1 (j0,1)

{
−�[
TMdJ0(


∗
TMd)J1(
TMd)]

cZ0�[
2
TM] + ω2�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

c3Z0|
TM|2�[
2
TM]

−
(

ε0 + jσ ∗
c

ω

) |J0(
TMd)|2
|I0(κ1,0d) − I0(κ1,0a)

K0(κ1,0a)
K0(κ1,0d)|2

×
{�[κ1,0aI0(κ

∗
1,0a)I1(κ1,0a) − κ1,0dI0(κ

∗
1,0d)I1(κ1,0d)]

�[κ2
1,0]

−2�
[

I0(κ1,0a)

K0(κ1,0a)

(
−a(κ∗

1,0I1(κ
∗
1,0a)K0(κ1,0a) + κ1,0I0(κ

∗
1,0a)K1(κ1,0a))

(κ2
1,0 − κ∗2

1,0)

+d(κ∗
1,0I1(κ

∗
1,0d)K0(κ1,0d) + κ1,0I0(κ

∗
1,0d)K1(κ1,0d))

(κ2
1,0 − κ∗2

1,0)

)]

−|I0(κ1,0a)|2�[κ1,0(aK0(κ
∗
1,0a)K1(κ1,0a) − dK0(κ

∗
1,0d)K1(κ1,0d))]

|K0(κ1,0a)|2�[κ2
1,0]

}

+ ω2|J1(
TMd)|2
c3Z0|
TM|2|I1(κ1,0d) + I0(κ1,0a)

K0(κ1,0a)
K1(κ1,0d)|2

×
{�[κ1,0aI1(κ

∗
1,0a)I2(κ1,0a) − κ1,0dI1(κ

∗
1,0d)I2(κ1,0d)]

�[κ2
1,0]

+2�
[

I0(κ1,0a)

K0(κ1,0a)

(
−a(κ∗

1,0I2(κ
∗
1,0a)K1(κ1,0a) + κ1,0I1(κ

∗
1,0a)K2(κ1,0a))

(κ2
1,0 − κ∗2

1,0)

+d(κ∗
1,0I2(κ

∗
1,0d)K1(κ1,0d) + κ1,0I1(κ

∗
1,0d)K2(κ1,0d))

(κ2
1,0 − κ∗2

1,0)

)]

+|I0(κ1,0a)|2�[κ∗
1,0(aK0(κ

∗
1,0a)K1(κ1,0a) − dK0(κ

∗
1,0d)K1(κ1,0d)])

|K0(κ1,0a)|2�[κ2
1,0]

}}
,

(12)
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CI = 2j2
0,1B̃

ω�TM∗
1,0 Z ′∗

c a4J 2
1 (j0,1)

⎧⎨
⎩−

cZ0(�[
TMdJ0(

∗
TMd)J1(
TMd)] − ω2�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

c2|
TM|2 )

�[
2
TM]

− |J1(
TMd)|2
(ε0 − σ ∗

c
jω )|I1(κ1,0d) + I0(κ1,0a)

K0(κ1,0a)
K1(κ1,0d)|2

×
(�[κ1,0aI0(κ

∗
1,0a)I1(κ1,0a) − κ1,0dI0(κ

∗
1,0d)I1(κ1,0d)]

�[κ2
1,0]

− 2�
⎡
⎢⎣

I0(κ
∗
1,0a)

K0(κ
∗
1,0a)

(κ1,0aI1(κ1,0a)K0(κ
∗
1,0a) + κ∗

1,0aI0(κ1,0a)K1(κ
∗
1,0a))

(κ2
1,0 − κ∗2

1,0)

−
I0(κ

∗
1,0a)

K0(κ
∗
1,0a)

(κ1,0dI1(κ1,0d)K0(κ
∗
1,0d) + κ∗

1,0dI0(κ1,0d)K1(κ
∗
1,0d))

(κ2
1,0 − κ∗2

1,0)

⎤
⎥⎦

−|I0(κ1,0a)|2�[κ1,0aK0(κ
∗
1,0a)K1(κ1,0a) − κ1,0dK0(κ

∗
1,0d)K1(κ1,0d)]

|K0(κ1,0a)|2�[κ2
1,0]

)

+ ω2Z0|J1(
TMd)|2
c|
TM|2|I1(κ1,0d) + I0(κ1,0a)

K0(κ1,0a)
K1(κ1,0d)|2

×
(�[κ1,0aI1(κ

∗
1,0a)I2(κ1,0a) − κ1,0dI1(κ

∗
1,0d)I2(κ1,0d)]

�[κ2
1,0]

+ 2�
⎡
⎢⎣

I0(κ
∗
1,0a)

K0(κ
∗
1,0a)

(κ1,0aI2(κ1,0a)K1(κ
∗
1,0a) + κ∗

1,0aI1(κ1,0a)K2(κ
∗
1,0a))

(κ2
1,0 − κ∗2

1,0)

−
I0(κ

∗
1,0a)

K0(κ
∗
1,0a)

(κ1,0dI2(κ1,0d)K1(κ
∗
1,0d) + κ∗

1,0dI1(κ1,0d)K2(κ
∗
1,0d))

(κ2
1,0 − κ∗2

1,0)

⎤
⎥⎦

+|I0(κ1,0a)|2�[κ∗
1,0(aK0(κ

∗
1,0a)K1(κ1,0a) − dK0(κ

∗
1,0d)K1(κ1,0d)])

|K0(κ1,0a)|2�[κ2
1,0]

)}
, (13)

CV =B̃
2j2

0,1|�TM
1,0 |2

a4J 2
1 (j0,1)�

∗TM
1,0 |
TM|2

[
cZ0�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

ω�[
2
TM]

+
ω(ε0 − σ ∗

c
jω )|J1(
TMd)|2

|σc + jωε0|2|I1(κ1,0d) + I0(κ1,0a)

K0(κ1,0a)
K1(κ1,0d)|2

×
{�[κ1,0aI1(κ

∗
1,0a)I2(κ1,0a) − κ1,0dI1(κ

∗
1,0d)I2(κ1,0d)]

�[κ2
1,0]

− 2�
⎡
⎣a I0(κ1,0a)

K0(κ1,0a)
(κ∗

1,0I2(κ
∗
1,0a)K1(κ1,0a) + κ1,0I1(κ

∗
1,0a)K2(κ1,0a))

(κ2
1,0 − κ∗2

1,0)
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−
d I0(κ1,0a)

K0(κ1,0a)
(κ∗

1,0I2(κ
∗
1,0d)K1(κ1,0d) + κ1,0I1(κ

∗
1,0d)K2(κ1,0d))

(κ2
1,0 − κ∗2

1,0)

⎤
⎦

+|I0(κ1,0a)|2�[κ∗
1,0(aK0(κ

∗
1,0a)K1(κ1,0a) − dK0(κ

∗
1,0d)K1(κ1,0d)])

|K0(κ1,0a)|2�[κ2
1,0]

}]
, (14)

κ1,0 =
√

(�TM
1,0 )2 − ω2

c2 + jωμ0σc, (15)


TM =
(

ω2

c2 − (�TM
1,0 )2

) 1
2

, (16)

where ε0 is the dielectric constant of vacuum, j0,1 is the first zero of the Bessel function J0(z), B̃ is
an arbitrary coefficient, and “*” denotes a complex conjugate.

Here, let us focus on the conventional case of the perfectly conductive waveguide, where the
perfectly conductive wall exists only at ρ = a in vacuum, i.e., σc = 0 S/m. In this case, Eqs. (12),
(13), and (14) are simplified as

Z ′
c = cZ0�

1
wall,a

ω
, (17)

CI = cZ0(�
1
wall,a)

2B̃

ω�1∗
wall,aZ ′∗

c
, (18)

CV = B̃
cZ0|�1

wall,a|2
ω�1∗

wall,a

, (19)

where

�1
wall,a =

√
ω2

c2 − j2
0,1

a2 . (20)

We can confirm that Eqs. (9) and (10) reproduce the conventional formulae for the scattering matrix
because CV /CI becomes

CV

CI
= cZ0�

1
wall,a

ω
, (21)

which is identical to the waveguide impedance of the TM01 mode for this case [28].
Now let us compare the theoretical S21 with the simulated ones for σc = 0 S/m and σc = 0.1 S/m,

as done for the case of the TE11 mode. The longitudinal length of the waveguide, g, is 100 mm.
The simulations were performed using the F-Solver module in Microwave-Studio. The simulated
scattering matrix S21 is compared to the theoretical result.

In Fig. 4, the theoretical (black •) and simulation (brown �) results are compared for σc = 0
S/m, which corresponds to the conventional perfectly conductive chamber case [28]. The overall
behaviors in the theoretical and simulation results are in good agreement.

Now let us move to the resistive waveguide case to investigate the accuracy of the theoretical
formulae (Eqs. (9) and (10)) for the scattering matrix. Figure 5 compares the theoretical results
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Fig. 4. Theoretical (black •) and simulation (brown �) results of S21 for σc = 0 S/m, g = 100 mm, a = 5.5
mm, and d = 4.5 mm. The upper-left, upper-right, and lower-left panels show the real part, imaginary part,
and absolute value of S21, respectively.

(black •) with the simulation results (brown �) for σc = 0.1 S/m. As in the TE11 mode case, we
obtained good agreement between the theoretical results and the simulation results. This demonstrates
the numerical validity of the theoretical formulae for determining the scattering matrix for the TM01

mode based on the waveguide method.

2.3. TE11 and TM01 modes in a cylindrical waveguide made of a material with complex
conductivity

In this subsection, we examine a few examples of a cylindrical waveguide made of a resistive material
with complex conductivity. In terms of the frequency dependence of conductivity, we consider the
Drude model [31,32] as a somewhat realistic model:

σD(ω) = σ0

1 + jωτ
= ε0

ω2
p

τ(ω2 + 1/τ 2)
− jε0

ωω2
p

ω2 + 1/τ 2 , (22)

where σ0 = ω2
pτε0 is DC conductivity, ωp is plasma frequency, and τ is relaxation time.
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Fig. 5. Theoretical (black •) and simulation (brown �) results of S21 for σc = 0.1 S/m, g = 100 mm, a = 5.5
mm, and d = 4.5 mm. The upper-left, upper-right, and lower-left panels show the real part, imaginary part,
and absolute value of S21, respectively.

In CST Studio Suite 2018, the Drude model is implemented to cope with a resistive material of
complex conductivity. We assume that the parameters are τ = 21.35 ps, ωp = 72.8 THz, d = 44
μm, a = 45 μm, and g = 300 μm. They constitute the THz region of the scattering matrix in a
resistive waveguide. It is noticeable that the inner diameter of the waveguide (2d = 88 μm) is around
the same order of magnitude or less as the height (191 μm) of the rectangular waveguide utilized in
the measurement of the conductivity of NEG at 500–750 GHz in Ref. [8].

Given that the skin depth decreases at high frequency, it is generally difficult to adopt a sufficiently
small mesh size comparable to the skin depth in the THz region in simulations. However, if we set
the waveguide radius d such that the cutoff frequency fc,

fc = cj′1,1

2πd
∼ cj01

2πd
, (23)

becomes around 2 THz, the waveguide radius is around 50 μm. Because of the small dimension of
the waveguide, the mesh size does not hinder the simulation study.
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Fig. 6. Theoretical (black) and simulation (brown) results in TE1,1 mode for σD (see Eq. (22)) with τ = 21.35
ps, ωp = 72.8 THz, d = 44 μm, and a = 45 μm. The upper-left, upper-right, and lower-left panels represent
the real part, imaginary part, and absolute value of S21, respectively.

Let us simulate the scattering matrix for this small waveguide with complex conductivity. Figures
6 and 7 show the scattering matrices in the THz region for the TE11 and TM01 modes, respectively.
The theoretical and simulation results with adequately large mesh numbers for convergence are
shown by the black and brown lines, respectively. Figures 6 and 7 show a good agreement between
the theoretical and simulation results for the TE11 and TM01 modes, respectively, in the case of the
resistive waveguide with complex conductivity. This indicates that the theoretical formulae (Eqs.
(1) and (2) for the TE11 mode, and Eqs. (9) and (10) for the TM01 mode) describe the frequency
dependence of the conductivity of the scattering matrix sufficiently well. Although we are yet to
find a cause for the slight difference between the theoretical and simulation results, the discrepancy
will impose no significant accuracy problem in determining the frequency dependence of complex
conductivity in measurements.

In the final part of this section, we briefly discuss how we can determine the frequency dependence
of the material’s conductivity σc from the measurement results. We obtained the analytical formulae
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Fig. 7. Theoretical (black) and simulation (brown) results in TM0,1 mode for σD (see Eq. (22)) with τ = 21.35
ps, ωp = 72.8 THz, d = 44 μm, and a = 45 μm. The upper-left, upper-right, and lower-left panels represent
the real part, imaginary part, and absolute value of S21, respectively.

for the scattering matrices, Eqs. (1) and (2), in combination with Eqs. (3) and (4) for the TE11

mode, and Eqs. (9) and (10), in combination with Eqs. (11), (12), (13), and (14) for the TM01 mode.
Given that both formulae reproduce the simulation results well, the conductivity dependence of the
scattering matrix expressed in these formulae is proven.

The procedure is as follows.

(1) Measure S-matrices by using the waveguide method for either (both) the TE11 or (and) the TM01

mode(s) at various frequencies.
(2) Use the complex conductivity (real and imaginary parts) as a fitting parameter so that the

theoretical complex S-matrix agrees with the measured one at each measured frequency point.

The complex dielectric constant (conductivity) has to respect the Kramers–Kronig relations, which
associate their real part with the imaginary one. Then, unless we assume any analytical formula
satisfying the relation in the fitting process of the conductivity, the application of the relation to
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the measured data in a wide range of frequencies enables us to check the self-consistency of the
observations.

It is noticeable that the roughness of the surfaces of the chambers can contribute to the scattering
matrix as well, beyond frequencies of tens of GHz [8]. In this sense, the conductivity obtained by
the fitting process is the zeroth-order approximation at the frequency. However, when the structure
of the surface roughness is given, a simulation technique can eliminate the effect by calculating
the response matrix for the variation of components of the scattering matrix to that of the complex
conductivity. Concretely, by inversely utilizing the response matrix to obtain the variation of complex
conductivity, we can minimize the difference between the simulation results including the effect of
surface roughness and the measured ones. Hence, we can effectively determine the conductivity
by making maximum use of both the analytical and simulation approaches, even when the surface
roughness contributes to the scattering matrix.

3. Formulae for the scattering matrix (transmission coefficient Sw
21) using the wire

method

The frequency dependence of the conductivity of a resistive chamber can be evaluated using the
scattering matrix (transmission coefficient Sw

21) of a coaxial waveguide as well. In this, the so-called
wire method, a single wire is stretched at the center of the resistive chamber sandwiched by perfectly
conductive chambers (aluminum chambers mostly) from both sides. In this section, we present
new formulae (see Eqs. (24) and (25)) for the transmission coefficient Sw

21 of a quasi-transverse
electromagnetic (quasi-TEM00) mode in the wire method. Derivations of these formulae are given
in Appendix B. The simulation results obtained using the wire method will be compared with the
analytical results of Sw

21.

3.1. Formulae for the transmission coefficient Sw
21 using the wire method

Figure 8 shows a schematic of the wire method setup. A perfectly conductive single wire of radius ρw

is stretched out at the center of the chamber with inner radius d, and the current I0 is driven through
the wire. The device under test (the resistive chamber with σc, or the reference perfectly conductive
chamber) with length 2w(= g) is sandwiched between perfectively conductive chambers on both
sides [11,33]. The thickness of the chambers is a − d. We assume that the perfectly conductive wall
covers the outer surface (ρ = a) of the chambers, as in the waveguide method.

The formulae for the ratio of the transmission coefficients Sw
21/Sw(ref )

21 are given as follows:

Sw
21

Sw(ref )
21

=
V1 sin kw

2kw − j
∑∞

m=1
V (m)

1 ((−1)mejkw−e−jkw)k

2w(k2− m2π2

4w2 )
+ I0Zc

ZcI0
, (24)

for (k 	= ñπ/2w) ∩ (k < i1/d), and

Sw
21

Sw(ref )
21

=
V1 sin kw

2kw − j
∑∞

m=1,m	=ñ
V (m)

1 ((−1)mejkw−e−jkw)k

2w( ñ2π2

4w2 − m2π2

4w2 )
+ V (ñ)

1 [(−1)ñej ñπ
2 +e−j ñπ

2 ]
4 + I0Zc

ZcI0
, (25)

for (k = ñπ/2w) ∩ (k < i1/d), where

k = ω

c
, (26)
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Fig. 8. A schematic picture of the setup of the wire method.

Zc = Z0

2π
log

d

ρw
, (27)

il is the lth zero of the function Y0(x) − Y0(xρw/d)/J0(xρw/d)J0(x), ñ is a positive integer, and
Sw

21 and Sw(ref )
21 are the transmission coefficients determined using the wire method of the resistive

chamber and the reference (perfectly conductive) chamber, respectively.
The expansion coefficients V1 and V (m)

1 in the formula are determined as follows:

[
A(0)

0

2w
+ jkC(0)

0 〈J (z)〉
2πZ0

]
V1 +

∞∑
n=1

kC(0)
0

〈
J (n)(z)

〉
2πwZ0

V (n)
1 = −C(0)

0 〈α(z)〉 , (28)

jkC(m)
0 〈〈J (z)〉〉m

2πZ0
V1 +

∞∑
n=1

[
δn,mA(n)

0 + kC(m)
0

〈〈
J (n)(z)

〉〉
m

2πwZ0

]
V (n)

1 = −C(m)
0 〈〈α(z)〉〉m , (29)

where

〈α〉 = I0

2πd

sin kw

kw
, (30)

〈〈α〉〉m = − I0

2πd

k((−1)me−jkw − ejkw)

j(k2 − m2π2

4w2 )
, (31)

〈J (z)〉 = −2π

wd

∞∑
s=0

αs

(k2 − i2s
d2 )

− π

w2d

∞∑
s=0

αs(e
−j

√
k2− i2s

d2 (2w) − 1)

j(k2 − i2s
d2 )

3
2

, (32)

〈
J (m)(z)

〉
=

∞∑
s=0

παs(1 + (−1)m)(1 − e
−j

√
k2− i2s

d2 2w
)

wd
√

k2 − i2s
d2 (k2 − i2s

d2 − m2π2

4w2 )

, (33)

〈〈J (z)〉〉m =
∞∑

s=0

αsπ j(1 + (−1)m)(e
−j2

√
k2− i2s

d2 w − 1)

wd(k2 − i2s
d2 − m2π2

4w2 )

√
k2 − i2s

d2

, (34)
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〈〈
J (n)(z)

〉〉
m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∞
s=0

2παs(1+(−1)n+m)

√
k2− i2s

d2 (1−(−1)ne
−j2

√
k2− i2s

d2 w
)

d(k2− i2s
d2 − m2π2

4w2 )(k2− i2s
d2 − n2π2

4w2 )
, for n 	= m,

∑∞
s=0

4παs

√
k2− i2s

d2 (1−(−1)me
−j2

√
k2− i2s

d2 w
)

d(k2− i2s
d2 − m2π2

4w2 )2

+∑∞
s=0

j4πwαs

d( m2π2

4w2 −k2+ i2s
d2 )

, for n = m,

(35)

αs = J 2
0 [ρwis

d ]
J 2

0 [ρwis
d ] − J 2

0 [is]
, for s ≥ 1, (36)

α0 = 1

2 log[ d
ρw

] , (37)

i0 ≡ 0, (38)

μm =
√

m2π2

4w2 − k2ε̃, (39)

ε̃ = σcZ0

jk
+ 1, (40)

A(m)
0 = μma(I ′

0(μmd)K0(μma) − I0(μma)K ′
0(μmd)), (41)

C(m)
0 = − jZ0μ

2
ma(I0(μma)K0(μmd) − I0(μmd)K0(μma))

k ε̃
, (42)

I (m)
0 = jkaε̃(I ′

0(μmd)K ′
0(μma) − I ′

0(μma)K ′
0(μmd))

Z0
, (43)

and

K (m)
0 = μma(I ′

0(μma)K0(μma) − I0(μma)K ′
0(μma)). (44)

Especially when m = 0, the transfer coefficients A(m)
0 , C(m)

0 , I (m)
0 , and K (m)

0 are rewritten as

A(0)
0 = −πκcerd(Y1(κcerd)J0(κcera) − J1(κcerd)Y0(κcera))

2
, (45)

C(0)
0 = j

πκ2
ceraZ0(−Y0(κcerd)J0(κcera) + J0(κcerd)Y0(κcera))

2ε̃k
, (46)

I (0)
0 = − jε̃kπa(Y1(κcerd)J1(κcera) − J1(κcerd)Y1(κcera))

2Z0
, (47)

and

K (0)
0 = −πκcerd(−Y0(κcerd)J1(κcera) + J0(κcerd)Y1(κcera))

2
, (48)

where

κcer = k

√
(
σcZ0

jk
+ 1). (49)
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All expansion coefficients V1 and V (m)
1 are obtained by solving Eqs. (28)–(29) for any m.

3.2. Comparison between theoretical and simulation results of transmission coefficient
Sw

21/Sw(ref )
21

In this subsection, we compare the theoretical results of Sw
21/Sw(ref )

21 with the simulation results
obtained using the wire method. The parameters were selected as follows (unless specified otherwise):
the inner radius and the outer radius of the chamber were set to d = 5 mm and a = 11 mm, respec-
tively. The radius of the wire was set to ρw = 10 μm. The total length of the resistive chamber was set
to g = 100 mm. Given that the first zero point i1 of the function Y0(x)−Y0(xρw/d)/J0(xρw/d)J0(x)
is about 2.68, the upper limit of frequency is below about 26 GHz under the present setup.

The T-Solver module of Microwave Studio in CST Studio Suite 2018 [30] was used to calculate the
S-parameters of a coaxial structure composed of wires and metal chambers. The Solver is different
from that adopted to the waveguide method in Sect. 2.1. In general, in the case of resistive materials,
the mesh size must be sufficiently smaller than the skin depth. In Microwave Studio, the S-parameters
were calculated using the technique of surface impedance [34] by adopting “lossy metal” as the
ingredient of the resistive chamber with high conductivity.

Figure 9 shows a comparison between the theoretical results of Sw
21/Sw(ref )

21 (red •) (based on
Eqs. (24) and (25)) and the simulation results of Sw

21/Sw(ref )
21 (blue �) (obtained using T-Solver) for

σc = 5.9 × 107 S/m. They are in good agreement. Therefore, the validity of the theoretical formulae
(Eqs. (24) and (25)) is proven for the high-conductivity case.

To further investigate whether the theoretical results reproduce the simulation ones, let us inten-
tionally reduce the conductivity to ensure a sufficiently small mesh size compared to the skin depth.
In the case, “normal metal” is selected as the ingredient of the resistive chamber in the simulations.

We considered three separate chambers with three different conductivities. The first two cases
were the constant and pure real conductivities, σc = 1 S/m and σc = 3 S/m, and the third case
was the frequency-dependent complex conductivity, σD (see Eq. (22)) with ωp = 0.146 THz and
τ = 10.6 ps. To prepare for the discussion about the resistive-wall impedance in Sect. 4, we discuss
how the simulation results converge as a function of the total mesh number Nmesh. Figure 10 shows
the results of σc = 1 S/m (top left), σc = 3 S/m (top right), and σc = σD with ωp = 0.146 THz
and τ = 10.6 ps (bottom left) for different numbers of meshes. The red • and blue � lines show
the results for Nmesh = 33 000 000 and Nmesh = 100 000 000, respectively. The solid, dashed, and
dotted lines show the real parts, imaginary parts, and absolute values of the transmission coefficients
Sw

21/Sw(ref )
21 , respectively. The convergence of the simulation results was checked in this way.

Now let us compare the theoretical results with the simulation results in the case of Sw
21/Sw(ref )

21 .
Figure 11 illustrates the theoretical (red •) and simulation (blue �) results of Sw

21/Sw(ref )
21 for three

different resistive chambers. The upper-left, upper-right, and lower-left panels show the results for
σc = 1 S/m, σc = 3 S/m, and σc = σD (see Eq. (22)) with ωp = 0.146 THz and τ = 10.6 ps,
respectively. The solid, dashed, and dotted lines show the real parts, imaginary parts, and absolute
values of the transmission coefficients Sw

21/Sw(ref )
21 , respectively. In all three cases, the simulation

results were well reproduced by the theoretical results. Once again, the validity of the theoretical
formulae (Eqs. (24) and (25)) is proven, this time for the low-conductivity cases.

Finally, let us move to the transmission coefficients Sw
21/Sw(ref )

21 at the THz region. To this end,
the parameters were specifically set to ρw = 0.5 μm, g = 300 μm, d = 40 μm, and a = 60 μm.
The upper limit of frequency was increased to about 3.3 THz in this setup. Hence, the dimension of
the chamber radius becomes the same order of magnitude as that of the waveguide utilized by the
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Fig. 9. Transmission coefficient Sw
21/Sw(ref )

21 for σc = 5.9 × 107 S/m, g = 100 mm, ρw = 10 μm, d = 5mm,
and a = 11 mm. The red • and blue � lines denote the theoretical and simulation results, respectively. The
upper-left, upper-right, and lower-left panels represent the real parts, imaginary parts, and absolute values of
the transmission coefficients Sw

21/Sw(ref )
21 , respectively.

waveguide method in Sect. 2.3. The conductivity σc was 187.566 S/m so we could use the “normal
metal” option as an ingredient of the resistive chamber. The conductivity of real metal could be
considerably lower in the THz region.

Figure 12 shows the theoretical (red •) and simulation (blue �) results of Sw
21/Sw(ref )

21 . The simula-
tion results are reproduced by the theoretical ones, even in the THz region. Now we have confirmed
that the present theory of the transmission coefficient based on the wire method can reproduce the
simulation results for any conductivity and frequency region.

4. Longitudinal resistive-wall beam impedance

The resistive-wall beam coupling impedances of a resistive chamber have been evaluated based on
S-matrices measured with the wire method by using the standard log-formula [12]:

Zw
L = −2Zc log

Sw
21

Sw(ref )
21

. (50)
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Fig. 10. Dependence of Sw
21/Sw(ref )

21 on mesh number Nmesh for chambers of σc = 1 S/m (top left), σc = 3 S/m
(top right), and σc = σD (see Eq. (22)) with ωp = 0.146 THz and τ = 10.6 ps (bottom left). The red • and blue
� lines represent the results for Nmesh = 33 000 000 and Nmesh = 100 000 000, respectively. The solid, dashed,
and dotted lines represent the real parts, imaginary parts, and absolute values of the transmission coefficients
Sw

21/Sw(ref )
21 , respectively.

One “big” question is how accurately this measured impedance Zw
L represents the real resistive-wall

impedance for a beam (we call it the “resistive-wall beam impedance ZL”). To this end, we present
theoretical formulae for the resistive-wall beam impedance ZL in the following subsection. Then, we
compare the resistive-wall impedance Zw

L by using the wire method with the theoretical resistive-wall
beam impedance ZL in the final subsection.

4.1. The theoretical resistive-wall impedance for a relativistic beam

Once the frequency dependence of the (complex) conductivity is known, the resistive-wall beam
impedance ZL can be calculated analytically. The resistive-wall beam impedances [3] of an infinitely
long multi-layered chamber have been analytically studied by many researchers [4,14–27]. Basically,
it is a 2D problem, and can be solved by the field-matching technique [35].

Simulations of the resistive-wall beam impedance are quite difficult because the mesh size needs to
be sufficiently small compared to the skin depth. In our experience, the Wake Solver of CST Studio
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Fig. 11. Theoretical (red •) and simulation (blue �) results of transmission coefficients Sw
21/Sw(ref )

21 . The upper-
left, upper-right, and lower-left panels show the results for σc = 1 S/m, σc = 3 S/m, and σc = σD (see Eq.
(22)) with ωp = 0.146 THz and τ = 10.6 ps, respectively. The solid, dashed, and dotted lines represent the
real parts, imaginary parts, and absolute values of the transmission coefficients Sw

21/Sw(ref )
21 , respectively.

seems not to be able to simulate the resistive-wall beam impedance accurately, even if we utilize
“lossy metal” as the ingredient, to which the surface impedance technique is applied by neglecting
the induction term in the Maxwell–Ampère equation [4].

Instead, let us analytically investigate the characteristic behavior of the resistive-wall beam
impedance by taking the simplest case; namely, a single layered chamber is covered over a perfectly
conductive chamber (seeAppendix D).We will see that the correct formula for the resistive-wall beam
impedance cannot be obtained by neglecting the induction term in the Maxwell–Ampère equation
under a certain condition.

The rigorous formula for the resistive-wall beam impedance for a relativistic beam is given by

ZL

g
= (K0 (νa) I0 (νd) − I0 (νa) K0 (νd)) 1

2πd

− (σc+jωε0)(K0(νa)I1(νd)+I0(νa)K1(νd))
ν

+ jkd(K0(νa)I0(νd)−I0(νa)K0(νd))
2Z0

, (51)
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Fig. 12. Theoretical (red •) and simulation (blue �) results of transmission coefficients Sw
21/Sw(ref )

21 , where
σc = 187.566 S/m, g = 300 μm, d = 40 μm, a = 60 μm, and ρw = 0.5 μm. The upper-left, upper-right, and
lower-left panels represent the real parts, imaginary parts, and absolute values of the results, respectively.

where

ν = √
jkZ0σc, (52)

k = ω

c
, (53)

while the approximate one neglecting the induction term is given by

ZL

g
= (K0 (νnoa) I0 (νnod) − I0 (νnoa) K0 (νnod)) 1

2πd

−σc(K0(νnoa)I1(νnod)+I0(νnoa)K1(νnod))
νno

+ jkd(K0(νnoa)I0(νnod)−I0(νnoa)K0(νnod))
2Z0

, (54)

where

νno =
√

k2 + jkZ0σc. (55)

Figure 13 shows the rigorous formula (51) as a function of frequency, where σc = 5.9 × 107 S/m,
d = 5 mm, and a = 11 mm. The black and brown lines show the real and imaginary parts of the
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Fig. 13. Theoretical result of the longitudinal resistive-wall beam impedance ZL per unit length, where σc =
5.9 × 107 S/m, d = 5 mm, and a = 11 mm. The black and brown lines denote the real and imaginary parts of
the impedance, respectively.

impedance, respectively. The formula (51) reproduces the conventional formula for the resistive-wall
beam impedance at low frequency [10]:

ZL

g
= Z0

√
2ω

cZ0σc

(1 + j)

4πd
. (56)

In this example, the real part of the impedance has a peak at around 6 THz, and then goes down
in proportion to the inverse of the frequency [23,24]. A typical explanation of this behavior is as
follows. The Maxwell–Ampère equation is given by

ε0
∂ �E
∂t

+ �J = rot �H , (57)

where �J is the electric current density. Assuming that electromagnetic fields have a time dependence
of ejωt , Eq. (57) can be written inside a conductive material as

(jε0ω + σc)�E = ∇ × �H . (58)

For the frequency range of σc � ε0ω, the induction term ε0∂ �E/∂t starts to dominate the current
density term �J . At the frequency range ε0ω � σc, the conductivity term contributes little to the
Maxwell equations. As a result, the conductive material behaves almost like a vacuum at very high
frequencies. The electromagnetic fields can now freely propagate away from the chamber and thus
the longitudinal impedance diminishes.

However, the critical frequency σc/2πε0, at which the conductive term and the induction one
become comparable, is around a few EHz for σc = 5.9 × 107 S/m. Moreover, the mountain-shaped
curve of the longitudinal impedance (see Fig. 13) is already known, even under the approximation
(σc � ε0ω) [19].Therefore, the above explanation is not good enough to explain the mountain-shaped
curve of the impedance.

We can derive a formula for the peak frequency of the longitudinal impedance, as follows. When
the induction term in the Maxwell–Ampère equation can be neglected, namely σc � ε0ω, the
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Fig. 14. The equivalent electrical circuit for ZL.

resistive-wall beam impedance of a conductive material with “infinite” thickness is much simplified
as

ZL = 1[
(1+j ε0ω

σc
)

(1+j)
2πd

ωμ0
2

√
2

μ0ωσc
g

+ jε0ω
πd2

g

] . (59)

This means that ZL is equivalent to the parallel circuit shown in Fig. 14.
The peak frequency fR at the real part of the longitudinal impedance is thus given by

fR = c

π( d2

Z0σc
)

1
3

. (60)

It is about 9 THz for σc = 5.9 × 107 S/m and d = 5 mm, and is comparable to the more rigorous
result shown in Fig. 13 including the induction term.

Just for a rough estimate of the impedance, the approximate formula (54) without the induction
term may be enough. However, if the chamber radius d satisfies the condition

c

π( d2

Z0�[σc])
1
3

� max[�[σc], �[σc]]
2πε0

, (61)

the induction term starts to play an important role in evaluating the impedances, and we have to use
the more precise formula (51) for an accurate estimate of the impedance at the frequency.

One example is shown in Fig. 15, where we use the Drude conductivity model (Eq. (22) with
τ = 3.72 ps and ωp = 6.83 THz [36]); the outer radius of the resistive chamber is fixed to a = 11
mm and the inner radius d is chosen as a free parameter. The upper, middle, and lower panels show
the results with d = 1 mm, d = 2 mm, and d = 4 mm, respectively [37,38]. The black lines show
the rigorous results by the formula (51), while the brown lines are based on the approximate formula
(54). The results reveal that, as the chamber radius d increases, the peak frequency becomes lower
and the agreement becomes better between the rigorous formula and the approximate one.

This can be understood as follows. In this case, the frequency satisfying the equation

f = max[�[σc], �[σc]]
2πε0

, (62)
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is 0.368 THz, while the frequencies satisfying the equation

f = c

π( d2

Z0�[σc])
1
3

, (63)

are 0.245 THz for d = 1 mm, 0.185 THz for d = 2 mm, and 0.139 THz for d = 4 mm, respectively.
Hence, the peak frequency is lowered by increasing the chamber radius d. Furthermore, comparing
those frequencies with 0.368 THz, we find that the condition (61) becomes more satisfied as the
chamber radius d becomes smaller. That is why the discrepancy between the rigorous formula and
the approximate one becomes more remarkable for a smaller chamber radius d. Needless to say, in
the frequency region

f >
max[�[σc], �[σc]]

2πε0
, (64)

the induction term plays an important role in describing the impedances, regardless of the value of
radius d.

As this example indicates, it is preferable to check whether the resistive chamber satisfies the
condition (61) at a given frequency, for an accurate estimate of the resistive-wall beam impedance
ZL, especially when simulation studies can be performed by neglecting the induction term.

4.2. Comparison between theoretical and simulation results of resistive-wall impedance

Now we compare the resistive-wall impedance Zw
L obtained using the wire method with the theoretical

resistive-wall beam impedance ZL. Figure 16 represents one such example for a highly conductive
chamber (σc = 5.9 × 107 S/m, ρw = 10 μm, d = 5 mm, and a = 11 mm), with the analytical
results of Zw

L (red) (based on Eqs. (24), (25), and (50)), simulation results of Zw
L (purple) obtained

using the T-Solver and Eq. (50), and theoretical results of resistive-wall beam impedance ZL (black)
(Eq. (51)). This result demonstrates that they are in good agreement. In particular, the agreement
between the analytical results of Zw

L (red) and the theoretical beam impedance ZL (black) is perfect.
Next, we investigate whether the mountain-shaped curve in the theoretical resistive-wall beam

impedances ZL can be reproduced accurately by the resistive-wall impedances Zw
L by using the

wire method and lowering the conductivity of the chamber (refer to Eq. (60)). Figure 17 shows the
analytical results of Zw

L (red), simulation results of Zw
L (blue), and theoretical results of resistive-

wall beam impedance ZL (black) for three different resistive chambers. The upper-left, upper-right,
and lower-left panels show the results for σc = 1 S/m, σc = 3 S/m, and σc = σD, respectively,
where σD follows the Drude model (22) for the frequency-dependent complex conductivity with
ωp = 0.146 THz and τ = 10.6 ps. The solid and dashed lines show the real and imaginary parts
of the impedances, respectively. The mountain-shaped curves can be observed in all three cases.
While the agreement between the analytical (red) and the simulation (blue) results of Zw

L , which
converge sufficiently as shown in Fig. 10 at this mesh size, is relatively good, their behaviors are
distinguishably different from the theoretical beam impedance ZL (black). This result indicates the
accuracy limit in the evaluation of the resistive-wall impedance with lower conductivity using the
wire method and the log-formula (50).

The log-formula for distributed impedances is obtained by perturbation theory for small impedance
and a thin wire limit [13]. Figure 18 represents the analytical result of Zw

L (blue) for ρw = 0.1 μm
and that (red) for ρw = 10 μm and the theoretical result of beam impedance ZL (black), where
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Fig. 15. Theoretical results of longitudinal impedance per unit length from 0.1 THz to 0.4 THz for chambers
with d = 1 mm (top), d = 2 mm (middle), and d = 4 mm (bottom), respectively, where the complex
conductivity is given by Eq. (22) with τ = 3.72 ps and ωp = 6.83 THz. The black and brown lines show the
resistive-wall beam impedances with and without the induction term, respectively.

σc = 1 S/m. The result illustrates that Zw
L approaches ZL as the wire radius ρw becomes smaller,

which demonstrates that the boundary condition due to the wire significantly deforms the impedance
Zw

L from the beam impedance ZL with low conductivity.
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Fig. 16. Analytical result (red) of Zw
L , simulation result (purple) of Zw

L , and theoretical result of beam impedance
(black) ZL, respectively, where σc = 5.9 × 107 S/m, ρw = 10 μm, d = 5 mm, and a = 11 mm. The left and
right panels represent the real and imaginary parts of the impedances, respectively.

These exercises led us to the following conclusions:

(1) Measurements of S-matrices by using the wire method and the constructed resistive-wall
impedance Zw

L by using the log-formula (50) provide an overall well-behaved resistive-wall
beam impedance ZL. The agreement between the resistive-wall impedance Zw

L and the resistive-
wall beam impedance ZL is good for higher conductivity, while the accuracy of the wire method
is limited for lower conductivity.

(2) For evaluating the accuracy of the resistive-wall beam impedance ZL, we should first find the
frequency dependence of the complex conductivity of the resistive chamber by comparing the
measured S-matrices with the theoretical ones obtained using complex conductivity σc as a
fitting parameter.

(3) Then, we can construct the resistive-wall beam impedance ZL by using the obtained frequency
dependence of complex conductivity σc and Eq. (51), instead of using the log-formula (50).

Besides the resistive-wall beam impedance, the surface roughness of the chambers can contribute
to the total beam impedances at high frequency [39]. Accordingly, this effect should be taken into
account from the beam impedance and beam instability points of view.

5. Discussions about some intrinsic errors of the measurement setup of the wire
method

These calculated scattering matrices Sw
21/Sw(ref )

21 or the resistive-wall impedance Zw
L in the wire

method are based on the assumption that the measurement devices are perfectly fabricated and
aligned, and the wire is perfectly positioned at the center of the devices. In reality, there may be a gap
between the central cylinder and the sandwiching chambers, or the wire may have a droop, which
would deform the characteristic impedance for the setup. The surface roughness on the chambers
can modulate the measurement results in the THz region.

Here, let us consider a prescription evaluating the contributions of the setup errors to the measured
scattering matrices Sw

21/Sw(ref )
21 , or the resistive-wall impedances Zw

L , and finding the requirements
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Fig. 17. Analytical result (red) of Zw
L , simulation result (blue) of Zw

L , and theoretical result of beam impedance
(black) ZL, respectively. The upper-left, upper-right, and lower-left panels represent the results in the case of
σc = 1 S/m, σc = 3 S/m, and σc = σD (see Eq. (22)) with ωp = 0.146 THz and τ = 10.6 ps, respectively. For
all cases, the parameters are chosen as ρw = 10 μm, d = 5 mm, and a = 11 mm. The solid and dashed lines
represent the real and imaginary parts of the impedance, respectively.

of the setup for the precise measurements toward the THz region by simulation approaches. To
save excessive memory and CPU time, let us confine the total length of the setup to 200 μm, and
consider a short resistive material with g = 10 μm and σc = 187.566 S/m in the THz region,
sandwiched between 95 μm long aluminum chambers, with the other parameters set to ρw = 0.5
μm, d = 40 μm, and a = 60 μm as in Fig. 12. Aluminum is well described by the Drude model
(22), where ωp = 23.2 pHz and τ = 1.1 fs [40]. The huge conductivity of aluminum |σc| ∼ 106 S/m
at 2 THz enables us to approximate the aluminum chambers by perfectly conductive chambers. The
device under test is typically called a resistive insert [41], not a resistive chamber. We calculate the
reference scattering matrix Sw(ref )

21 by replacing only the device under test (the resistive insert) with
the perfectly conductive short reference ring. In other words, the respective sandwiching chambers
for the resistive insert are identical to those for the reference ring including the surface roughness,
when the scattering matrices Sw

21 and Sw(ref )
21 are calculated.
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Fig. 18. Analytical result of Zw
L (blue) for ρw = 0.1 μm, that (red) for ρw = 10 μm, and theoretical result

of beam impedance (black) ZL, respectively, where σc = 1 S/m, d = 5 mm, and a = 11 mm. The solid and
dashed lines represent the real and imaginary parts of the impedance, respectively.

Fig. 19. Analytical result (red) of Zw
L and simulation result (blue) of Zw

L , respectively, for the resistive insert,
where σc = 187.566 S/m, g = 10 μm, d = 40 μm, a = 60 μm, and ρw = 0.5 μm. The left and right panels
represent the real and imaginary parts of the impedance, respectively.

First, let us compare the analytical with the simulation results of “the resistive-wall insert
impedance” Zw

L with g = 10 μm, where we assume that the chambers are perfectly fabricated
with smooth surfaces, and the positions of the central ring, the sandwiching chambers, and the wire
are perfectly aligned. The analytical and simulation results are denoted by the red and blue lines in
Fig. 19, respectively.

For comparison, Fig. 20 shows “the resistive-wall chamber impedance” Zw
L with g = 300 μm,

obtained by converting Sw
21/Sw(ref )

21 in Fig. 12 to the resistive-wall impedances Zw
L via Eq. (50). The

red and blue lines denote the analytical and simulation results, respectively.
In Figs. 19 and 20, the order of magnitude of the impedances per unit length is around M�/m

in these ideal cases. We find that a change in the length g produces a difference in the impedances
between both results, which means that the analytical results successfully reproduce the simulation
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Fig. 20. Analytical result (red) of Zw
L and simulation result (blue) of Zw

L , respectively, where σc = 187.566
S/m, g = 300 μm, d = 40 μm, a = 60 μm, and ρw = 0.5 μm. The left and right panels represent the real
and imaginary parts of the impedances, respectively.

Fig. 21. A schematic of the corrugated wall on a chamber surface.

results for any length of g. Nevertheless, as in the results in the THz region by the waveguide method
(see Fig. 6), a slight discrepancy is seen between the analytical and simulation results.

Here, let us consider how the ideal results are deformed due to the intrinsic errors of the mea-
surement setup. Figure 21 represents a schematic of 2D corrugation structures, modeling the surface
roughness on chambers. The dimensions are specified by two parameters: Lw and Aw.

For simplicity, let us consider a perfectly conductive tiny chamber with a corrugated wall. By
letting a beam pass through the chamber, we can find the dependence of the parameters Lw and
Aw on the corrugated wall beam impedance ZL [39]. The simulation was done by using the 2D
simulation code ABCI [42]. The results are shown in Fig. 22, where the black, brown, blue, red, and
green lines show the results with Lw = Aw = 0.200 μm, Lw = Aw = 0.100 μm, Lw = Aw = 0.050
μm, Lw = Aw = 0.025 μm, and Lw = Aw = 0.005 μm, respectively. The results suggest that
the contribution of the surface roughness to the real part of the resistive-insert impedance Zw

L with
σc = 187.566 S/m is made negligibly small, while that to the imaginary part becomes less than about
0.2% for the ideal result of impedance shown in Fig. 19, by reducing the corrugation parameters (Lw

and Aw) below 0.100 μm against the inner radius d = 40 μm.
In order to demonstrate the expectation, let us move back to the 3D simulation for the wire

method, where the surface roughness is taken into consideration both for the resistive insert and the
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Fig. 22. The parameter dependence on the beam impedance ZL for a perfectly conductive chamber with
corrugated wall, and d = 40 μm. The black, brown, blue, red, and green lines show the results with Lw =
Aw = 0.200 μm, Lw = Aw = 0.100 μm, Lw = Aw = 0.050 μm, Lw = Aw = 0.025 μm, and Lw = Aw =
0.005 μm, respectively. Notice that the vertical scales are different for the real (left) and imaginary (right)
parts of the impedance.

Fig. 23. The impedance Zw
L with (red dashed) and without (blue) the effect of surface roughness with Lw =

Aw = 0.100 μm on the chambers.

sandwiching chambers. The simulation results are shown in Fig. 23. The red and blue lines denote
Zw

L with and without the effects of surface roughness. To obtain the red line, the only corrugated
resistive insert is replaced by the perfectly conductive reference ring with a smooth inner surface,
when we calculate the reference scattering matrix Sw(ref )

21 . As expected, the difference between both
results is negligible compared to that between the analytical and simulation results shown in Fig.
19. The results indicate that the surface roughness with Lw = Aw = 0.100 μm is tolerable, if the
sandwiching chambers are shared in both the measurements of Sw

21 and Sw(ref )
21 .

Finally, let us intentionally misalign the positions of the resistive insert and two sandwiching
chambers up to 0.100 μm, retaining the surface roughness with Lw = Aw = 0.100 μm. Based
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Fig. 24. The impedance Zw
L with (red dashed) and without (blue) the effects of surface roughness and the

misalignment of the positions of the chambers. The surface roughness is specified by Lw = Aw = 0.100 μm,
and the misalignment errors are assumed to be 0.100 μm.

on the current simulation analysis, the misalignment shifts the characteristic impedance by about
0.1% from the ideal value. The simulation result is shown in Fig. 24, where the red and blue lines
represent Zw

L with and without the setup errors, respectively. We find that the difference between
both results is tolerable even in the THz region by making both the amounts of surface roughness
and the misalignment errors between the chambers be within 0.100 μm, so long as we deal with the
impedance of the resistive insert with σc = 187.566 S/m.

Though the requirement for the setup error in this example may be achievable under the present
technology [43,44], it depends on the amount of |σc| in the THz region of the measured material.
The resistive-wall impedance is roughly proportional to 1/

√
σc [11,41] for the material with higher

conductivity. Therefore, if we measure the impedance Zw
L with the conductivity |σc| � 104 S/m

at THz, the requirements for the measurement setup errors, including the surface roughness on the
chambers and the misalignment between the chambers, become more stringent. For this case, Fig. 22
suggests that the errors must be below 0.010 μm or less, which is more challenging to realize.

Thus, when the target conductivity |σc| is higher than 104 S/m at THz, we had better avoid blindly
transforming the measured impedance Zw

L to the conductivity σc. Instead, let us measure the surface
roughness on the chambers in advance with other methods, e.g., scanning electron microscopy (SEM),
energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM) techniques [45]. After
that, we should determine the frequency dependence of σc by reconstructing the measurements of
impedance Zw

L in combination with the independent measurements of the surface roughness via the
simulation approach, as we discussed in Sect. 2.3.

6. Conclusions

The first step to calculating the resistive-wall beam impedance of a resistive chamber is determining
the conductivity of the resistive material. The conductivity of the material at a given frequency can
be evaluated by measuring the S-matrix of a propagation mode in a waveguide. However, in most
cases, only the absolute value of the S-matrix is used for the evaluation, under the assumption that
the conductivity is pure real, though both the S-matrix and the conductivity are complex numbers
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in general. To evaluate complex conductivity from the measured complex S-matrix, we need a
theoretical formula to connect them. To this end, we derived new theoretical formulae for the S-matrix
in the TE11 and TM01 modes in a waveguide (waveguide method) and for a quasi-TEM00 mode in
a coaxial waveguide (wire method), where complex conductivity was assumed. In all three cases,
we confirmed that the theoretical formulae can reproduce the simulated S-matrices by CST Studio
Suite 2018 very well for the assumed (constant and frequency-dependent complex) conductivities.
Conversely, we can determine the conductivity of a material by using it as a fitting parameter in a
comparison of a measured S-matrix with the theoretical formulae. The three independent methods
facilitate a triple-check of the accuracy of the measured conductivity.

The standard log-formula (50) is often used to evaluate the resistive-wall beam impedance directly
based on S-matrices measured using the wire method. Another method is evaluating the complex
conductivity of the material based on the measured S-matrices and inputting it into the theoretical
formula (51) for calculation of the resistive-wall beam impedance. We can estimate the accuracy
of the standard log-formula by comparing the two results. We find that the standard log-formula
reproduces the resistive-wall beam impedance well for the high-conductivity case, while it disagrees
quantitatively in the low-conductivity case. For an accurate estimate of the resistive-wall beam
impedance, using the theoretical formula (51) with the measured conductivity is preferable.

In the derivation of the above formulae, we have assumed that the outer surface of the resistive
chamber is surrounded by a perfectly conductive layer, for simplicity. This approximation is valid
in the high-frequency region, where the skin depth is smaller than the chamber width. However, our
scheme can be easily generalized for low frequencies by removing the perfectly conductive layer and
considering the analytical solutions outside the chamber, satisfying the open boundary conditions
[4,11,33].
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Appendix A. Derivation of the scattering matrix by the waveguide method

In this appendix, we derive the formulae for the scattering matrix for the TE mode and the TM
mode by using the waveguide method. We consider a 2D cylindrical chamber made of a resistive
material with conductivity σc, whose inner radius is d and outer radius is a. Cylindrical coordinates
(ρ, θ , z) are adopted for this description. We assume that the outer surface of the resistive chamber
is surrounded by a perfectly conductive layer. All fields are proportional to ejωt−j�z, where j is the
imaginary unit and ω is the angular frequency. The factor � will be determined based on the boundary
conditions.

A.1. Derivation of the scattering matrix for the TE11 mode in a cylindrical waveguide

First, let us calculate the scattering matrix for the TE11 mode, which is the lowest excitation mode
in the cylindrical waveguide. The solutions of the Maxwell equations are expressed as

Hz = A

[
I1(κρ) − I ′

1(κa)

K ′
1(κa)

K1(κρ)

]
, (A.1)

Eθ = − jAωμ0

κ

[
I ′
1(κρ) − I ′

1(κa)

K ′
1(κa)

K ′
1(κρ)

]
, (A.2)
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Hρ = jA�

κ

[
I ′
1(κρ) − I ′

1(κa)

K ′
1(κa)

K ′
1(κρ)

]
, (A.3)

in the resistive material, and

Hz = BJ1(
ρ), (A.4)

Eθ = − Bωμ0

j
√

ω2

c2 − �2
J ′

1(
ρ), (A.5)

Hρ = B�

j
√

ω2

c2 − �2
J ′

1(
ρ), (A.6)

in vacuum, where A and B are arbitrary coefficients. The functions Jn(z) and In(z), Kn(z) are the Bessel
and modified Bessel functions, respectively [29]. The prime of the functions denotes the differential
with respect to their arguments. The parameters μ0 and σc are the permeability of vacuum and
conductivity of the chamber, respectively. In addition, we define

κ =
√

�2 − ω2

c2 + jωμ0σc, (A.7)

and


 =
√

ω2

c2 − �2. (A.8)

The continuous condition of the fields at ρ = d gives

A

[
I1(κd) − I ′

1(κa)

K ′
1(κa)

K1(κd)

]
− BJ1(
d) = 0, (A.9)

A

κ

[
I ′
1(κd) − I ′

1(κa)

K ′
1(κa)

K ′
1(κd)

]
+ B√

ω2

c2 − �2
J ′

1(
d) = 0, (A.10)

which provide the eigenvalue condition for �:

[I1(κd) − I ′
1(κa)

K ′
1(κa)

K1(κd)]J ′
1(
d)√

ω2

c2 − �2
+ 1

κ

[
I ′
1(κd) − I ′

1(κa)

K ′
1(κa)

K ′
1(κd)

]
J1(
d) = 0, (A.11)

so that Eqs. (A.9) and (A.10) have non-trivial solutions � = �TE
n,1, for a given frequency. Condition

(A.11) is equivalent to Eq. (4) in the text. The lowest n = 1 solution corresponds to the TE11 mode
case. Hereafter, we write κ = κ1,1 corresponding to the lowest root of Eq. (A.11), i.e., �TE

1,1.
For the entire region of the resistive waveguide including the resistive material 0 ≤ ρ ≤ a, the

transverse fields of TE1,1 mode are summarized as

Eθ = (B+e−j�TE
1,1z + B−ej�TE

1,1z
)Ẽθ (ρ, θ), (A.12)

Hρ = −(B+e−j�TE
1,1z − B−ej�TE

1,1z
)

ZTE1,1

Ẽθ (ρ, θ), (A.13)
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and

Hz = 1

Z0
(B+e−j�TE

1,1z + B−ej�TE
1,1z

)H̃z, (A.14)

where B+ and B− are arbitrary coefficients, Z0 = 120π � is the impedance of free space,

Ẽθ (ρ, θ) = −j
ωμ0[I ′

1(κ1,1d) − I ′
1(κ1,1a)

K ′
1(κ1,1a)

K ′
1(κ1,1d)]J ′

1(

√
ω2

c2 − (�TE
1,1)

2ρ)

κ1,1J ′
1(

√
ω2

c2 − (�TE
1,1)

2d)

+ j
ωμ0[I ′

1(κ1,1d) − I ′
1(κ1,1a)

K ′
1(κ1,1a)

K ′
1(κ1,1d)]J ′

1(

√
ω2

c2 − (�TE
1,1)

2ρ)

κ1,1J ′
1(

√
ω2

c2 − (�TE
1,1)

2d)

�(ρ − d)

− j
ωμ0

κ1,1
[I ′

1(κ1,1ρ) − I ′
1(κ1,1a)

K ′
1(κ1,1a)

K ′
1(κ1,1ρ)]�(ρ − d), (A.15)

H̃z = Z0[I1(κ1,1ρ) − I ′
1(κ1,1a)

K ′
1(κ1,1a)

K1(κ1,1ρ)] − Z0[I1(κ1,1ρ) − I ′
1(κ1,1a)

K ′
1(κ1,1a)

K1(κ1,1ρ)]�(ρ − d)

+
Z0[I1(κ1,1d) − I ′

1(κ1,1a)

K ′
1(κ1,1a)

K1(κ1,1d)]J1(

√
ω2

c2 − (�TE
1,1)

2ρ)

J1(

√
ω2

c2 − (�TE
1,1)

2d)

�(ρ − d), (A.16)

and

ZTE1,1 = ωZ0

c�TE
1,1

. (A.17)

The step function �(ρ) is defined as

�(ρ) =

⎧⎪⎨
⎪⎩

1 for ρ > 0,
1
2 for ρ = 0,
0 for ρ < 0.

(A.18)

Equations (A.12) and (A.13) lead to new formulae for the scattering matrix:

S11 = S22 =
1

Z2
50

− 1
Z2

TE1,1

1
Z2

50
+ 1

Z2
TE1,1

+ 2
jZ50ZTE1,1 tan �TE

1,1g

, (A.19)

and

S21 = S12 =
2

jZ50ZTE1,1 sin �TE
1,1g

1
Z2

50
+ 1

Z2
TE1,1

+ 2
jZ50ZTE1,1 tan �TE

1,1g

, (A.20)

by assuming that the waveguide impedance is ZTE1,1 , where g is the total length of the waveguide
chamber, and both ends of the waveguide are connected to cables with characteristic impedance Z50

(which is typically 50 �). Equations (A.19) and (A.20) are equivalent to formulae (1) and (2) in the
text.
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A.2. Formalism of the scattering matrix for the TM0n mode using the waveguide method

Next, we derive the formulae for the scattering matrix for the TM0n mode. Compared to the TE11

mode case, it is not straightforward to obtain the formulae for the scattering matrix for this mode in
a resistive waveguide. Here, we start with derivation of the waveguide voltage and current for the
cylindrical waveguide, following the general formalism in Ref. [46].

The dielectric constant ε(ρ, θ) and the magnetic permeability μ of the waveguide in the entire
region are summarized as

ε(ρ, θ) = ε0 + σc

jω
�(ρ − d), (A.21)

μ = μ0, (A.22)

by using the step function �(x) defined in Eq. (A.18), where ε0 is the dielectric constant of vacuum.
The fields �E and �H for the mode are described as

�E = (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )V (z) + Z0Ẽz(ρ, θ)�ezI (z), (A.23)

and

�H = (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )I (z) + 1

Z0
H̃z(ρ, θ)�ezV (z), (A.24)

by introducing the fields Ẽρ , Ẽθ , Ẽz, H̃ρ , H̃θ , H̃z, the waveguide voltage V (z), and the waveguide
current I (z), where �eρ , �eθ , and �ez are the unit vectors in the ρ-, θ -, and z-directions, respectively.

The Maxwell equation ∇ × �E = −jωμ �H is expressed using their components,

Z0

ρẼθ (ρ, θ)

∂Ẽz(ρ, θ)

∂θ
+ jωμ

H̃ρ(ρ, θ)

Ẽθ (ρ, θ)
= 1

I (z)

∂V (z)

∂z
, (A.25)

Z0

Ẽρ(ρ, θ)

∂Ẽz(ρ, θ)

∂ρ
− jωμ

H̃θ (ρ, θ)

Ẽρ(ρ, θ)
= 1

I (z)

∂V (z)

∂z
, (A.26)

1

ρ

∂

∂ρ
(ρẼθ (ρ, θ)) − 1

ρ

∂Ẽρ(ρ, θ)

∂θ
+ j

ω

c
H̃z(ρ, θ) = 0, (A.27)

for I (z) 	= 0 and V (z) 	= 0, which produces

1

I (z)

dV (z)

dz
= −j�Z ′

c, (A.28)

∇ × Ẽz(ρ, θ)�ez = −j
ω

c
(H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ ) + j�

Z ′
c

Z0
�ez × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ ),

(A.29)

∇ × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ ) = −j
ω

c
H̃z(ρ, θ)�ez, (A.30)

while the other equation ∇ × �H = jωε �E can be written using their components,

1

Z0ρH̃θ (ρ, θ)

∂H̃z(ρ, θ)

∂θ
− jωε(ρ, θ)

Ẽρ(ρ, θ)

H̃θ (ρ, θ)
= 1

V (z)

∂I (z)

∂z
, (A.31)

1

Z0H̃ρ(ρ, θ)

∂H̃z(ρ, θ)

∂ρ
+ jωε(ρ, θ)

Ẽθ (ρ, θ)

H̃ρ(ρ, θ)
= 1

V (z)

∂I (z)

∂z
, (A.32)
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1

ρ

∂

∂ρ
(ρH̃θ (ρ, θ)) − 1

ρ

∂H̃ρ(ρ, θ)

∂θ
− jωε(ρ, θ)Z0Ẽz(ρ, θ) = 0, (A.33)

for I (z) 	= 0 and V (z) 	= 0, which provides

1

V (z)

∂I (z)

∂z
= − j�

Z ′
c

, (A.34)

∇ × H̃z�ez = jωε(ρ, θ)Z0(Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ ) + j�Z0

Z ′
c

�ez × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ ),

(A.35)

∇ × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ ) = jωε(ρ, θ)Z0Ẽz(ρ, θ)�ez, (A.36)

where the waveguide impedance Z ′
c is introduced formally.

Here, the average power is defined by

P(z) = 1

2

∫
dθdρρ(EρH∗

θ − EθH∗
ρ )

= 1

2

∫
dθdρρ(Ẽρ(ρ, θ)H̃∗

θ (ρ, θ) − Ẽθ (ρ, θ)H̃∗
ρ (ρ, θ))V (z)I∗(z), (A.37)

where “*” denotes a complex conjugate. In the transmission line model, the same average power is
given by

P(z) = 1

2
V (z)I∗(z), (A.38)

by using the waveguide voltage and the waveguide current. Accordingly, we obtain the requirement
for the fields as ∫

dθdρρ(Ẽρ(ρ, θ)H̃∗
θ (ρ, θ) − Ẽθ (ρ, θ)H̃∗

ρ (ρ, θ)) = 1. (A.39)

By combining Eq. (A.30) with Eq. (A.35), we obtain

− �ez × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ ) = H̃θ (ρ, θ)�eρ − H̃ρ(ρ, θ)�eθ

= 1

jω

Z ′
c

j�

{
c

Z0
∇ × [∇ × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )] − ω2ε(ρ, θ)(Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )

}
.

(A.40)

Subsequently, by substituting Eq. (A.40) into Eq. (A.39), Eq. (A.39) is rewritten as

1

jω

Z ′∗
c

j�∗

∫
dθdρρ(Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )·

{
c

Z0
∇ × [∇ × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )] − ω2ε(ρ, θ)(Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )

}∗
= 1.

(A.41)

Because the original electric field is described by Eq. (A.23), the waveguide voltage V (z) is
expressed as

V (z) = 1

jω

Z ′∗
c

j�∗

∫
dθdρρ �E·
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{
c

Z0
∇ × [∇ × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )] − ω2ε(ρ, θ)(Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ )

}∗
. (A.42)

Here, we have used the fact that the right-hand side of Eq. (A.40) has no �ez-component.
Similarly, by combining Eqs. (A.29) and (A.36), we obtain

�ez × (Ẽρ(ρ, θ)�eρ + Ẽθ (ρ, θ)�eθ ) = −Ẽθ (ρ, θ)�eρ + Ẽρ(ρ, θ)�eθ

= 1

jωj�Z ′
c

{
∇ × [ 1

ε(ρ, θ)
∇ × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )] − ω2Z0

c
(H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )

}
.

(A.43)

By substituting Eq. (A.43) into Eq. (A.39), the complex conjugate of Eq. (A.39) is written as

1
jωj�∗Z ′∗

c

∫
dθdρρ(H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )·

{
∇ × [ 1

ε(ρ, θ)
∇ × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )] − ω2Z0

c
(H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )

}∗
= 1.

(A.44)

Finally, the waveguide current I (z) is expressed as

I (z) = 1
jωj�∗Z ′∗

c

∫
dθdρρ �H ·

{
∇ × [ 1

ε(ρ, θ)
∇ × (H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )] − ω2Z0

c
(H̃ρ(ρ, θ)�eρ + H̃θ (ρ, θ)�eθ )

}∗
. (A.45)

By partially integrating Eq. (A.44) and using the boundary condition on the surface of the chamber
(Ez = 0), the complex conjugate of Eq. (A.44) produces the waveguide impedance Z ′

c:

Z ′
c = ω

�

∫
dθdρρ

[
−(ε0 + j�[σc] + �[σc]

ω
�(ρ − d))Z2

0 |Ẽz|2 + Z0

c
(|H̃ρ |2 + |H̃θ |2)

]
, (A.46)

for the mode �.

A.2.1. Scattering matrix for the TM0n mode using the waveguide method
The solutions of the Maxwell equations for the TM0n mode in the cylindrical waveguide are generally
expressed as

Ez = ATM

[
I0(κρ) − I0(κa)

K0(κa)
K0(κρ)

]
, (A.47)

Hθ = ATM(σc + jωε0)√
�2 − ω2

c2 + jωμ0σc

[
I1(κρ) + I0(κa)

K0(κa)
K1(κρ)

]
, (A.48)

Eρ = ATMj�√
�2 − ω2

c2 + jωμ0σc

[
I1(κρ) + I0(κa)

K0(κa)
K1(κρ)

]
, (A.49)

for the resistive material, and

Ez = BTMJ0(
ρ), (A.50)
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Hθ = −BTMωε0

j

J1(
ρ), (A.51)

Eρ = −BTM�

j

J1(
ρ), (A.52)

for vacuum, respectively, where ATM and BTM are arbitrary coefficients, and κ and 
 are defined by
Eqs. (A.7) and (A.8), respectively,

The continuous condition of the fields at ρ = d gives

ATM[I0(κd) − I0(κa)

K0(κa)
K0(κd)] − BTMJ0(
d) = 0, (A.53)

and

ATM(σc + jωε0)√
�2 − ω2

c2 + jωμ0σc

[I1(κd) + I0(κa)

K0(κa)
K1(κd)] + BTMωε0

j

J1(
d) = 0, (A.54)

which produces

ωε0[I0(κd) − I0(κa)
K0(κa)

K0(κd)]J1(
d)

j

+ (σc + jωε0)J0(
d)[I1(κd) + I0(κa)

K0(κa)
K1(κd)]√

�2 − ω2

c2 + jωμ0σc

= 0, (A.55)

such that Eqs. (A.53) and (A.54) have non-trivial solutions �TM
n,0 . The lowest n = 1 solution

corresponds to the TM01 mode case. Especially when σc = 0 S/m, Eq. (A.55) reproduces

J0(
a) = 0, (A.56)

which is the eigenvalue condition for the TM0n mode in a perfectly conductive waveguide with the
inner radius a [28].

Hereafter, we write κ = κn,0, and


 = 
TM =
(

ω2

c2 − (�TM
n,0 )2

) 1
2

, (A.57)

for the nth root �n,0 of Eq. (A.55). The transverse (Ẽρ , H̃θ ) and the longitudinal (Ẽz) fields are defined
as

Ẽρ = − cj0,nZ0�
TM
n,0 J1(
TMρ)

jZ ′
c
TM

√
πωa2J1(j0,n)

+ cj0,nZ0�
TM
n,0 J1(
TMρ)

jZ ′
c
TM

√
πωa2J1(j0,n)

�(ρ − d)

−
cj0,nε0Z0�

TM
n,0 J1(
TMd)[I1(κn,0ρ) + I0(κn,0a)

K0(κn,0a)
K1(κn,0ρ)]

Z ′
c
√

πa2J1(j0,n)(σc + jωε0)
TM[I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)]

�(ρ − d), (A.58)

H̃θ = − j0,nJ1(
TMρ)

j
TM
√

πa2J1(j0,n)
+ j0,nJ1(
TMρ)

j
TM
√

πa2J1(j0,n)
�(ρ − d)

−
j0,nJ1(
TMd)[I1(κn,0ρ) + I0(κn,0a)

K0(κn,0a)
K1(κn,0ρ)]

j
TM
√

πa2J1(j0,n)[I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)]

�(ρ − d), (A.59)
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Ẽz = cj0,nJ0(
TMρ)√
πωa2J1(j0,n)

− cj0,nJ0(
TMρ)√
πωa2J1(j0,n)

�(ρ − d)

+
cj0,nJ0(
TMd)(I0(κn,0ρ) − I0(κn,0a)

K0(κn,0a)
K0(κn,0ρ))

√
πωa2J1(j0,n)(I0(κn,0d) − I0(κn,0a)

K0(κn,0a)
K0(κn,0d))

�(ρ − d), (A.60)

such that they are the solutions of Eqs. (A.29) and (A.36), i.e.,

1

ρ

∂

∂ρ
(ρH̃θ ) = jωε0Z0Ẽz, (A.61)

−∂Ẽz

∂ρ
= −j

ω

c
H̃θ + j�

Z ′
c

Z0
Ẽρ . (A.62)

By using Eqs. (A.42), (A.45), and (A.46), the waveguide voltage V (z) and the waveguide current
I (z) are calculated as

V (z) = CV (B+
TMe−j�TM

n,0 z + B−
TMej�TM

n,0 z
), (A.63)

I (z) = CI (B
+
TMe−j�TM

n,0 z − B−
TMej�TM

n,0 z
), (A.64)

where B+
TM and B−

TM are arbitrary coefficients,

B̃ = BTM

√
πωa2J1(j0,n)

cj0,nZ0
, (A.65)

CI = 2π B̃

ω�TM∗
n,0 Z ′∗

c

∫ a

0
dρρH̃θ (ρ, θ)

[
∂

∂ρ

1

ε(ρ, θ)

1

ρ

∂

∂ρ
ρH̃θ (ρ, θ) + ω2Z0

c
H̃θ (ρ, θ)

]∗

= 2π B̃

ω�TM∗
n,0 Z ′∗

c

[
ρH̃θ (ρ, θ)

1

ε∗(ρ, θ)

1

ρ

∂

∂ρ
ρH̃∗

θ (ρ, θ)

∣∣∣∣
a

0

+
∫ a

0
dρ

(
−∂ρH̃θ (ρ, θ)

∂ρ

1

ε∗(ρ, θ)

1

ρ

∂

∂ρ
ρH̃∗

θ (ρ, θ) + ρH̃θ (ρ, θ)
ω2Z0

c
H̃∗

θ (ρ, θ)

)]

= 2j2
0,nB̃

ω�TM∗
n,0 Z ′∗

c a4J 2
1 (j0,n)

⎧⎨
⎩−

cZ0(�[
TMdJ0(

∗
TMd)J1(
TMd)] − ω2�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

c2|
TM|2 )

�[
2
TM]

− |J1(
TMd)|2
(ε0 − σ ∗

c
jω )|I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)|2

×
(�[κn,0aI0(κ

∗
n,0a)I1(κn,0a) − κn,0dI0(κ

∗
n,0d)I1(κn,0d)]

�[κ2
n,0]

− 2�
⎡
⎢⎣

I0(κ
∗
n,0a)

K0(κ
∗
n,0a)

(κn,0aI1(κn,0a)K0(κ
∗
n,0a) + κ∗

n,0aI0(κn,0a)K1(κ
∗
n,0a))

(κ2
n,0 − κ∗2

n,0)

−
I0(κ

∗
n,0a)

K0(κ
∗
n,0a)

(κn,0dI1(κn,0d)K0(κ
∗
n,0d) + κ∗

n,0dI0(κn,0d)K1(κ
∗
n,0d))

(κ2
n,0 − κ∗2

n,0)

⎤
⎥⎦
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−|I0(κn,0a)|2�[κn,0aK0(κ
∗
n,0a)K1(κn,0a) − κn,0dK0(κ

∗
n,0d)K1(κn,0d)]

|K0(κn,0a)|2�[κ2
n,0]

)

+ ω2Z0|J1(
TMd)|2
c|
TM|2|I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)|2

×
(�[κn,0aI1(κ

∗
n,0a)I2(κn,0a) − κn,0dI1(κ

∗
n,0d)I2(κn,0d)]

�[κ2
n,0]

+ 2�
⎡
⎢⎣

I0(κ
∗
n,0a)

K0(κ
∗
n,0a)

(κn,0aI2(κn,0a)K1(κ
∗
n,0a) + κ∗

n,0aI1(κn,0a)K2(κ
∗
n,0a))

(κ2
n,0 − κ∗2

n,0)

−
I0(κ

∗
n,0a)

K0(κ
∗
n,0a)

(κn,0dI2(κn,0d)K1(κ
∗
n,0d) + κ∗

n,0dI1(κn,0d)K2(κ
∗
n,0d))

(κ2
n,0 − κ∗2

n,0)

⎤
⎥⎦

+|I0(κn,0a)|2�[κ∗
n,0(aK0(κ

∗
n,0a)K1(κn,0a) − dK0(κ

∗
n,0d)K1(κn,0d)])

|K0(κn,0a)|2�[κ2
n,0]

)}
, (A.66)

CV = B̃

⎡
⎣2πωε0Z ′

cZ ′∗
c

�∗TM
n,0

∫ d

0
dρρ|Ẽρ |2 +

2πω(ε0 − σ ∗
c

jω )Z ′
cZ ′∗

c

�∗TM
n,0

∫ a

d
dρρ|Ẽρ |2

⎤
⎦

= B̃
2j2

0,n|�TM
n,0 |2

a4J 2
1 (j0,n)�

∗TM
n,0 |
TM|2

[
cZ0�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

ω�[
2
TM]

+
ω(ε0 − σ ∗

c
jω )|J1(
TMd)|2

|σc + jωε0|2|I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)|2

×
{�[κn,0aI1(κ

∗
n,0a)I2(κn,0a) − κn,0dI1(κ

∗
n,0d)I2(κn,0d)]

�[κ2
n,0]

− 2�
⎡
⎣a I0(κn,0a)

K0(κn,0a)
(κ∗

n,0I2(κ
∗
n,0a)K1(κn,0a) + κn,0I1(κ

∗
n,0a)K2(κn,0a))

(κ2
n,0 − κ∗2

n,0)

−
d I0(κn,0a)

K0(κn,0a)
(κ∗

n,0I2(κ
∗
n,0d)K1(κn,0d) + κn,0I1(κ

∗
n,0d)K2(κn,0d))

(κ2
n,0 − κ∗2

n,0)

⎤
⎦

+|I0(κn,0a)|2�[κ∗
n,0(aK0(κ

∗
n,0a)K1(κn,0a) − dK0(κ

∗
n,0d)K1(κn,0d)])

|K0(κn,0a)|2�[κ2
n,0]

}]
, (A.67)

Z ′
c = ω

�TM
n,0

∫
dθdρρ

[
−
(

ε0 + jσ ∗
c

ω
�(ρ − d)

)
Z2

0 |Ẽz|2 + Z0

c
|H̃θ |2

]

= 2j2
0,nc2Z2

0

ω�TM
n,0 a4J 2

1 (j0,n)

{
−�[
TMdJ0(


∗
TMd)J1(
TMd)]

cZ0�[
2
TM] + ω2�[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

c3Z0|
TM|2�[
2
TM]
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−
(

ε0 + jσ ∗
c

ω

) |J0(
TMd)|2
|I0(κn,0d) − I0(κn,0a)

K0(κn,0a)
K0(κn,0d)|2

×
{�[κn,0aI0(κ

∗
n,0a)I1(κn,0a) − κn,0dI0(κ

∗
n,0d)I1(κn,0d)]

�[κ2
n,0]

− 2�
[

I0(κn,0a)

K0(κn,0a)

(
−a(κ∗

n,0I1(κ
∗
n,0a)K0(κn,0a) + κn,0I0(κ

∗
n,0a)K1(κn,0a))

(κ2
n,0 − κ∗2

n,0)

+d(κ∗
n,0I1(κ

∗
n,0d)K0(κn,0d) + κn,0I0(κ

∗
n,0d)K1(κn,0d))

(κ2
n,0 − κ∗2

n,0)

)]

−|I0(κn,0a)|2�[κn,0(aK0(κ
∗
n,0a)K1(κn,0a) − dK0(κ

∗
n,0d)K1(κn,0d))]

|K0(κn,0a)|2�[κ2
n,0]

}

+ ω2|J1(
TMd)|2
c3Z0|
TM|2|I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)|2

×
{�[κn,0aI1(κ

∗
n,0a)I2(κn,0a) − κn,0dI1(κ

∗
n,0d)I2(κn,0d)]

�[κ2
n,0]

+ 2�
[

I0(κn,0a)

K0(κn,0a)

(
−a(κ∗

n,0I2(κ
∗
n,0a)K1(κn,0a) + κn,0I1(κ

∗
n,0a)K2(κn,0a))

(κ2
n,0 − κ∗2

n,0)

+d(κ∗
n,0I2(κ

∗
n,0d)K1(κn,0d) + κn,0I1(κ

∗
n,0d)K2(κn,0d))

(κ2
n,0 − κ∗2

n,0)

)]

+|I0(κn,0a)|2�[κ∗
n,0(aK0(κ

∗
n,0a)K1(κn,0a) − dK0(κ

∗
n,0d)K1(κn,0d)])

|K0(κn,0a)|2�[κ2
n,0]

}}
, (A.68)

and j0,n is the nth zero of the Bessel function J0(z).
In the above derivation, we use the following formulae [29]:

∂ρH̃θ

∂ρ
= − j0,nρJ0(
TMρ)

j
√

πa2J1(j0,n)
+ j0,nρJ0(
TMρ)

j
√

πa2J1(j0,n)
�(ρ − d)

−
j0,nJ1(
TMd)ρ[I0(κn,0ρ) − I0(κn,0a)

K0(κn,0a)
K0(κn,0ρ)]

j
√

πa2J1(j0,n)[I1(κn,0d) + I0(κn,0a)

K0(κn,0a)
K1(κn,0d)]

�(ρ − d), (A.69)

1

ε∗(ρ, θ)

1

ρ

∂ρH̃∗
θ

∂ρ
=

⎛
⎝ 1

ε0
− 1

ε0
�(ρ − d) + 1

(ε0 − σ ∗
c

jω )
�(ρ − d)

⎞
⎠

×
(

j0,nJ0(

∗
TMρ)

j
√

πa2J1(j0,n)
− j0,nJ0(


∗
TMρ)

j
√

πa2J1(j0,n)
�(ρ − d)

+
j0,nJ1(


∗
TMd)[I0(κ

∗
n,0ρ) − I0(κ

∗
n,0a)

K0(κ
∗
n,0a)

K0(κ
∗
n,0ρ)]

j
√

πa2J1(j0,n)[I1(κ
∗
n,0d) + I0(κ

∗
n,0a)

K0(κ
∗
n,0a)

K1(κ
∗
n,0d)]

�(ρ − d)

⎞
⎟⎠, (A.70)
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1

ε(ρ, θ)
= 1

ε0
− 1

ε0
�(ρ − d) + 1

(ε0 + σc
jω)

�(ρ − d), (A.71)

∫ d

0
dzzJ1(
TMz)J1(


∗
TMz) = �[
∗

TMdJ0(

∗
TMd)J1(
TMd)]

�[
2
TM] , (A.72)

∫ a

d
dzzI1(κn,0z)I1(κ

∗
n,0z) = �[κn,0aI1(κ

∗
n,0a)I2(κn,0a) − κn,0dI1(κ

∗
n,0d)I2(κn,0d)]

�[κ2
n,0]

, (A.73)

∫ a

d
dzzI1(κn,0z)K1(κ

∗
n,0z) = a(κn,0I2(κn,0a)K1(κ

∗
n,0a) + κ∗

n,0I1(κn,0a)K2(κ
∗
n,0a))

(κ2
n,0 − κ∗2

n,0)

− d(κn,0I2(κn,0d)K1(κ
∗
n,0d) + κ∗

n,0I1(κn,0d)K2(κ
∗
n,0d))

(κ2
n,0 − κ∗2

n,0)
, (A.74)

∫ a

d
dzzI1(κ

∗
n,0z)K1(κn,0z) = −a(κ∗

n,0I2(κ
∗
n,0a)K1(κn,0a) + κn,0I1(κ

∗
n,0a)K2(κn,0a))

(κ2
n,0 − κ∗2

n,0)

+ d(κ∗
n,0I2(κ

∗
n,0d)K1(κn,0d) + κn,0I1(κ

∗
n,0d)K2(κn,0d))

(κ2
n,0 − κ∗2

n,0)
, (A.75)

∫ a

d
dzzK1(κn,0z)K1(κ

∗
n,0z) = �[κ∗

n,0(aK0(κ
∗
n,0a)K1(κn,0a) − dK0(κ

∗
n,0d)K1(κn,0d)])

�[κ2
n,0]

, (A.76)

∫ d

0
dzzJ0(
TMz)J0(


∗
TMz) = �[
TMdJ0(


∗
TMd)J1(
TMd)]

�[
2
TM] , (A.77)

∫ a

d
dρρI0(κn,0ρ)I0(κ

∗
n,0ρ) = �[κn,0aI0(κ

∗
n,0a)I1(κn,0a)]

�[κ2
n,0]

− �[κn,0dI0(κ
∗
n,0d)I1(κn,0d)]

�[κ2
n,0]

, (A.78)

∫ a

d
dρρI0(κn,0ρ)K0(κ

∗
n,0ρ) = a(κn,0I1(κn,0a)K0(κ

∗
n,0a) + κ∗

n,0I0(κn,0a)K1(κ
∗
n,0a))

(κ2
n,0 − κ∗2

n,0)

− d(κn,0I1(κn,0d)K0(κ
∗
n,0d) + κ∗

n,0I0(κn,0d)K1(κ
∗
n,0d))

(κ2
n,0 − κ∗2

n,0)
, (A.79)

∫ a

d
dρρK0(κn,0ρ)I0(κ

∗
n,0ρ) = −a(κ∗

n,0I1(κ
∗
n,0a)K0(κn,0a) + κn,0I0(κ

∗
n,0a)K1(κn,0a))

(κ2
n,0 − κ∗2

n,0)

+ d(κ∗
n,0I1(κ

∗
n,0d)K0(κn,0d) + κn,0I0(κ

∗
n,0d)K1(κn,0d))

(κ2
n,0 − κ∗2

n,0)
, (A.80)

∫ a

d
dρρK0(κn,0ρ)K0(κ

∗
n,0ρ) = −�[κn,0aK0(κ

∗
n,0a)K1(κn,0a)]

�[κ2
n,0]

+ �[κn,0dK0(κ
∗
n,0d)K1(κn,0d)]

�[κ2
n,0]

,

(A.81)

Jν(z
∗) = J ∗

ν (z), (A.82)

Iν(z
∗) = I∗

ν (z), (A.83)

and

Kν(z
∗) = K∗

ν (z). (A.84)
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Finally, we obtain the scattering matrix for the TM0n mode by using the waveguide method as

S11 = S22 =

(
1

Z2
50

− C2
I

C2
V

)
1

Z2
50

+ C2
I

C2
V

+ 2CI
CV Z50j tan �TM

n,0 g

, (A.85)

and

S21 = S12 =
2CI

CV Z50j sin �TM
n,0 g

1
Z2

50
+ C2

I
C2

V
+ 2CI

CV Z50j tan �TM
n,0 g

, (A.86)

where we assume that the resistive waveguide with longitudinal length g is sandwiched between
cables with the characteristic impedance Z50. Equations.(A.85) and (A.86) are equivalent to Eqs. (9)
and (10) in the text.

Appendix B. Derivation of formulae for the transmission coefficient Sw
21 using the

wire method

In this appendix, we derive the formulae for the transmission coefficient Sw
21 by using the wire method.

A perfectly conductive single wire with radius ρw is stretched out at the center of the chamber with
inner radius d, and the current I0 is driven through the wire. The device under test (resistive chamber)
with the length 2w(= g) is sandwiched between perfectively conductive chambers [11,33]. The
thickness of the chambers is a − d. We assume that the perfectly conductive wall covers the outer
surface (ρ = a) of the chambers.

Because the longitudinal electric field Ez should be zero on the surface of the wire, the solutions
in vacuum are described by the Neumann function Yn(x) in combination with the Bessel function
Jn(x). They are expressed as [47]

Ez(ρ, z) =
∫ ∞

−∞
dqe−jqzA(q)

Y0

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2ρ

)

Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

) , (B.1)

Hθ (ρ, z) = j
k

Z0

∫ ∞

−∞
dqe−jqz

A(q)

[
Y1

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2ρ

)]

√
k2 − q2

(
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

))

+ I0

2πρ
e−jkz, (B.2)

Eρ(ρ, z) = −Z0

jk

∂Hθ

∂z
, (B.3)

where the factor ejωt is omitted, k = ω/c, Z0 = 120π �, and A(q) is the expansion coefficient.
Here, the poles are above the real axis for q < 0 and below the real axis for q > 0.

Because Ez on the inner surface of the two perfectly conductive chambers sandwiching the resistive
chamber should be zero, the expansion coefficient A(q) should satisfy the following relation [11,33]:
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∫ ∞

−∞
dq A(q)e−jqz =

{
V1
2w +

∑∞
m=1 V (m)

1 cos mπ(z+w)
2w

w , for −w < z < w,
0, otherwise,

(B.4)

where V1 is the voltage on the inner surface of the resistive chamber at ρ = d, and V (m)
1 are the higher-

order expansion coefficients. Consequently, the original expansion coefficient A(q) is rewritten by
using the new expansion coefficients V1 and V (m)

1 as

A(q) = V1

2π

sin qw

qw
+

∞∑
m=1

V (m)
1 ((−1)mejqw − e−jqw)q

j2πw(q2 − m2π2

4w2 )
. (B.5)

Substituting Eq. (B.5) into Eqs. (B.1)–(B.2), we obtain

Ez(ρ, z) =
∫ ∞

−∞
dqe−jqz

×

[
V1
2π

sin qw
qw + ∑∞

m=1
V (m)

1 ((−1)mejqw−e−jqw)q

j2πw(q2− m2π2

4w2 )

][
Y0

(√
k2−q2ρ

)
−Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2ρ

)]
[

Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)] ,

(B.6)

Hθ (ρ, z) = j
k

Z0

∫ ∞

−∞
dqe−jqz

V1
2π

sin qw
qw

[
Y1

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2ρ

)]

√
k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)]

+ j
k

Z0

∞∑
m=1

∫ ∞

−∞
dqe−jqz

V (m)
1 ((−1)mejqw−e−jqw)q

j2πw(q2− m2π2

4w2 )

[
Y1

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2ρ

)]

√
k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)]

+ I0

2πρ
e−jkz, (B.7)

Eρ(ρ, z) = j
∫ ∞

−∞
dqe−jqz

q V1
2π

sin qw
qw

[
Y1

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2ρ

)]

√
k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)]

+
∞∑

m=1

∫ ∞

−∞
dqe−jqz

V (m)
1 ((−1)mejqw−e−jqw)q2

2πw(q2− m2π2

4w2 )

[
Y1

(√
k2 − q2ρ

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2ρ

)]

√
k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)]

+ I0Z0

2πρ
e−jkz. (B.8)
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The voltage V (z) at z between the wire and the outer chamber is calculated as

V (z) = −j
∫ ∞

−∞
dqe−jqz

q V1
2π

sin qw
qw

(k2 − q2)
−

∞∑
m=1

∫ ∞

−∞
dqe−jqz V (m)

1 ((−1)mejqw − e−jqw)q2

2πw(q2 − m2π2

4w2 )(k2 − q2)

+ I0Z0

2π
e−jkz log[ d

ρw
], (B.9)

while the current Iz(z) at z on the wire is calculated as

Iz(z) = kV1

2wZ0 log[ d
ρw

]
∫ ∞

−∞
dq

e−jqz(ejqw − e−jqw)

q(q2 − k2)

− kV1

wZ0

∫ ∞

−∞
dq

e−jqz(ejqw − e−jqw)

q

∞∑
l=1

J0(il)J0(il
ρw
d )

(q2 − k2 + i2l
d2 )(J 2

0 (il) − J 2
0 (il

ρw
d ))

+ k

wZ0 log[ d
ρw

]
∞∑

m=1

∫ ∞

−∞
dqe−jqz V (m)

1 ((−1)mejqw − e−jqw)q

(q2 − m2π2

4w2 )(q2 − k2)

− 2k

wZ0

∞∑
m=1

∫ ∞

−∞
dqe−jqz V (m)

1 ((−1)mejqw − e−jqw)q

(q2 − m2π2

4w2 )

∞∑
l=1

J0(il)J0(il
ρw
d )

(q2 − k2 + i2l
d2 )(J 2

0 (il) − J 2
0 (il

ρw
d ))

+ I0e−jkz, (B.10)

by using the formulae (see Appendix C)

J0(z)Y1(z) − J1(z)Y0(z) = − 2

πz
, (B.11)

1

J0(z
ρw
d )(Y0(z) − Y0(z

ρw
d )

J0(z
ρw
d )

J0(z))
= π

2 log[ d
ρw

] −
∞∑

l=1

πJ0(il)J0(il
ρw
d )

(J 2
0 (il) − J 2

0 (il
ρw
d ))

+
∞∑

l=1

i2l πJ0(il)J0(il
ρw
d )

(−z2 + i2
l )(J

2
0 (il) − J 2

0 (il
ρw
d ))

, (B.12)

where il is the zero of the function Y0(x) − Y0(xρw/d)/J0(xρw/d)J0(x).
As a regularization parameter, we introduce the total length of the three chambers together as L,

where we assume L/2 � w. By using Eqs. (B.9) and (B.10), V (∓L/2) and Iz(∓L/2) are simplified
as

V (∓L

2
) = ∓e−jk L

2
V1 sin kw

2kw
− j

∞∑
m=1,m	=ñ

V (m)
1 ((−1)me−jk( L

2 ±w) − e−jk( L
2 ∓w))k

2w( ñ2π2

4w2 − m2π2

4w2 )

∓ e−jk L
2 V (ñ)

1 [(−1)ñe∓j ñπ
2 + e±j ñπ

2 ]
4

+ I0Z0

2π
e±jk L

2 log[ d

ρw
], (B.13)

for k = ñπ/2w,

V (∓L

2
) = ∓e−jk L

2
V1 sin kw

2kw
− j

∞∑
m=1

V (m)
1 ((−1)me−jk( L

2 ±w) − e−jk( L
2 ∓w))k

2w(k2 − m2π2

4w2 )
+ I0Z0

2π
e±jk L

2 log[ d

ρw
],

(B.14)
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for k 	= ñπ/2w, and

Iz(∓L

2
) = πV1 sin kw

kwZ0 log[ d
ρw

]e−jk L
2 ± j

πk

wZ0 log[ d
ρw

]
∞∑

m=1,m	=ñ

V (m)
1

e−jk L
2 ((−1)me∓jkw − e±jkw)

(k2 − m2π2

4w2 )

+ πV (ñ)
1 e−jk L

2 [(−1)ñe∓jkw + e±jkw]
2Z0 log[ d

ρw
] + I0e±jk L

2 , (B.15)

for (k = ñπ/2w) ∩ (k < i1/d) and the large-L limit,

Iz(∓L

2
) = πV1 sin kw

kwZ0 log[ d
ρw

]e−jk L
2 ± j

πke−jk L
2

wZ0 log[ d
ρw

]
∞∑

m=1

V (m)
1

((−1)me∓jkw − e±jkw)

(k2 − m2π2

4w2 )
+ I0e±jk L

2 ,

(B.16)

for (k 	= ñπ/2w) ∩ (k < i1/d) and the large-L limit, where ñ is an arbitrary positive integer.
Now the transmission coefficient Sw

21 is calculated as

Sw
21 = lim

L→∞
2V (L/2)

V (−L/2) + Iz(−L/2)Zc
, (B.17)

where the characteristic impedance Zc is given by

Zc = Z0

2π
log

d

ρw
. (B.18)

Especially when the resistive chamber (the device under test) is replaced by the perfectly conductive
chamber, the transmission coefficient is calculated as

Sw(ref )
21 = e−jkL. (B.19)

Concretely, we obtain the formulae for the ratio of the transmission coefficients Sw
21/Sw(ref )

21 as

Sw
21

Sw(ref )
21

=
V1 sin kw

2kw − j
∑∞

m=1
V (m)

1 ((−1)mejkw−e−jkw)k

2w(k2− m2π2

4w2 )
+ I0Zc

ZcI0
, (B.20)

for (k 	= ñπ/2w) ∩ (k < i1/d), and

Sw
21

Sw(ref )
21

=
V1 sin kw

2kw − j
∑∞

m=1,m	=ñ
V (m)

1 ((−1)mejkw−e−jkw)k

2w( ñ2π2

4w2 − m2π2

4w2 )
+ V (ñ)

1 [(−1)ñej ñπ
2 +e−j ñπ

2 ]
4 + I0Zc

ZcI0
, (B.21)

for (k = ñπ/2w) ∩ (k < i1/d), which is equivalent to formulae (24) and (25) in the text.
The expansion coefficients V1 and V (m)

1 in the formulae are determined using the boundary
condition of Ez on ρ = a, which is expressed as[

A(0)
0

2w
+ jkC(0)

0 〈J (z)〉
2πZ0

]
V1 +

∞∑
n=1

kC(0)
0

〈
J (n)(z)

〉
2πwZ0

V (n)
1 = −C(0)

0 〈α(z)〉 , (B.22)

jkC(m)
0 〈〈J (z)〉〉m

2πZ0
V1 +

∞∑
n=1

[
δn,mA(n)

0 + kC(m)
0

〈〈
J (n)(z)

〉〉
m

2πwZ0

]
V (n)

1 = −C(m)
0 〈〈α(z)〉〉m , (B.23)
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where

〈α〉 = I0

2πd

sin kw

kw
, (B.24)

〈〈α〉〉m = − I0

2πd

k((−1)me−jkw − ejkw)

j(k2 − m2π2

4w2 )
, (B.25)

〈J (z)〉 = −2π

wd

∞∑
s=0

αs

(k2 − i2s
d2 )

− π

w2d

∞∑
s=0

αs(e
−j

√
k2− i2s

d2 (2w) − 1)

j(k2 − i2s
d2 )

3
2

, (B.26)

〈
J (m)(z)

〉
=

∞∑
s=0

παs(1 + (−1)m)(1 − e
−j

√
k2− i2s

d2 2w
)

wd
√

k2 − i2s
d2 (k2 − i2s

d2 − m2π2

4w2 )

, (B.27)

〈〈J (z)〉〉m =
∞∑

s=0

αsπ j(1 + (−1)m)(e
−j2

√
k2− i2s

d2 w − 1)

wd(k2 − i2s
d2 − m2π2

4w2 )

√
k2 − i2s

d2

, (B.28)

〈〈
J (n)(z)

〉〉
m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∞
s=0

2παs(1+(−1)n+m)

√
k2− i2s

d2 (1−(−1)ne
−j2

√
k2− i2s

d2 w
)

d(k2− i2s
d2 − m2π2

4w2 )(k2− i2s
d2 − n2π2

4w2 )
, for n 	= m,

∑∞
s=0

4παs

√
k2− i2s

d2 (1−(−1)me
−j2

√
k2− i2s

d2 w
)

d(k2− i2s
d2 − m2π2

4w2 )2

+∑∞
s=0

j4πwαs

d( m2π2

4w2 −k2+ i2s
d2 )

, for n = m,

(B.29)

αs = J 2
0 [ρwis

d ]
J 2

0 [ρwis
d ] − J 2

0 [is]
, for s ≥ 1, (B.30)

α0 = 1

2 log[ d
ρw

] , (B.31)

and

i0 ≡ 0. (B.32)

Here,

α(z) = I0

2πd
e−jkz, (B.33)

J (z) =
∫ ∞

−∞
e−jqz

[
Y1

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2d

)]

√
k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)] sin qw

qw
dq,

(B.34)
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J (m)(z) =
∫ ∞

−∞
dqe−jqz

×
((−1)mejqw − e−jqw)q

[
Y1

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J1

(√
k2 − q2d

)]

(q2 − m2π2

4w2 )
√

k2 − q2

[
Y0

(√
k2 − q2d

)
− Y0

(√
k2−q2ρw

)
J0

(√
k2−q2ρw

) J0

(√
k2 − q2d

)] , (B.35)

and the brackets in Eqs. (B.24)–(B.29) are defined as

〈· · · 〉 ≡ 1

2w

∫ w

−w
dz · · · , (B.36)

〈〈· · · 〉〉m ≡
∫ w

−w
dz cos

mπ(z + w)

2w
· · · . (B.37)

Here, A(0)
0 , C(0)

0 , A(m)
0 , and C(m)

0 with positive integer m, which are determined using the solutions
of the Maxwell equations in the case of a resistive material with conductivity σc, are the transfer
coefficients that transfer the fields on the inner surface (ρ = d) to the outer surface (ρ = a) of the
resistive material (device under test). All expansion coefficients V1 and V (m)

1 are obtained by solving
Eqs. (B.22)–(B.23) for any m.

Before concluding this appendix, let us derive concrete forms of the transfer coefficients [11].
Because the resistive material is sandwiched between perfectly conductive chambers, the monopole
mode fields in the material expand according to sinusoidal functions as

Ez = 1

2w
˜̃E(0)

z + 1

w

∞∑
m=1

cos
mπ(z + w)

2w
˜̃E(m)

z , (B.38)

and

Hθ = 1

2w
˜̃H (0)
θ + 1

w

∞∑
m=1

cos
mπ(z + w)

2w
˜̃H (m)
θ . (B.39)

Substituting them into the Maxwell equations

rot�E = −∂ �B
∂t

= −μ0
∂ �H
∂t

= −jkZ0 �H , (B.40)

rot �H = σc �E + ∂ �D
∂t

= (
σcZ0

jk
+ 1)

jk

Z0
�E ≡ ε̃jωε0 �E, (B.41)

the solutions of Eqs. (B.38) and (B.39) are given as

˜̃E(m)
z = �̃0I0(μmρ) + �0K0(μmρ), (B.42)

˜̃H (m)
θ = jk ε̃

Z0μm
[�̃0I ′

0(μmρ) + �0K ′
0(μmρ)], (B.43)

where �̃0 and �0 are arbitrary coefficients and

μm =
√

m2π2

4w2 − k2ε̃. (B.44)
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Using these solutions, the fields on ρ = d are transferred to those on ρ = a as( ˜̃E(m)
z (a)

˜̃H (m)
θ (a)

)
= M0(a, d)

( ˜̃E(m)
z (d)

˜̃H (m)
θ (d)

)
, (B.45)

where

M0(a, d) =
(

A(m)
0 C(m)

0

I (m)
0 K (m)

0

)
, (B.46)

which are given by

A(m)
0 = μma(I ′

0(μmd)K0(μma) − I0(μma)K ′
0(μmd)), (B.47)

C(m)
0 = − jZ0μ

2
ma(I0(μma)K0(μmd) − I0(μmd)K0(μma))

k ε̃
, (B.48)

I (m)
0 = jkaε̃(I ′

0(μmd)K ′
0(μma) − I ′

0(μma)K ′
0(μmd))

Z0
, (B.49)

and

K (m)
0 = μma(I ′

0(μma)K0(μma) − I0(μma)K ′
0(μma)). (B.50)

Especially when m = 0, they are rewritten as

A(0)
0 = −πκcerd(Y1(κcerd)J0(κcera) − J1(κcerd)Y0(κcera))

2
, (B.51)

C(0)
0 = j

πκ2
ceraZ0(−Y0(κcerd)J0(κcera) + J0(κcerd)Y0(κcera))

2ε̃k
, (B.52)

I (0)
0 = − jε̃kπa(Y1(κcerd)J1(κcera) − J1(κcerd)Y1(κcera))

2Z0
, (B.53)

K (0)
0 = −πκcerd(−Y0(κcerd)J1(κcera) + J0(κcerd)Y1(κcera))

2
, (B.54)

where

κcer =
√

k2ε̃. (B.55)

Appendix C. Expansion formulae for the Bessel and Neumann functions

The Bessel and Neumann functions are related as follows:

1

J0(z
ρw
d )(Y0(z) − Y0(z

ρw
d )

J0(z
ρw
d )

J0(z))
= π

2 log[ d
ρw

] −
∞∑

l=1

[
1 − i2

l

(−z2 + i2
l )

]
πJ0(il)J0(il

ρw
d )

(J 2
0 (il) − J 2

0 (il
ρw
d ))

, (C.1)

−
(Y1(z) − Y0(z

ρw
d )

J0(z
ρw
d )

J1(z))

z(Y0(z) − Y0(z
ρw
d )

J0(z
ρw
d )

J0(z))
= 1

z2 log[ d
ρw

] +
∞∑

i=1

2J 2
0 (il

ρw
d )

(i2l − z2)(J 2
0 (il) − J 2

0 (il
ρw
d ))

, (C.2)

where il is the lth zero of

Y0(il) − Y0(il
ρw
d )

J0(il
ρw
d )

J0(il) = 0. (C.3)
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We prove the above formulae as follows. Consider the following form of the integral

1

2π j

∮
dζ

(ζ 2 − z2)ζJ0(ζ
ρw
d )(Y0(ζ ) − Y0(ζ

ρw
d )

J0(ζ
ρw
d )

J0(ζ ))

, (C.4)

where −π < arg(ζ ) < π . The integrand has no cut, because the following relationship is satisfied:

Y0(ζejmπ) − Y0(ζ
ρw
d ejmπ)

J0(ζ
ρw
d ejmπ)

J0(ζejmπ) = Y0(ζ ) − Y0(ζ
ρw
d )

J0(ζ
ρw
d )

J0(ζ ). (C.5)

Thus, the integration contour is selected as a circle around the origin with infinite radius. Because
the summation of all contributions to the integral from the poles tends to zero, Eq. (C.4) is rewritten
as

− 1

z2J0(z
ρw
d )(Y0(z) − Y0(z

ρw
d )

J0(z
ρw
d )

J0(z))
= − π

z22 log[ d
ρw

] −
∞∑

l=1

πJ0(il)J0(il
ρw
d )

(−z2 + i2
l )(J

2
0 (il) − J 2

0 (il
ρw
d ))

, (C.6)

which is identical to Eq. (C.1) (see Eq. (B.12)), where we use Eq. (C.3).
Similarly, consider the following form of the integral:

1
2π j

∮ dζ(Y1(ζ ) − Y0(ζ
ρw
d )

J0(ζ
ρw
d )

J1(ζ ))

(ζ 2 − z2)(Y0(ζ ) − Y0(ζ
ρw
d )

J0(ζ
ρw
d )

J0(ζ ))

. (C.7)

By utilizing the relationship

Y1(ζejmπ) − Y0(ζejmπ)

J0(ζejmπ)
J1(ζejmπ) = e−jmπ [Y1(ζ ) − Y0(ζ )

J0(ζ )
J1(ζ )], (C.8)

we finally obtain

−
(Y1(z) − Y0(z

ρw
d )

J0(z
ρw
d )

J1(z))

z(Y0(z) − Y0(z
ρw
d )

J0(z
ρw
d )

J0(z))
= 1

z2 log[ d
ρw

] +
∞∑

i=1

2J 2
0 (il

ρw
d )

(i2l − z2)(J 2
0 (il) − J 2

0 (il
ρw
d ))

. (C.9)

Appendix D. Longitudinal resistive-wall impedance by a beam

General solutions (especially Ez, Hθ ) for m = 0 are expressed as

Ez = ES
z + A(k)e−jkzI0

(
k̄ρ

)
, (D.1)

Hθ = H S
θ + jβγ

Z0
A(k)e−jkzI1

(
k̄ρ

)
, (D.2)

in the vacuum chamber (0 < ρ < d) and

Ez = e−jkzC1(k)(I0 (ν1ρ) − I0 (ν1a)

K0 (ν1a)
K0 (ν1ρ)), (D.3)

Hθ = (σc + jωε0)

ν1
e−jkzC1(k)(I1 (ν1ρ) + I0 (ν1a)

K0 (ν1a)
K1 (ν1ρ)), (D.4)

in the resistive material with the conductivity σc (d < ρ < a), where A(k) and C1(k) are arbitrary
coefficients, k̄ = k/γ and ν1 = √

k2/γ 2 + jkβZ0σc.
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The coefficients are determined by the boundary condition as

−A(k)I0
(
k̄d

) + C1(k)(I0 (ν1d) − I0 (ν1a)

K0 (ν1a)
K0 (ν1d)) = jkcZ0I0(k̄rb)

2πγ 2 K0(k̄d),

(D.5)

− jβγ

Z0
I1
(
k̄d

)
A(k) + (σc + jωε0)

ν1
(I1 (ν1d) + I0 (ν1a)

K0 (ν1a)
K1 (ν1d))C1(k) = βkcI0(k̄rb)

2πγ
K1(k̄d).

(D.6)

The coupling impedance ZL is defined as the average of the longitudinal electric field (normalized
by the beam current) over the beam cross-section. For a pencil beam, we obtain

ZL = − jZ0k

2βπ

(
K0(k̄d)

γ 2I0(k̄d)
+ 2πA(k)

jkcZ0

)
g, (D.7)

where g is the ring circumference.
For a relativistic beam, we obtain

ZL

g
= (K0 (νa) I0 (νd) − I0 (νa) K0 (νd)) 1

2πd

− (σc+jωε0)(K0(νa)I1(νd)+I0(νa)K1(νd))
ν

+ jkd(K0(νa)I0(νd)−I0(νa)K0(νd))
2Z0

, (D.8)

where ν = √
jkZ0σc.
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