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Abstract

We review the rece it st «tus of the QCD sum rule approach to study the properties of hadrons in
vacuum and in hot or > se r.atter. Special focus is laid on the progress made in the evaluation of
the QCD condens? ,cs, whica are the input of all QCD sum rule calculations, and for which much
new information 1as bec »me available through high precision lattice QCD calculations, chiral
perturbation theory ~nd :xperimental measurements. Furthermore, we critically examine common
analysis meth »ds for QCD sum rules and contrast them with potential alternative strategies. The
status of QCL' sum r ile studies investigating the modification of hadrons at finite density as well
as recent derivatio.s of exact sum rules applicable to finite temperature spectral functions, are also
reviewed.
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1 Introduction

The QCD sum rule (QCDSR) method, formulated and proposed in the seminal papers of Shifman,
Vainshtein and Zakharov [1, 2] in the late seventies (for earlier attempts, see ilso Refs.[3, 4, 5]), is
today still being frequently used as a tool to compute hadronic properties fr.. QCD!. Initially, its
main purpose was to compute basic observables such as ground state masses or n.agnetic moments
of hadrons. Such calculations were rather successful [8] (see, however, Re’. [9] for a discussion about
exceptional channels), which led to the firm establishment of the method in “1e hadron physics/QCD
community.

QCDSRs rely on several approximations and assumptions such ac th *runcation of the operator
product expansion (OPE) or the pole dominance of the sum rules, as w..' b : discussed in detail in Section
2. These approximations typically limit the precision of QCDSR. _.edict..ns to about 10 % to 20 %.
Nevertheless, even with the advancement of lattice QCD, which s by n w able to precisely compute
many hadronic observables with physical pion masses and up to to.= = cive flavors [10], QCDSR still
have a role to play. Typical settings and problems for which Q" DS". "an be relevant even today are the
following. 1) QCDSR provide non-trivial relations between haa.onic bservables and the QCD vacuum
(condensates). Especially interesting in this context is the relai. n between hadronic properties and the
spontaneous breaking of chiral symmetry. 2) The behavic - of hac rons at finite density can be studied
in QCDSR at least up to densities of the order of noi.~al n.clear matter density [11]. The status
of such works will be discussed in Section 5. In lattice O+ such calculations are presently still not
possible because of the sign problem, which prevents ew.~ient important sampling techniques to work.
3) QCDSRs often do not require heavy numerical . ...";e< and can hence be used for first exploratory
studies to obtain a rough idea on what the final result il look like. This can lead to important hints, for
instance for more precise lattice QCD studies. 4, «“'D.'Rs can provide constraints on certain integrals
(moments) of hadronic spectral functions (see for ~xample Section 6 of this review for a derivation
of such sum rules at finite temperature). The.~ can be used either for checks for spectral functions
computed from hadronic models, for determining condensate values in case the spectral function itself
is known, or for constraining parameter: n s ectral fits of lattice QCD data. 5) QCDSR studies of
exotic hadrons are possible and indeed ha = becc me rather popular in recent years [12]. Care is, however,
needed as for states with more than t} cee qua. «s, the OPE convergence often becomes problematic and
the continuum contribution to the s m ~ules tends to be significant.

The goal of this review is to summa. - e some of the recent progress in the field of QCDSRs. As
this method by now already hac a .~ther long history, a large number of reviews have been written
over the years [8, 12, 13, 14, '~ 16, 17, 18, 19, 20]. Hence, to avoid too many redundancies, we
will only touch briefly upon he JCDSR derivation and its basic features, but instead discuss novel
developments in more deta’! the have roughly occurred during the last decade. We will particularly
focus on up-to-date estim ites of the QCD condensates in vacuum, finite temperature, finite density
and in a constant and homn.. ‘encous magnetic field, taking into account the latest results from lattice
QCD and chiral pertu oation tneory. Non-scalar condensates, which become non-zero only in a hot,
dense or magnetic mec ‘um wi | also be reviewed and updated estimates for them will be given wherever
possible. We will fu="her..c.e describe advancements in analysis techniques, using alternative forms of
sum rules (in con rast tc the most frequently employed Borel sum rules) and the maximum entropy
method, which can e v<.d to extract the spectral function from the sum rules without relying on any
strong assumpt v.. hont its form [21].

As a disclaim.* for the reader, let us note that no attempt to discuss all possible applications of
QCDSRs and to rev.ew the corresponding recent literature, will be made in this article. Considering the
large number of QCDSR related papers that appear on the arXiv weekly if not daily, this would clearly

!Similar sum rules were formulated even before by other authors in Refs. [6, 7).



go beyond the intended scope for this review and the ability and time of the authors. We will, however,
review recent works studying the modification of hadrons in nuclear matter, as these will potentially
have a large impact on related experimental studies planned at various experimental facilities such
as FAIR, NICA, HIAF and J-PARC. As a second application, we will outline the derivation of exact
sum rules at finite temperature, discuss their properties and provide specific s'.. rules for the energy-
momentum tensor and vector current correlators. These can be useful either to constiin fits of spectral
functions to lattice data or to determine certain combinations of condense .e v.ilues or hydrodynamic
transport coefficients.

This review article is organized as follows. In Section 2, a brief introau *ion of the basic QCDSR
features, such as the dispersion relation and the OPE is given and follow .d 1 v a detailed discussion about
our present knowledge of QCD condensates in vacuum, at finite densi. - t :mperature and in a constant
and homogeneous magnetic field in Section 3. In Section 4, tradi’:unal «2d more advanced analysis
techniques for practical QCDSR studies are reviewed. Section 5 liscuss s applications of QCDSR. to
studies of hadronic spectral functions in dense matter. In Section 6, e @ rivations of several exact sum
rules are reviewed and their potential applications discussed. " ina'", Section 7 gives a short summary
and outlook. In Appendix A, specific OPE expressions for varic .s cor celators needed for the derivation
of the exact sum rules in Section 6 are provided.

2 Formalism of QCD sum rules

In this section, we will introduce the QCDSR mr'»~d its basic idea and concrete implementation.
Following partly Ref.[21], we will also examine the iiputs and tools required for this method, the
operator product expansion (OPE) and the QC.. ~ond=nsates arising from the non-trivial vacuum of
QCD. We will furthermore discuss how QCDSRs ca. be generalized to the case of non-zero temperature,
density or magnetic field, especially how the " ‘U condensates are modified in hot, dense or magnetic
matter and how new Lorentz-symmetry-violating condensates are generated. Finally, we will review
how information about physical states c .1 .~ extracted from the sum rules. In particular, we will
critically asses the “pole + continuum” ~ssump sion, which is routinely used in QCDSR studies, but is
not necessarily universally applicable .or an ~.annels and becomes particularly questionable for finite
density and/or temperature and/or aag ieti- field spectra.

2.1 Basics

The method of QCD sum rul' s re ies in essence on two basic concepts: the analyticity of the two-point
function (correlator) of an irterp. 'ating field and asymptotic freedom of QCD. As will be shown in more
detail below, the former al’ows one to derive dispersion relations that relate the deep Euclidean region of
the correlator with an intey. | o er its imaginary part (the spectral function) in the physical (positive)
energy region. The lat.er, asymptotic freedom, then makes it possible to systematically compute the
correlator in the deep “uclide an region using the OPE, which incorporates both perturbative and non-
perturbative aspects “to Jl.c calculation and becomes exact in the high-energy limit. The OPE gives rise
to an expansion of non-pe ‘turbative expectation values of operators with increasing mass dimension and
corresponding Wilsc» co- dicients that are used to describe the short-distance dynamics of the correlator
and can be obt ... ' nerturbatively. One is then left with equations that relate certain integrals of the
spectral function ‘or in other words, sums of contributions of physical states, hence the name “sum
rules”) with the res ilt of the OPE. The high-energy part of the spectral function is furthermore often
substituted by the analytically continued OPE expression, making use of the quark-hadron duality.
Integrals that only involve the low-energy part of the spectral function can thus be derived from QCD
via the OPE. Let us discuss each step outlined above more explicitly.
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Figure 1: The contour C' on the complex energy of the variahle s, used in Eq. (2). The wavy
line represents the location of potential poles and cuu. of *.ae correlator I1(s). Taken from

Fig. A.1 of Ref. [21].

2.1.1 The dispersion relation

Variations of the dispersion relation derived here <ve sed in many branches of physics [22, 23, 24]. In
some fields, they are referred to as Kramers-. .o »ic relations [25, 26]. First, we define the correlator
as

M(¢*) =~ / e (0| (2)'(0)]]0). (1)

Here, J(z) is a general operator tha’ in pi.-ciple can have Dirac or Lorentz indices, in which case
I1(¢?) becomes a matrix. For simplic y .aese non-essential complications are ignored here. The symbol
(0| denotes the non-trivial QCD vacuu.~ out can be generalized for instance to the ground state of
nuclear matter as will be done 17 v« ~ Furthermore, when considering sum rules at finite temperature,
the retarded correlator should he usea :nstead of the above time-ordered one, because it has suitable
analytic properties when rega dec as function of ¢y = w [27, 28] (see also Section 6).

The function II(¢?) is know. o be analytic on the whole complex ¢* plane except the positive real
axis, where it can have pc es -nd cuts, which correspond to the physical states that are generated by
the operator J7(0). Makin, *se c. this analyticity, we employ the Cauchy theorem to obtain

1 il
(.2 =-— ¢ ds ()
i Joo s—q

1 SH(s) s RSH(S+ie)—H(s—ie)
| ]&:Rd + Z,/Od . )

27 s—q% 2w 5 — ¢?

2

Here, R denotes “.e radius of the large circle in Fig.1. Next, we take R to infinity, which means
that the first term in Eq. (2) vanishes if II(s) decreases fast enough at |s| = R — oo. As will be
demonstrated in the next paragraph, this is not the case in many practical situations and therefore
subtraction terms have to be introduced. We will here for simplicity assume that the first term indeed
vanishes for |s| = R — oo. The second term can be cast into a simple form by the Schwarz reflection
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principle, which gives

(s + i€) — II(s — ie) = 2:ImII(s + ¢). (3)

We hence have derived the dispersion relation as

T(¢%) = l/ooo dsw _ l/ooo ds p(s) (4)

T s —q? T s—q’

where we have defined ImII(s + i€) = p(s).

Let us for a moment return to the case where the first term in Eq. (2° dor s nou vanish for |s|] = R — oo
and/or the integral on the right hand side of Eq. (4) diverges, in which ¢, ~e subtraction terms have to
be introduced to tame the divergence. If this divergence is logarit! mic, ¢ 1e only needs one subtraction
term,

I1(¢%) = II(¢%) — I1(0)
I A IC)
B 7T/o ! s> - %) ©)

The same prescription can be applied arbitrary mar .i...co by subtracting the Taylor expansion of
[1(¢?) around ¢*> = 0 term by term, by which power like Jivergences of any order can be eliminated,
which suffices for all practical applications in QCD. Nou . l.at I1(0) is a divergent constant in the above
example, which, however, does not play any importai role in the formulation of the final form of the
sum rules. Indeed, applying the Borel transforn. v Fug. (5), this constant (or any positive power of
q?) vanishes. In fact, the correlator is in ar ~ase only well defined modulo power terms of ¢* (see
Refs. [29, 30]). We conclude this section by noti, that the discussion preceding Eq. (4) is not the only
path to derive a dispersion relation. As will be seen later in Section 6.1.1, the derivation of exact sum
rules at finite temperature can be done " sing a somewhat different method.

2.1.2 The quark-hadron dualiu,

One more concept often mentic 1eq ‘n relation to the derivation of QCD sum rules is the so-called
quark-hadron duality. We refer '“e interested reader to Refs. [31, 32] for more detailed discussions and
here only give a brief descriy.ion The quark-hadron duality was first proposed in Ref.[33] and says
that a hadronic and experimen.. ly measurable spectral function p(s) appropriately averaged over a
certain energy range can e cescribed by the corresponding expression calculated from QCD and its
degrees of freedom, quarks nd zluons. More precisely, one sometimes distinguishes between a local
and global quark-hadr n dvaliy [32]. The former refers to the case where the non-energy-averaged
hadronic spectral func ion ag ees with its QCD counterpart within uncertainties. At low energies, this
local duality is ofte~ stru..oiy violated due to the sharp resonance peaks which cannot be accurately
described by pert' rbativ. QCD. On the other hand, at high energies, where hadronic resonances are
wide and overlapp.o. t'.e localy duality is often satisfied rather well. In practical QCD sum rule
analyses, one 1. «...~ m<e of this and approximates the spectral function above a certain threshold s,
by its QCD expi.<sion [see Section 4.2 and especially Eq. (192)]. The global quark-hadron duality in
contrast refers to tL2 (approximate) equality between an integrated hadronic spectral function and the
integral of the same quantity computed from QCD. Specifically, considering Eq. (4), this corresponds
to the statement that IT(¢?) on the left-hand side for sufficiently large Q% = —¢? is equal to the integral
of p(s)/[r(s — ¢*)] on the right-hand side, where p(s) is the hadronic spectral function.
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2.2 The operator product expansion

Here we discuss the second technique used to derive the sum rules, the operator product expansion
(OPE). Originally proposed by Wilson [34], it can in position space be summari .ed as

A@)Bly) 253 Cuw -0, (). (6)

Here, A(z) and B(y) are arbitrary operators defined at positions = a.a /. 1ue essence of the above
equation is that if = is sufficiently close to y, the product of A(x) and B (1) can be expanded in a series
of local operators O,, defined somewhere in between z and y [we coul” jusy - < well have written On(x) or
On(y) instead of O,, (%ﬂ)], with corresponding coefficients C,,(x —1 ), which depend only on the distance
between = and y and are simply C-numbers. The C,(x — y) are ¢ lled "Nilson coefficients, which are
governed by the short distance dynamics of x —y and can ther  tore '1e to asymptotic freedom of QCD
be calculated perturbatively if the distance z — y is small enc “<.1. P)Htential contact terms, which are
proportional to 6™ (x —5) or its derivative, are neglected in a.l the SPE expressions of our manuscript.
This causes no problem because such terms do not appe~r in the final form of the sum rule after the
Borel transform.

After taking the expectation value with respect to some o aral state |2) (which can be the vacuum,
the thermal ensemble or the ground state of nuclear ma.*er) it is usually assumed that the expectation
values of the local operators O, are position indep . ?~nt. Thus, computing the Fourier transform of
Eq. (6) sandwiched between [Q2), we obtain

2

i [ dtente gl in) TS Y CuaI0.19), (7)

where C,,(q) denotes the Fourier transfc m (tin 3s i) of C),(x — y). Using dimensional analysis, one can
easily determine the functional forms of C,~ — y) and C,(¢). In the short distance or large energy
limit where the OPE is applicable, ' w _.ner ;y scales such as light quark masses can be ignored, such
that © — y or ¢ are the only dimensiona. v antities that can appear in C,(z — y) and C,,(¢) (this is not
necessarily true for channels invo'v.~o heavy quarks c or b, where the simple arguments given here have
to be modified). Assuming the mass du.ensions of A(z), B(y) and O, to be d4, dg and d,,, we get for

Cn<$ - y)7

(da+dp—dn)/2
Cola—g) = [ — 9)2] , )
and for C,(q),
Culg) L2 glacrio=in=t, )

In the last equ. ... e have ignored potential logarithmic factors of log(—¢?/u?) (4?*: renormalization
scale), which occu~ for d4 + dp —d,, —4 > 0, but are not important for the discussion here. As we see in
Eq. (9), operators C,, with the smallest values of d,, dominate the expansion if ¢* is large enough. The
operators O, are generally constructed from quark fields (which have mass dimension 3/2), gluon field
strengths (mass dimension 2) and covariant derivatives (mass dimension 1). If the state |2) corresponds
to the vacuum (]0)), only Gauge- and Lorentz-invariant operators can have non-zero expectation values.
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Up to mass dimension 6, these are

dimension O :

1,
(0[qq|0),
(01G, G*(0),
dimension 5 : (0|go,,t*G*"¢|0),
(
(
(

dimension 3 :

dimension4 :

dimension 6 : (0|gqqq|0), (0|GV5qqv59|0), (10)
0[qt*qqt"q|0), (Olgy"t*qqyut®y,™ ...
0| "G G GS0),

Here, t* = \%/2, \* being the Gell-Mann matrices, while £ sta. ds for the structure constants of the
SU(3) (color) group. We have in Eq. (10) for simplicity on., ccusidered one species of quarks, which
is denoted as ¢. In the above list we have not included tun. cauge non-invariant gluon condensate of
dimension 2, (0Af,A%*|0). The potential existence a.." relevance of this condensate has generated a
fairly large body of work (see for instance Refs.[25 36, .7, 38, 39, 40]), but is nevertheless far less
established than those given in Eq. (10) and is usu. Iy not considered in present-day QCD sum rule
studies. At dimension 6, we have shown only a " re resentative examples of all possible four-quark
condensates, of which some can be related by Fiei -1, wnsformations [41]. For the gluonic condensates
at dimension 6, one can in fact construct on. oo~ operator with two covariant derivatives and two
gluon fields, which however can be rewritten as a J>ur-quark condensate by the use of the equation of
motion. With the exception of the four-c ..."” condensates, the above list is therefore complete up to
dimension 6.

Once one starts to consider the cas : of “inite temperature, density or magnetic field, more condensates
can be constructed because Lorentz s, ~.me’ ry gets partly broken by these external fields. For the case
of finite temperature and density. che mos. simple way to do this is to define a normalized four-vector
u (u? = 1) with spatial componcnts J~at correspond to the velocity of the hot or dense medium and to
then assemble all possible com’ . tions of quark fields, gluon field strengths, covariant derivatives and
ut as before. In this derivat. m, one usually considers the medium to be colorless and invariant with
respect to parity and time - eversa! which we will assume as well in the discussions of this review. The
details of this procedure Fave oee: discussed for instance in Refs. [42, 43]. Here, we just reproduce the
final findings, which are

dimension 3 : Q|gy"q|Q?),
QST qy"iD"q|2), (QqiD*q|Q), (QAUST G G*(€),
Q|STqiD"iD"q|Q), (ST gy*iD"iD" q|Q), (g  7asG** 1%q|Y), (11)

dimension « . (
o

dimension 6 : (QST qv*t%qqy"t%q|Q), (QSTGy*iD"iD*iD"¢|Q), . ..
{

dime. s’on 5

QST G i DMiD"G|Q), (QISTGiDPiD"G™|Q), ...



Here the letters ST stand for the operation of making the Lorentz indices symmetric and traceless,

STO" = %(OW + O") — igWOaa, (12)
STOM® = é(O“”O‘ + O + OVH 4 O"H + O°HY 4+ O
Figan s e v o), (13
STOH P = i(O"”O‘B + 23 other orderings of uva/3)
L %(gw BB 4 graBYB | gu g | gra guB L guB g gad gy
+ %C (9"g*" + g"*g"" + g7 g"). (14)

A* can easily be obtained from the tracelessness condition of &7 O
1
A= —2(0, 0,7 4. 0,1, (15)

In Eq. (14), we define B* to be symmetric and traceless. 1~ ~m th : tracelessness condition of ST O
we then have

1 N
B = — (05,7 + 05, + 05,y
o (Oééaﬁ + 055601 + (J\‘Oéu + 065604 + Oéaﬁé + O(Sﬁaé
+ 0% 4 O8I 4 P 0P L 00 oﬁa;)] , (16)
1
C = - ﬁ(O(;éUU + O&TOL (JéaﬂS)' <17>

It is noteworthy that the 0 component of *ne L. ventz violating dimension 3 condensate is just (Q|qq|€2),
which is nothing but the quark numbe. densiy of the state |2). Furthermore, the first and third
condensates on the second line of Eq 11) ai. proportional to the quark and gluon components of the
energy momentum tensor.

We do not provide the complet : set © ‘adependent operators of dimension 6 in Eq. (11), but again
only a few representative examp' :s. Wor the complete list of operators appearing in the vector channel
OPE, see Ref. [44]. A recent di~~ussion about the independent Lorentz violating gluonic operators of
dimension 6 and a calculatior of heir anomalous dimensions is given in Ref. [45]. Moreover, the non-
scalar condensates appearirg 1.. a magnetic field generally have a different structure. They will be
discussed in Section 3.2.3.

Finally, we consider tun. -enc. malization group (RG) effect on the OPE. The expectation values
of the operators in Ea /) maxe sense only when the energy scale is specified at which the operators
and their correspondir ¢ Wils m coefficients are evaluated. In the present case, ¢ is the natural choice
for the scale, which we (-'_ to be large in the derivation of the sum rule. On the other hand, the
expectation values obtai, ed from, say, lattice QCD, are evaluated at a finite energy scale such as T
Such expectation v lues :valuated at different scales are related by RG equations. The perturbative
RG equation p . ‘"e< scaling properties additional to the canonical dimension d,,,

Oua) ~ (T 29)) " 0, @), (19

where a, is proportional to the anomalous dimension of the operator O,. Furthermore, a general
operator may mix with other operators of the same dimension due to the RG effect. This point is
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not always taken into account in the conventional sum rule analysis, in which the finite UV cutoff is
introduced so that the effect of the anomalous dimension is negligible. However, for the exact sum rules
to be reviewed in Sec. 6, we will consider the infinite energy limit, in which this effect has to be taken
into account.

This RG effect actually generates a very useful byproduct, particularly hansy “r finite temperature
calculations [30]. The correlator from the OPE is at finite 7" usually calculated in in.aginary time. To
obtain the retarded Green function, which plays a central role for the derive .ion of the exact sum rules,
one needs to do an analytic continuation to real time. The logarithmic tac' »r coming from the RG
scaling/mixing of Eq. (18) gives a constant imaginary contribution after suc. an analytic continuation,
which means that the OPE can predict the spectral function at higl er->voy. As the other parts in
the OPE [C),(¢q)] have polynomial (and possibly logarithmic) depena.nc: on ¢, the resultant spectral
function has the same ¢ dependence, This structure in the spectr.. func.'on is called UV tail. The
explicit form of the UV tail in the vector channel is given in Appcudix A

2.2.1 Status of higher order Wilson coefficient comp.'t- Jior s

Over the years, higher order a, terms of Wilson coefficients ha. = been computed for many channels.
We will give a short overview of these calculations here. 1. view’ 1g the numerous purely perturbative
computations, which in principle correspond to Wilson (~etticients of the identity operator, would
however go beyond the scope of this review. With the ...__.un of a number of exotic channels, we will
therefore only consider terms involving condensates of a1 '~ast mass dimension 3.

Mesonic correlators

The most detailed information about NLO and NNLO «g terms is available for two-quark mesonic
channels. Let us first consider currents with tw. ignue quarks. For the vector and axial-vector channels,
the NLO ay corrections of the dimension 3 quark coudensate (which appears at linear order in the quark
mass m,) were computed for the first time i 1. f. [46]. For the same vector and axial-vector channels, a;
and o terms of the dimension 3 quark cc. densa e and the dimension 4 gluon condensate were calculated
in Ref. [47] The same terms were comr ated s.. .alarly for the vector, scalar and pseudoscalar channels in
Ref. [48] (see also Ref. [49]). For all t} = al ove channels, the LO quark condensate terms are of order O(1)
while those for the gluon condensat - are €« cder O(cy). The mixed condensate (0|go,,t*G**¢|0), whose
Wilson coefficient is proportiona” v. m, and the strong coupling g, at LO is known to vanish for the
vector current correlator [1]. It =vould hence be useful to calculate the respective NLO term, especially
in the phenomenologically im- ort: nt vector channel. To our knowledge, this has presently not yet been
done for any channel. The NLG  orrections in the four-quark operator Wilson coefficients for the vector
and axial-vector channels wer obtained in Ref. [50] (this reference is unfortunately rather difficult to
find online, the correspond.» . res alts are however reproduced and further discussed in Refs. [51, 52]).

Next, we discuss a corrections for heavy-light quark current correlators, about which much less is
known and presently . nly N) O terms for the quark condensate (Gg) have been computed. This was
first done in Ref. [52! for ' _ pseudoscalar channel. Later, in Ref. [54] the same ay correction was also
calculated for the -ector . hannel. The appendix of Ref. [54] is especially useful, as it gives explicit OPE
expressions of pseud nscal .r and vector channels both before and after the Borel transform. Futhermore,
results for the . .’ and axial-vector channels are available in Ref. [55].

Finally, we tu . to meson current correlators with two heavy quarks (quarkonia), which have only
gluonic operators 1. their OPE, as heavy quark condensates can be recast as gluonic condensates
with the help of the heavy quark expansion. In principle, light quark operators can also contribute,
but appear only at order O(a?) and will therefore not be discussed here. The NLO corrections to
the Wilson coefficient of the dimension 4 gluon condensate for the scalar, pseudoscalar, vector and
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axial-vector channels were obtained in Ref.[56]. These are the only NLO results available so far for
quarkonium correlators.
For mesons containing four or more quarks, NLO calculations have up to now only been carried

out for purely perturbative terms. For a large number of light tetraquark char.aels, this was done in
Ref. [57].

Baryonic correlators
For baryonic channels, only a few NLO terms have been obtained so far. The ‘rst attempt to compute
a corrections to the dimension 3 chiral condensate term were made in Rer. [38|. Later, more terms in
more channels (NLO terms of the dimension 3 chiral condensate, the di aer =*~n 5 mixed condensate and
dimension 6 four-quark condensates for both the proton and A chani. <", were calculated in Ref. [59],
which were however not fully consistent with those of Ref.[58]. Tl.c resu'ts of Ref. [58] and parts of
Ref. [59] were further corrected in Refs. [60, 61]. More recently, pc rturba. ive corrections to the Wilson
coefficient of the dimension 3 vector condensate (which vanishes 1. 72~ um, but is non-zero at finite
density) were obtained in Ref. [62].

For exotic baryons with at least five valence quarks or an..-que ks, no NLO corrections to non-
perturbative condensate terms have so far been computed. 1 -rely perturbative NLO «y terms were
however obtained in Refs. [63, 64] for light quark pentraq. ~rk cor elators.

3 The QCD condensates

It has long been known that non-perturbative quam 'm auctuations generate condensates, which break
chiral or dilatation symmetries. These symmet ‘es a.= present in the Lagrangian of massless QCD,
but are not reflected in the hadronic spectrum. .’ev rtheless, with a complete and non-perturbative
understanding of QCD still missing, many fc -w..>~ ~f these condensates are not yet well understood
and established. Until not long ago, the QCD co. densates were for instance thought of as properties
of the QCD vacuum, while it was recer*’ = claimed in Ref.[65] that they are in fact properties of
hadrons themselves. This led to a vigo ous de ate about the true nature of the condensates (see for
example Refs. [66, 67, 68]). We will ip this ~ec 10n not go into the intricate details of this debate, but
pragmatically focus on what is preser cly .nown about the individual condensate values and about their
modifications in extreme environmenu.

3.1 Vacuum

The vacuum condensate thac is resently by far best known and understood is the quark (or chiral)
condensate averaged over ‘ne lig. ‘est u and d quarks: (0[gq|0) = ((O|u|0) + (0|dd|0))/2. It is an
order parameter of chiral .vmr net y breaking i.e. its value being non-zero means that this symmetry is
spontaneously broken in the =caum. Earliest estimates of the quark condensates have been obtained
based on the Gell-Mar n-Oak »s-Renner relation [69],

fama = —2mq(0lgq|0). (19)

Here, f. and m, ¢ e the jion decay constant and mass, which can be measured experimentally, while
my is the averaged « wud d quark mass. This relation is however not exact because Eq. (19) is only
the leading orde - rr suic of the chiral expansion and receives corrections due to non-zero quark masses
[70, 71]. Nowaday = lattice QCD is able to compute the chiral condensate at the physical point with
good precision and with most (if not all) systematic uncertainties under control. The Flavour Lattice
Averaging Group (FLAG) [72] presently (November 2018) gives an averaged value of

(0]gq|0) = —[272(5) MeV]*  [73, 74, 75, 76, 77 (20)
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for Ny = 2+ 1 flavors in the MS scheme at a renormalization scale of 2 GeV (see their webpage for
updates).

The strange quark condensate (0[3s|0) is much less well determined. Old QCDSR analyses studying
the energy levels and splittings of baryons led to a value of (0|5s|0)/(0|gq|0) = .8 £ 0.1 [8]. From the
lattice, there are to our knowledge at present only two publicly available resul? s, -vhich read

(0|35]0) = —[290(15) MeV]* (N;=2+1+1) [7)], (21)
(0l35]0) = —[296(11) MeV]*  (Ny=2+1) [79]. (22)

Both are given in the MS scheme at a renormalization scale of 2 GeV. ... Ret. 78], similar values were
obtained for both (0|3s]|0) and (0]|gg|0): (0]|35s|0)/(0|gq|0) ~ 1.08(16). Thr tendency of this result does
not agree with the above-mentioned older estimate of Ref. [8], which is su.. Mler than 1 and is still widely
used in practice. It would therefore be helpful to have further in .epenc ~nt lattice computations that
could check the reliability of Egs. (21) and (22).

The gluon condensate is usually defined as a product with ‘ne strong coupling constant, which is a
scale-independent quantity: (0|2=G%,G**[0) = (0|2:G?|0). A fist e timate of its value was obtained
in Refs. [1, 2] from an analysis of charmonium sum rules, for .-hicl. tne gluon condensate is the leading
order non-perturbative power correction. Their value

<O|%G2|O> — (0.012 = 0.0°4) GeV? (23)

is frequently used even in current QCDSR studies, simply hecause no significant progress in its deter-
mination has since been made and no later estimai - ce 1+ .eyond any doubt claim to be more reliable.
Over the years, estimates have been given that 7~e a . 'w times larger [80] or smaller [81], which shows
that the systematic uncertainties in the determinat..n of this condensate are still large. For further
details and references, we refer the reader tc Tohle 1 of Ref. [82] for a compilation of available gluon
condensate estimates.

It is, however, worth discussing here s~™e recent progress in computing the gluon condensate on
the lattice. At first sight this seems to oe a 1 latively straightforward task as the operator G7, G
is directly related to the plaquette in a i “tic: QCD computation. Attempts in this direction were
accordingly made already in the very car!; days of lattice QCD calculations [83, 84]. The situation has,
however, turned out to be more com}* ate . than initially expected, because one in principle needs to
subtract a perturbative contributi m from Jhe lattice result to obtain the purely non-perturbative value
of the gluon condensate. The way ¢ e defines (and truncates) this perturbative part will therefore
change the final value of the ,iu n condensate obtained in the calculation. Recently, the technique
of the numerical stochastic 1 ~vtrbation theory was used to compute the corresponding perturbative
series to high orders (up tc a2°!), fter which it was subtracted from the respective lattice observable.
For more detailed discuss’ ms sbo .t this issue, see Refs. [85, 86]. The final values obtained for the gluon
condensate in this approach e

<0\% 7210) = 0.028(3) GeV* (a2) [85], (24)

(J\%G"O)z0.0??GeV“ [(5(0]%G2]0>:O.087Ge\/4] (a%) [86]. (25)

Here, (0 %Gz; /, .. ~m estimate of the uncertainty due to the truncation prescription of the perturbative
series. The conte > s of the round brackets indicate the highest perturbative order taken into account.
The lattice results vond to be considerably larger than the phenomenological estimate of Eq. (23), but
likewise have large systematic uncertainties due to the needed subtraction of the perturbative part. In
all, it can be concluded from the above discussion that the gluon condensate values presently are not
much more than order of magnitude estimates with large uncertainties.
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As a final remark, let us here mention the non-local generalisation of (0]%G?|0), which is a result
of a resummation of covariant derivatives between the two gluonic operators. For a detailed discussion,
see Ref. [87].

Next, we consider (0|go,,t*G*"¢|0) = (0|goGq|0) the mixed quark-gluon cc idensate of dimension
5. Its value is usually given in combination with the strong coupling constan* , and the dimension 3
chiral condensate,

(0]ggoGq|0)
Uy
Here, condensates containing ¢ again stand for the average over u and d auarn ~ondensates. Information

about m?2 was extracted already long time ago from sum rules of the r aclc~~ channel [88],

mg = (0.8 +0.2) GeV?. (27)

(26)

2
mgy

The above value is still most frequently employed in the contempo ary QU'D sum rule literature. Other
estimates for m3 (or (0|ggoGg|0)) have been given in the globs! co..» ymmetry model [89], the field
correlator method [90], Dyson-Schwinger equations [91], an effe :tiv ¢ "ark-quark interaction model [92],
the instanton liquid model [93, 94] and holographic QCD [95! '1u obt .in an estimate of m? that is more
reliable than Eq. (27), a precise lattice QCD computation woul. ~ertainly be most helpful. Two lattice
calculations were in fact already performed more than 15 ; ~ars ag > [96, 97]. Ref. [96] obtained a result,
that is significantly larger than Eq. (27), m2 ~ 2.5GeV’ wuue Ref.[97] reported a value consistent
with Eq. (27), m3 = 0.98(2) GeV?. The lattice results h~~~~* e clearly not yet converged and updated
calculations would be desirable. One possible problem “r the above lattice studies is the potential
mixing of goGq with lower dimensional operators, w.. ™ ~an occur on the lattice, but was not taken
into account in Refs. [96, 97]. This issue needs to be ¢ cefully handled in any future lattice calculation.
The strange mixed quark-gluon condensate (L'sc‘7s,0) is parametrized in a similar way,

s 0,72 7Gs|0)
1

N 28

"= ORsI) )
or, alternatively by the ratio with the v .nd « ~ounterpart,
0[5gcGs|0

R ( |f90 | > (29)
(0lggoGq|0)

For R, a number of estimates have peen . en during the years [98, 99, 100, 101}, which can roughly be
summarized in the following ran e

R=09+0.2. (30)
Note, however, that Ref.[94] “btsms a value that is considerably smaller (R ~ 0.5). This translates to

2 — Rm? ( (0[s]0) ) -1

(0[gq|0)
=0.840.3GeV?, (31)

where we have used Eq. (27, (30) and (0|5s]|0)/(0[gq|0) = 0.95 £ 0.15, which combines QCDSRs and
lattice calculations for this last quantity. For (0|soGs|0), no lattice QCD calculation has yet been
performed, which . opefu! y will be done in the future.

At dimensicn 6. tucre is one condensate constructed only from gluon fields, (0|g® f***G% GPG(0),
where, as for the di nension 4 gluon condensate, appropriate powers of the strong coupling constant are
multiplied. The va “1e of this quantity is not well known, with only one available estimate based on the
dilute instanton gas model [102],

. 4872 1
Olg" 1 G GRG0 = =5

(01=2%/0), (32)
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where p. is the instanton radius. We here use p. ~ 0.3fm, which is based on an estimate from the
instanton liquid model, for which the instanton density is fitted to the dimension 4 gluon condensate
value, which fixes p. [103, 104, 105] and lattice QCD measurements [106, 107]. With Eq. (23), one gets

(0]g® fabeGar GEAGS10) =~ 0.045 GeV©. (33)

It would certainly be useful to test the above estimate in an independent latt’ e )CD calculation, which
was already tried in Ref. [108] some time ago. However, here again the pi bhle.n of mixing with lower
dimensional operators occurs, which has to be treated with care.

At dimension 6 there are furthermore a large number of four-quark ¢ .. lens.. es that can have a non-
zero value in vacuum. These condensates have attracted some interes, be au.: of a proposed scenario,
in which the chiral symmetry could be broken by non-zero four-quars ~ondensates, while the more
common “two-quark” condensate (0[gg|0) vanishes [109, 110]. G neral 7, the four-quark condensates
can be given as

(0[7.a545,45"10) (34)
for which the color indices (7, k, ...) and the spinor indices (<., 3, . .) have to be contracted to give
a color and Lorentz singlet. This can be done in various wa, - wnich leads to multiple independent
condensates, of which some are given in Eq. (10) for illust -ation. Jone of these four-quark condensates
are however well constrained in any meaningful way. The o..!, method presently known to obtain a
concrete numerical value for them is the so-called vacnim < *uration approximation (also sometimes
referred to as factorization), which reads [1]

(017,754, g'10) =~ ﬁ (5"”5’“5&5: f— 5”5’%5@75[35) (0[qq|0)2. (35)
The idea behind this approximation is to insert a co.nplete set of states between the two § and ¢ quarks
and to then assume that the vacuum contributi.» dominates the sum of states, such that one ends up
with the squared chiral condensate (0]gq|0)?. This approximation was shown to be valid in the large
N, limit [111], but it is not known to wb .t dey ee it is violated in real QCD with N, = 3. To take into
account the violation of this approximau.~n, t}e symbol k is frequently introduced and multiplied to
the right-hand side of Eq. (35). The case x = 1 thus stands for the vacuum saturation approximation,
while values different from 1 paramc iz : its violation. During the years a number of values have been
obtained, which depend on the ¢ adiea ~iannel and also on the flavor content of q. The proposed
estimates range from close to 1 '51) "2 2 ~ 3 [18] and even up to ~ 6 [15]. For the case of s quarks, a
value of ~ 7 was reported from ~ analysis of finite energy sum rules in the ¢ meson channel [112, 113].

Condensates with mass d’mer sions larger than 6 can play an important role in sum rules derived
from interpolating fields with th. = or more quarks, where the convergence of the OPE is usually slower.
As it was discussed in Ref 114}, the leading order OPE terms are composed of a number of loops (if the
interpolating field has n que. <s, “ne number of loops is n — 1 for the leading order OPE term at leading
order in ay). These loc ys are numerically suppressed due to their momentum integrals. Going to higher
order OPE terms, som  of the e loops are cut, hence less numerically suppressed and therefore enhanced
compared to the les “ng .uer terms. As a general rule of thumb, one thus should compute the OPE
up to the point w1ere a.’ loops are cut, to achieve satisfactory OPE convergence. For interpolating
fields with n quarks one aence can expect terms up to (0|gg|0)"~! [that is, terms with mass dimension
3(n —1)] to gi - « “onificant contribution to the OPE. For baryonic currents with three (five) quark
fields, one shoula ‘ierefore at least take into account terms up to dimension 6 (12), while for tetraquark
current, one needs .erms up to dimension 9. To evaluate condensates with dimensions larger than 6,
usually some sort of vacuum saturation approximation similar to Eq. (35) is used. Results based on
this approximation should, however, be treated with care, as their systematic uncertainties are large
as we have seen for the four-quark condensates above. The OPE hence becomes less reliable as the
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number of quark fields in the interpolating fields are increased. This means that QCD sum rule studies
of exotics such as tetraquarks or pentaquarks have considerably larger systematic uncertainties and are
less reliable than those of quark-antiquark mesons or three quark baryons.

3.2 Hot, dense or magnetic medium

In this Section, we will discuss the evaluation of QCD condensates in a hot. den' e or magnetic medium.
We will not only consider the modification of condensates that are non-zern ali. ~dy in vacuum, but also
of the Lorentz violating condensates of Eq.(11), which only appear at fini. temperature or density,
and similar ones that appear in a magnetic field. The OPE in esse’.ce '. “des the correlator into a
low-energy part that involves the condensates and a high-energy part . .t is treated perturbatively as
Wilson coefficients. For most applications, it therefore only make, sense vo consider the condensates
at relatively low temperatures and densities (7" S Agep ~ Tt, p 2 A?éc p ~ po, Where T, is the critical
temperature of the hadron - quark-gluon plasma phase transit:~n «. ' pg the normal nuclear matter
density) because only here the division of scales remains valic an-’ c.ndensates can be treated as low-
energy objects. We will in the following discuss the evaluatiou of condensates at finite temperature,
density and a magnetic field separately. At low temperatures an. ensities, both effects can be combined
as independent superpositions, as it was done for instance ™ Ref [115].

3.2.1 Condensates at finite temperature

The study of the thermal behavior of condensates ha™ qu .. 2 long history, several theoretical approaches
being at our disposal for this task. At low temnerav res below 7., the hadron resonance gas (HRG)
model and/or chiral perturbation theory, which cou*de. the effect of a hot pion (and, if needed, other
hadrons) gas, can be applied. At very high ter ~eratires much above T, on the other hand, perturbative
QCD and hard thermal loop (HTL) approaches c«.~ be used. While HTL methods cannot be employed to
calculate the QCD condensates directly, thev can be of use to compute thermodynamic quantities such as
energy density and pressure, which in tur . are n. -eded to estimate the gluon condensate behavior at finite
temperature. Furthermore, lattice QCD 1. rece it years has become increasingly powerful in simulating
hot QCD for realistic pion masses an. is 10wadays the most precise tool to study condensates at finite
temperature?. We will in this section e iew recent progress especially of lattice QCD in evaluating the
various condensates that are used .n QCL >Rs, starting from those with the lowest dimension.

Lattice QCD has so far mos ly © =n used to study scalar condensates of low dimensions (see the
following two Subsections). T ... ‘ore, one often considers a free and dilute gas of pions and, if needed,
kaons and the n meson in QC OST, studies. Condensates in this model are expressed as [27]

3
, °k a a
(©)r = 20+ 3 [ s (r (IO () sl ) T (36)
a=1
with E(k) = /k2+m, a». ng(z) = (¢* — 1), Here and throughout the rest of this review, the

thermal expectatic o valu~ (O)7 is defined as

r(Oe H/T
(O)r = 1 (37)

2 Alternative methods to estimate the temperature dependences of the condensates have been proposed in the literature.
Especially, approaches which make use of QCD sum rules by introducing a temperature dependence for the continuum
threshold parameter s:, (see Sec.4.2), are frequently discussed. The temperature dependences of the condendates are in
such approaches related to the behavior of the threshold parameters. For more details, see for instance Refs. [19, 116]
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Furthermore, the normalization
(m"(k)|7"(p)) = 2B (k) (27)*6*"6° (k — p) (38)

for the pionic states is used. Clearly, this model is only applicable for suffic'e.."lv low temperatures
below T,, where pions are the dominant thermal excitations. We will assess th~ range of validity of this
approximation in the following Subsection which discusses the chiral conde isat . of dimension 3, as for
this quantity reliable lattice QCD data are available for a wide range of tem, ratures.

Condensates of dimension 3

At dimension 3, we consider the chiral condensate, which is naturallv imp. ~tant for understanding what
phase of chiral symmetry is realized at what temperature. Therefc ce, it . as been studied intensively in
chiral perturbation theory [117] and later in lattice QCD. We will hcve not attempt to give a full account
of past works, but just give an overview of state-of-the-art lat’ice OCD studies about the behavior of
(@q)r and (Ss)r at finite temperature.

Computing the chiral condensate as a function of temperav. ve ii. Zull QCD with several active flavors,
realistic quark masses and even taking the continuum limit is L now an achievable task. In recent
years, two groups, the BMW collaboration and the Hot YCL ~olaboration have provided such results,
of which some will be reproduced here. The chiral conden. te on the lattice generally requires both
multiplicative and additive renormalizations. One co. venient way of removing such renormalization
artifacts is to consider a renormalization group inv-riant .antity involving the chiral condensate and
furthermore to subtract the vacuum part from the ¢ ‘ns.ensate at finite temperature.

The BMW collaboration for this purpose int. . Tnce ! (o)) z [118],

@hn == [@0hr - Woho] 35 (= u,d), (39)

where X is an arbitrary quantity with di-aensio » of mass. Here, we have kept the original notation used
in Ref. [118], where the chiral condensate .. defi ied with an opposite sign compared to our conventions.
Hence, for instance, (1));0 > 0. The res lts of Ref. [118] are shown in Fig.2 including different lattice
sizes with varying discretizations an t'ie ¢ mtinuum limit (gray band). It is seen that the results for
all discretizations lie close to each other a..d that hence the continuum limit can be safely taken.

The HotQCD collaboration ca thic ather hand introduced the similar quantity Af [119],

A = d+ 2mar} | (D) g7 — (P)q0) (40)

where ¢ either represents w, ! qrarks or the s quark. Here, the same sign convention as in Eq. (39) is
employed. The artifici u paramcter d is determined such that Af approximately vanishes in the high
temperature limit. In Ref. [11)] it was obtained as d = 0.0232244. Finally, r is a parameter determined
from the slope of the ~ta... juark anti-quark potential evaluated on the lattice, which is used to convert
lattice units into  aysica, units. In Refs.[119, 120], r; = 0.3106 fm was used. We show the results given
numerically in Ret. 1201 jor AP (I = u, d) and AP in Fig.3. As for the BMW results, A and A%
do not much d <.~ an the number of lattice sites /N, in the imaginary time direction and can hence
assumed to be ai =1dy close to the continuum limit.

For applying th :se lattice findings to actual QCDSR calculations, it is helpful to convert them
into quantities that are easier to use. For the u and ¢ quark condensates, it seen both in Figs. 2
and 3 that (Y1) and AF approach a constant at high temperatures. Assuming that the condensate
completely vanishes in this temperature region, one can convert both (1) r and AF into (gq)7/(0[gq|0).

16



04 Continuum
Nt:16 o
[ N,=12 ¢
03r N=100
§ I N=8V 1
S 0.2}
Vo 1
0.1t
®
v B
OO0k L
100 120 140 160 1°0 2075 220

T[MeV!
Figure 2: The quantity () defined in Eq. (39) as « function of temperature for different

N, which are the number of lattice sites in the magiary time direction. The gray band
corresponds to the continuum limit. Taken from the '~ft plot in Fig. 4 of Ref. [118].

Specifically, we have

O (v .

03g0) 1 o) (BMW collaboration), (41)
(@9)r S d—2LNT) .

0[]0} 77 R (o0) (HotQCD collaboration). (42)

For (Y1) r(c0), we use the large,t te. merature data point provided by the BMW collaboration, while
for A(00) we use a fit to all d «w. above 300 MeV given in Ref. [120]. The result of this fit is indicated
by the dashed line in the left ot of Fig. 3. Values of (gq)r/(0|gq|0) from both collaborations are shown
and compared in the left p] ,t ot 17 +. 4. The BMW (continuum limit) result is shown by the gray band,
while the data points are .ror. HctQCD. Both findings agree qualitatively, even though there is still a
small (~ 10 MeV) discrepai.>v een in the temperature at which the condensate drops most steeply.
This shows that some syster atic uncertainties that go beyond the errors shown in Fig. 4 still remain,
likely related to the continw m extrapolation [118] and the setting of the scale, which are, however,
reasonably well un-c: conurol. If needed, one can extrapolate the above results to lower temperatures
by a simple pion ¢ s moc >l [27, 117], as described in the following paragraph.

We next compare .. lattice QCD results to those of the pion gas model and examine up the what

temperatures it ‘s a yic to describe the lattice data reasonably well. In this model, the chiral condensate
at finite temperat. e can with the help of PCAC and current algebra be given as [27, 121]

(@q)r g T_2 My
(Ofgql0) ! 8f331< T ) (43)
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Figure 3: The quantity Af defined in Eq. (40) for ¢ = [ = u, . it plot) and ¢ = s (right
plot) for various N, which are the number of lattice sit :s ir . 2 imaginary time direction.
Adapted from Fig.8 of Ref.[119]. Numerical data usea to ¢-mpute the data points are
taken from Ref.[120]. The dashed black line represents e result of a constant fit to the
data points above 300 MeV.

where we have defined

L T
Bu(r) = ——— B Vet A iy 44
)= comrn) o, " ev — 1 )

The corresponding curve is shown as a solid bi.. "k nue in the left plot of Fig. 4, for which we have used
fr =93 MeV and m, = 140 MeV. Comparing this curve to the lattice data, it is observed that the pion
gas model remains approximately valid v, to .~mperatures of about 140 MeV but quickly breaks down
for higher temperatures. This gives a 1.71gh id »a about the reliability of this model. To improve the
consistency with lattice data, one cor.d try . improve it by adding other hadron species and further
artificial terms®. Doing this, it is pc ssib’e tc extend its range of applicability to temperatures slightly
above T, (see for instance Ref.[127)).

For the strange quark conde’ se'». more input is needed as A shown on the right plot of Fig.3
does not approach any constant value even for temperatures larger than those shown. We therefore use
the value given in Eq. (21) an « m = 96 + 6 MeV [123] (for which we have symmetrized the upper and
lower error for simplicity). Wil these values and 7, given earlier, we can obtain (ss)r/(0|5s|0) from
AP The result is shown i-. th . right plot of Fig. 4. In contrast to the u and d condensate, the strange
quark condensate does noy 7 :cre se suddenly around 7., but shows only a gently decreasing behavior,
approaching zero at te uperatu.es above around 27,.. Such a qualitative difference between the u, d
and s condensates wa. alreac y predicted in models such as the Nambu-Jona-Lasinio model [124] and
can be easily under<tool * considering a pion gas model, for which the matrix element (7|ss|m) is
very small [125] a id hew e the leading order contribution of Eq. (36) almost vanishes. The fact that
the error in the right ple. of Fig. 4 increases with increasing 7', is explained from the relatively large
error of (0[5s|C° = Fa.(21). Once this condensate is determined with better precision, it will become
possible to consie ably decrease the error for (3s)r/(0[5s|0).

To summarize, ‘he chiral condensates are by now known with rather good precision and only small

3«Artificial terms” here are terms that have no apparent physical interpretation [unlike the second term on the right
hand side of Eq. (43)], but are introduced to get better agreement with lattice QCD data. In Ref.[122], for instance, a
term —aT'? was added to the right hand side of Eq. (43) for this purpose.
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Figure 4: The ratio (gq)7r/(0|qq|0), with ¢ = u, d (left p ot) w ! (Ss)r/(0[Ss]|0) (right plot)
for various N;, which are the number of lattice sites in vue i aginary time direction. For
(T'|qq|T)/(0]gq|0), Eqgs. (41) and (42) and the correspondu._ data provided by the BMW [118]
and HotQCD [120] collaborations were used. For (. V7/(0| 's|0), the data for A® together
with the values of (0[5s]0), ms and 7 (see text) we. > empioyed.

systematic uncertainties from lattice QCD. These . ~su, . an now be used in QCD sum rule analyses
without having to rely on the pion gas model.

The non-scalar condensates (Gy,¢)r and (5v,s,, which can be related to baryon densities (see
Section 3.2.2), remain exactly zero in a heat “~th w’th vanishing chemical potential.

Condensates of dimension 4
At dimension four, we first discuss the t".ermal behavior of the scalar gluon condensate (%G, G)r.
In vacuum, it has been difficult to comp.*e *tais quantity on the lattice because of renormalization
issues. At finite temperature, howevr r, i* is relatively simple to obtain the difference (=G, G*)r —
(0]%=G%,G*|0) as it can (within cerv.? 1 ap proximations) be related to thermodynamic quantities such
as energy density and pressure.

First, we follow the discussic.is o1 efs. [126, 127], where the trace anomaly,

-0

GG + Z mgqq. (45)

was used. Here, T"” and p > are the QCD energy momentum tensor and f-function, respectively. The
one-loop perturbative “-runctio. is given as

1 2
_ 11— Ny )g* + Olg 16
Blg) (4@( N1 )9’ +0(9"), (46)
Ny denoting the n.mber of flavors. The contributions of ¢, b and ¢ quarks to the sum in the second
term on the rig .. e of Eq. (45) can be evaluated using the heavy quark expansion, which gives,
1
aq =~ —G“ G+ O(m,?). (47)

12mg, m

The heavy quark expansion is only valid for quarks with masses larger than typical QCD scales and is
hence not applicable to u, d and s quarks. Substituting the above result into Eq. (45), it is found that the
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Figure 5: The quantity §(2=G% G%)p/T* as a fu. ~tion. .. T, extracted from Eq. (49) and
the lattice QCD data given in Ref.[120]. The red enrv. shows the total right-hand side of
Eq. (49), the red shaded area its uncertainty. The "“lue and green curves show the contribu-
tions from the u + d quark and s quark conde . “~< to the same equation. See text for more
details.

heavy quark terms Z mqqq cancel exactly 1. *he 1imit m, — oo with their respective contributions
q=c,b,t
from the first G, G term (the term p opo.‘ional to Ny in the S-function). We therefore just need
to keep the light quark contributions in 7a. (45 and can set Ny to 3. We thus have
Ya a apr — 3 —= - —3 -
T = —g?sGWG ML, 0+ mgdd + mSs + O(a2, m;® my % m;?). (48)
Based on the above trace ar oma’:” equation, one can compute the thermal behavior of the gluon

condensate. For simplicity of n . tion, we define 0 f(T") as the vacuum subtracted value of the quantity
f(1): 0f(T) = f(T)— f(0). ror. Eq. (48), we therefore obtain

Qs a apy 8 — 3 —
L [5:/’;;@) — b {T@u) — med(dd)r — ms5(ss>T]. (49)

Note that
OT}(T) = €(T') — 3p(T), (50)

where ¢(7T') is the e. ~rev density and p(T") the pressure. Both of them are known with good precision
from present d. v I “*ice calculations [120, 128]. The behavior of the quark condensates as a function
of temperature i ‘nown as well, as we have seen in the previous Section. Applying these results to
Eq. (49), the tempe. ature dependence of the gluon condensate can be extracted. The respective results
are shown in Fig. 5, for which we have used the lattice data provided in Ref. [120]. For ¢(7") and p(T)
the continuum extrapolated results are employed. For the quark condensate terms we use the N, = 8
data, which are already close to the continuum limit and for which a relatively large number of data
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points are available. It is clear from Fig. 5 that the €(7") — 3p(T") term dominates the thermal behavior
of the gluon condensate. The u and d condensate terms are suppressed due to their small quark masses,
while the s quark condensate term gives a non-negligible correction. Note that §(%=G5, G)r /T 4
approaches zero for large T only because of the 1/7% factor, whereas § (2=Ge,G2")r is a negative and
monotonously decreasing function of 7. This means that the non-vacuum subt « *ed gluon condensate
(T|%=Gs, G |T) will switch its sign from positive to negative and further continue to decrease with
increasing temperature. Using Eq. (23) for the vacuum gluon condensate, *.ae 1 -ansition from positive
to negative sign occurs at about 7' ~ 260 MeV. The thermal behavior of the ,".10n condensate can also
be estimated based on the pion gas model [27],

a m2T? m
52261, GM)p = —TE—By (?“) (51)
The absolute value of this expression is however much too small cc mpare . to the lattice QCD result of
Fig. 5, which can be understood from the suppressive factor m2. - hici. .. absent in the chiral condensate
formula of Eq. (43) and points to the fact that contributions ¢ © hi jne mass hadrons will be significant
and hence need to be taken into account to get a better des-ription .t small temperatures.

Let us next discuss the non-scalar condensates of dimension 4. The quark condensate (ST gy*iD"q)r
represents the quark contribution to the (trace subtracted) e. ~rgy- nomentum tensor. To our knowledge,
no lattice QCD data are presently available for this conde..~ate. It is, however, possible to compute its
low-temperature behavior from the pion gas model. ™. ..., context, it is convenient to generalize the
discussion to a larger class of condensates by defining

(7“(D)|ST @ Dps - - Dyl n® (@) = )" AL (1) ST (D -+ D) (52)

The superscript a, which represents the three nion =tates, is not meant to be summed, but should be
understood as an expectation value of a single | ‘on state. For ST (p,, - - - py,.), the specific expressions
for practically relevant cases are

1
ST(p;nplm) = PuiPus — 40729/ 129 (53)

1
ST(pulpmpus) = Puiky Vug — 6192(1)#19#2#3 + PusGpaps + PusGuaps) (54)

1,
ST(pﬂleZpN3pM4) = Jur, PusPus — gp (pulpuzgusm T PuiPusGuops + P Pua Gpops

+ PusDuus Guapa + PpoPpuaGuass + PasPpia Gy ea)
1
o Ep4(gu1uzgu3u4 + Gprps Gpapa + GuapaJpaps)- (55)

These are consistent with tu. or neral expressions of Eqgs. (12-17). Considering the theory of (fictious)

deep inelastic scatterir g (DI.) off a pion target, the coefficients AT@ (?) can be related to moments of
pion quark distributiown funct.ons,

AT (%) = 2 / dee™ g, 12) + (—1)"g(x, 12)]. (56)

The variable z is v.sually referred to as “Bjorken x” and in this context specifies the fraction of total
hadron momentum carried by the considered parton (here quark ¢ or anti-quark ). The pion quark
distribution functions are not known as well as those of the nucleon (see Section 3.2.2) because there are
no direct DIS data with a pion target. It is however possible to constrain them from Drell-Yan dilepton
production and direct photon production in 7N reactions [129, 130]. Together with QCD evolution

21



xf(xu?)

0 0.2 0.4 0.6 J.8 1

Figure 6: NLO parton distributions of the pion «~ a ..~ _tion of Bjorken x, which is the
fraction of total hadron momentum carried by each n..-ton. The red curve (¢) stands for
the summed valence quarks, the brown curve (g, “ the averaged u and d (including their
antiquarks) sea quarks, the green curve (s) f - *he sirange sea quarks and antiquarks and
the blue curve (g) for the gluons, respectively. A'. curves were extracted from the formulas
of Ref.[130] at a renormalization scale of - 1UeV?

equatlons one can thus extract the cguark and gluon distributions as a function of the energy scale
p?. Estimates for A”(“”Ld) ) and Aj (u-, were given in Ref. [27] based of the parton distribution
functions provided in Ref [129] We wiw. npdaf 2 and slightly generalize this discussion here. For this
purpose we use the parton distributi ns of 1.:f.[130], which is an update of Ref.[129] and especially
discriminates between u + d and s, ¢ 'ar’.s, v nich is essential for obtaining an accurate estimate for the
condensate with strange quarks. Tae NL? version of these parton distributions are shown in F1g 6 for

a scale of u> = 1GeV?. For the vai e quarks (denoted as ¢ in the figure), we have ¢™ = u] T+ dv
J— _ _
with u7" = d, ur = df I\ Cte that this is different from the treatment in Refs. [27, 129], where

the definition ¢" =« =d. s used. For the u and d sea quarks (denoted as §) " = uT =’ =
—rt _ _ _ —T . . .
d7r =d, =ul =u, =d, =d, ,therefore assuming exact isospin symmetry. For the strange

J—

quark distributions (denopb as - ), we have s™ = s =73
be obtained as f™ = ( - 4+ )/2.
To compute AT (,2), let as first define the following integrals

! = §™ =3" . The distributions for 7% can

D) = / Qa1 g (e, ), (57)
2022 = / Az gz, 2), (58)

sa(p®) = [ dxa""'s™(x, ). (59)

=]

Using these, Ap'? (12) = L[AR™ (12) + A7 (42)] for all three pion states (7, 7~ and 7°) can be given

1
2
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Table 1: A™@ and A™9 values as defined in Eq. (56) obtained by numerically integrating the parton
distributions of the pion provided in Ref.[130]. Only non-zero values are shown in this table.

LO | NLO
V2 1GeV 2 GeV ‘ 1 GeV 2 GeV

AT 0598 0537 0614  0.544
AT 00255 0.0431  0.0257  0.0474
AT9 0393 0.441 0.380 0.433

AT@ 0136 0.103 0.142 r 10/
AT 0.00238  0.00274  0.00154 00027
AT9 00446 00282  0.0593  0.03.7

ATD 00645  0.0447  0.067F  U.u450
AZ)0.000666 0.000665 0.000251 0.1 00409
AT 00149 0.00749  0.0.2°  0.0108

as

14+ (=17~

AT (i) = [ ) + 47,6 (60)

For the strange quark case, one obtains

14 (_1>n

AT () = A= ——sn (1), (61)

For the convenience of the reader, we to nlate Ap?(u2) and Ap'™(u2) for scales /p?2 = 1GeV and
\/? = 2GeV for both LO and NL( fit5 ot Ref.[130] in Table 1. Unfortunately, no error estimates
are given for these parton distribut..ns, which is why we can only quote absolute values in Table 1.
This situation is likely to impros: in tuc future, due to new global fits to experimental data [131]
and direct lattice QCD calculations ¢ parton distributions [132] and their moments [133]. The latter
would make it possible to comr . ‘e the partonic content not only of pions, but also of other hadrons,
for which experimental meas rer.ents are not feasible. A consistent determination of valence quark,
sea quark (including strang’ ness, ~nd gluonic parton distributions from lattice QCD remains, however,
challenging.

To estimate the correctic °s <.ue to mesons with larger masses (such as kaons and 7 mesons), it is
useful to have at hand some intormation about their partonic components. Especially for the strange
quark condensate, effe ts due to pions are suppressed while mesons containing strange valence quarks
can be expected te o.ve significant contributions. Even though there are some efforts to compute the
parton distributior s of the kaon (see for instance Refs. [134] or [135] for a recent model based calculation),
the related uncertau. “iec are still large due to lack of experimental data. Here, we follow Ref. [27] and,
partly, Ref. [13<" au. © “mply assume that the valence parton distributions are flavor independent, while
the sea and gluon fistributions are the same for all pseusoscalar mesons. Based on these assumptions,
we get, after averag.ng over the different kaon states,

:1+(—1)” 1

—qn(p?) + 47, (17) ], (62)
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Table 2: Same as Tab. 1, but for the kaon.
LO | NLO

ViZ 1GeV 2GeV | 1GeV 2 GeV

AK@ 0371 0341 0379 0.346
AK® 0295 0275 0301 0.280
A9 0393 0441 0380 0.433

AFD 00719 0.0548  0.0753 0.0557
AK® 00506 0.0387  0.0530 0.0793
AK90.0446  0.0282  0.0593 0.0267

AFD0.0329  0.0229 0.0345 ..0231
AF® 00224 0.0157  0.023F  0.0100
AF9 " 0.0149 0.00749 0.022> 4.0108

and

B ol G I g ) + 45n(u2)]. (63)

AKG) (12 5

Equally, we obtain for the n-meson (assuming that it "z a pure flavor octet state)

9 1+ 1 rl 2 2
AT (%) = 5 T Lan(M )+ 43, (17) | (64)
and
&, 1+ —=1)" |4
Ao = Y lgqn<u2>+4sn<u2>]- (63)

The tabulated values corresponc.ing . the above results are given in Tables2 and 3.
With the above A paramet . =alues, we can now estimate the

((STuy*iDuyr + (STdy"iD"d)r) (66)

N

<8ﬂ g’}/uib,,]>T =

condensate at low temp~-atur .~ Using Eqgs. (36) and (52) and performing the momentum integral, the
result reads

d, A"

[T
360 ST (ufu”), (67)

(8T vl q)r =

mﬂ' mﬂ'
ST B, () = 5w B ()

with w* = (1,0,0," ). The B,(z) functions are defined in Eq.(44) and d, stands for the number of
degrees of freedon. of pions, d, = 3. For the strange quark case, we have, similarly,

d, A7(s)

<ST§’}/‘“Z'DVS>T = 360

87T2T4BQ<%) ~ 5m2T?B, (%)] ST (uw"u”). (68)
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Table 3: Same as Tab. 1, but for the  meson.
LO | NLO

Vi2 1GeV 2GeV |1GeV 2GeV

Al 0480 0435 0495  0.444
Al 0632 0566  0.651 0.576
A9 0393 0441 0380 0.433

ATD 0131 0.0990  0.136  0.099°
AT 0174 0131 0180  0.172
AT 00446 0.0282  0.0593 0.0267

A9 00637 0.0442  0.0664 ( 0442
AP 0.0847 00587 0.0885  0.0u00
A9 00149  0.00749 0.022° ,.01)8

It is straightforward to extend the above results to inclu~ coutributions of more meson states. One
simply adds the same terms, replacing d,, A™% and -, ...n the corresponding values of the kaon
and 7 mesons, specifically dx = 4 and d,, = 1. The res.'*s of such a calculation are shown in Fig.7,
for which the NLO values at 1 GeV of Tables1, . awn. ? were used. The plots show that the pions
dominate the thermal behavior of the condensates a. cemperatures below T" = 50 MeV, above which
the kaon and 7 meson contributions start to bec ..~ non-negligible. This is particularly true for the
strange quark condensate, for which the pion ~~ntriL 1tions are strongly suppressed because of the small
strange parton content of the pion. Not surprisi. v, the kaons therefore play the dominant role for this
condensate already around 7" = 100 MeV. It is expected that more hadron states come into play as the
temperature increases above 100 MeV ar d apy. "oaches T.. The curves shown in Fig.7 should hence be
understood as lower limits.

The quark condensates (GiD"q)r and (s1.)"s)r can be shown to scale with the light quark and
strange baryon densities, as will be «. > onst.ated in the discussion following Eq. (117). They therefore
vanish exactly for the finite tempe cature . ad zero density case considered here.

The last condensate to be di cus:. 1 in this section is the spin 2 gluon condensate, (ST G G™*)r.
Its thermal behavior is not kno ... well, as lattice QCD calculations of this quantity including dynamical
quarks have not yet been per orr ed. There is, however, some information that can be extracted from
quenched lattice data as w 1l as "he free hadron gas model. Let us start with a discussion based on
quenched lattice QCD res its. .ollewing the method proposed in Refs. [136, 137]. The idea is to recognize
that the gluonic operator &, 7% 5 = GG — }1 "GP G is nothing but the energy-momentum
tensor of QCD withou quar's |times (—1)],

1
W — _GguGaau 4 ZguuGiﬂGaaﬁ. <69)
The same ener~v-mowcntum tensor can be expressed using the thermodynamic quantities of energy
density €(T") anc o essure p(7T),

T = [o(T) + p(D)] (w0 — 9 + 71e(T) — 3p(T)]g"", (10)

where u* is the four-velocity of the heat bath. Therefore, comparing the trace subtracted parts of the
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Figure 7: The dimension 4, spin 2 quark condensate at finite t¢ »»-ature in the free hadron
gas model. The red curve corresponds to only pion contr.but’s. s, to which kaons are added
in the blue curve and furthermore the 7 contribution in ti.c gre-n curve. In the left plot the
value of (STq%iD%)r/T* = L((STuy"iDu)r + (STa % d)r)/T* is shown, based on
Eq. (67) and using the NLO values at 1 GeV in Tab.>s 1, 2 nd 3. The right plot shows the
same quantity, but for (ST 57%D%s)p/T".

above equations, one obtains

(STGHG )y — G\ T)ST (ufu”), (71)
GoT) = ~[e(T) + p(T)]. (72)

Note that in Refs.[136, 137] G5(T") was defined w.th an additional factor of ay(7T)/7. To avoid the
uncertainties related to the determinati- n o. the temperature dependence of ay(T"), we here define
the condensate without this factor. As .~entio ed earlier, the quantities ¢(7") and p(T") can nowadays
be determined from lattice QCD wit! gooa |, recision. Because we are here working in the quenched
approximation, quenched lattice QC') data 1ave to be employed for consistency. We for this purpose
use the data provided in Ref. [138] whi™> T:ad to the result shown as black data points in Fig. 8.
To consider the same quantity 1.. *he free hadron gas model, it is useful to define the following matrix
element,
(T P)STGe T s+ - Dy Glm®(p)) = (=) 2245 (1) ST (s~ Pran) (73)
where, as before, the supers :ript « is not summed. The theory of DIS relates this matrix element to an

integral of the gluonic par.on dist~ibutions functions of the pion,

1+ (-1 [

A ) = S [ ) (74)
0

The gluonic parto . distribution of the pion, given in Ref. [130], is shown as a blue curve in Fig.6 for

12 = 1GeV? in an NLO s theme. The values of the integrals for n = 2, 4 and 6 are given in Table1. In

the approximations uscu here, the respective values for kaons and the n meson (given in Tables 2 and 3)

are identical to hc.e of the pion. Computing the momentum integral, we get, in analogy to Eqs. (67)

and (68),

d. A;r(g)

apL yaow —
(STGG™ ")y = — =2

87T2T4BQ<%) — 5m2T?B, (%)] ST (wu"). (75)
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Figure 8: The dimension 4 and spin 2 gluon conc msauv. ~alue at finite temperature in the
free hadron gas model (solid lines) and from quenched 1. “tice QCD (black data points). The

red, blue and green hadron gas model curves are «“fained from Eq. (76) with A3@ (AX@

Ag(g)) NLO values at 1 GeV from Tables1 (2, ,,. The lattice QCD data points are obtained
from Eq. (72) and the data of Ref. [138] with 7. -- 260 MeV [139)].

The minus sign in the above equation is a resu.® of interchanging the Lorentz indices of the second
gluon operator which is antisymmetric. This immediately leads to

Go(T) = —dLé%—ﬂ [:v?f‘*BQ(%) — 5m2T?B, (%)] . (76)

It is again straightforward to gene.alize “t.s result to include more pseudoscalar mesons. One simply
has to add further terms in whic'. .. = m,, d, and Ag(g) are replaced by those of kaons and 7 mesons.

In Fig. 8, we compare Egs. (7?) and 76), for the latter showing the curves including only pion con-
tributions (red curve), pion 4 gaor contributions (blue curve) and pion + kaon + 1 meson contributions
(green curve). The quenched 1. tice QCD points do not deviate much from zero until temperatures
close to T, where a sudde 1 dvop is observed, reflective of the first order phase transition occurring in
quenched QCD. The smali "~ mpr rature dependence of G5(T") in quenched lattice QCD at low temper-
atures can be underste u from che lowest energy excitations of the theory. These are glueballs, whose
lowest mass has been stimat :d to be larger than 1.5 GeV [140] and are therefore strongly suppressed
at temperatures bel>w .. "‘he free hadron gas, which can be trusted to give an accurate result for
T < 100 MeV, on che ot. er hand gives a stronger temperature dependence for low 7. One can expect
this temperature « mend :nce to become even stronger as the effects of more hadrons are taken into
account. To ar _-~tely determine the behavior of Go(7') around 7. a lattice QCD computation that
includes dynamic' quarks will however be needed.

Condensates of dimension 5
Our knowledge of the dimension 5 condensate temperature dependences is presently still rather limited.
Nevertheless, some pieces of information are available, which we summarize here. We start with the
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dimension 5 scalar condensate, (Go,,t*G*"q)r about which up to today only four works have been
published in the literature: one lattice QCD study [141], one based on the global color symmetry model
[142], one on the liquid instanton model at

finite T [143] and one on Dyson-Schwinger equations [144]. As it is cust mary in vacuum [see
Eq. (26)], this condensate is usually parametrized relative to the dimension 3 ¢1..~1 condensate,

2 (q90Gq)r
o) (qo)r (77)

In the lattice QCD calculation of Ref. [141], which was done using t'.e ¢ ~nched approximation and
Kogut-Susskind (or staggered) fermions, it was found that mZ(T) (~cs not show any temperature
dependence within errors for the probed temperature range (fror. zero o slightly above T.). This
means that (GgoGq)r, which like (gq)r is an order parameter of chi al sym aetry, quickly (but smoothly)
approaches 0 around T,. As Ref.[141] is already somewhat old, it we -1 Le interesting to repeat it with
dynamical quarks and a lattice fermion prescription with be ter _.'val properties. Furthermore, the
problem of potential mixing with condensates of lower dimens.on, “vhich can happen on the lattice,
deserves a careful investigation. The result nevertheless is sugg. “*ive and in essence consistent with the
findings of models described in Refs. [142, 143, 144].

We next turn to the non-scalar condensates [listed in " tuwd line of Eq. (11)], about which unfor-
tunately not much is known. Let us use Eq. (36) to pro—-~ = _imple estimate. About the finite density
counterpart of (ST giD*iD"q)r, some information was . ~ently obtained from the twist-3 parton dis-
tribution function of the nucleon, e(z) in Ref. [145] (s>c. *he discussion about dimension 5 condensates
in Section 3.2.2). At finite temperature, one presum. Lly could do the same by considering the corre-
sponding distribution function of the pion, which n.wve\er presently is not known. We will hence have
to resort to a cruder estimate. For this purpcee we follow Ref. [146] to get

(*(p)|gD* D" q|n" (1)) ~ —PI™ PI™ (7 (p)|qq| = (p))
1

= —1—6pupy(77“(p)|gjq|7ra(p)>, (78)

where Pﬂ(ﬂ) is the average four-mome..".m ¢ : the quark ¢ in the pion state |7*(p)). Going to the second
line, we assume that half of the momenivam of the pion is carried by gluons and the rest is evenly
distributed among the two valence qu.-ks. After making the above expression traceless, using Eq. (36),
carrying out the momentum ir.eg al and treating the scalar quark condensate as described in Ref. [27],
one obtains

_ C’,r<0‘@‘0> 24 My 22 My
S" Z )NZ )Wy, ~ ) -1 7 T Z B ) — Z B -
< 1 1. 11520f7% 8 2( ) 51y 1( )

T T ST (ufu”). (79)

Similarly, the contribnt.. »< “som kaons and the 1 meson read

_ y dr (0[qq|0) 24 Mg 2 2 mg
I ~ VISV LTI UK Ho v
(STAD“ s i = i |87°T BQ( - ) Sm2T B1< - ) ST (w'u®), (80)
.. YW d,(0gq|0) 24 My 22 my v

Here, we have assumed the momentum to scale with the number of valence quarks. Applying the same
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Figure 9: Estimates of the dimension 5, spin 2 quark condensa.~ v ue at finite temperature
based on Egs. (79-84). As in Fig.7, the red curve corre ;por .. to only pion contributions,
to which kaons are added in the blue curve and furthermc.e thr 7 contribution in the green
curve. In the left (right) plot m® = (ST ¢D°D%)7/{0|gq;c’ (m® = (ST5D°Ds)+/(0]55(0))
is shown. Note that for m2° the pion contribution va. ishes i- the approximation used here.

method to the respective strange quark condensate -~»e ceis

(STSD*Ds)p. » ~ 0, (82)
(STSD'D"s) g i ~ M ’787T2] "x(@) — 5m2T?B <@> ST (u'u") (83)
R 7930402 AN LN ’
_ d,(0]ss|» |— m m
u v ~ N Qnr2r 4 ny 22 n vy
(STSD'D"s)ry = S o Bg(—T ) Bm2T Bl(—T ) ST (utu”) (84)

It is possible to extend this appros “h by including further hadrons. However, doing so would not be very
meaningful, as already Eq. (78) is not .>nich more than a crude order of magnitude estimate. Indeed, it
was shown in Ref. [145] that t.e 1 ucleon matrix element of the same operator estimated based on the
above method turns out to be 2t out 5 - 10 times larger than what is extracted from experimental in-
formation about e(z) of the nucleo.. Using Egs. (79-84), the behavior of m* = (ST gD D q)r/(0|qq|0)
and m% = (STsD°Ds) ~/(/)|55')) are shown in the left and right plots of Fig.9, respectively, for
illustration.

The condensates ( 57 gy". )" D¥q)r and (ST sy*DVD¥s)r vanish in the free hadron gas model, as
can be understood from “he prefactor 1+ (—1)? in Egs. (60)-(65) and remembering that n is 3 here [see
Eq. (52)]. A some vhat . ore intuitive explanation for this result can be obtained from an argument
similar to that give in F' . (78), where covariant derivatives are interpreted as average momenta of the
quarks they op =~te on. In this picture the above two condensates become proportional to (ST gy q)r
and (ST sy"s)p, wiich scale linearly with the respective quark densities and thus vanish in the zero
baryon chemical pc “ential case. We hence do not consider these condensates any further.

The final condensate to be discussed at dimension 5 is (§7*0,sG*?t%q)r, which (in contrast to
its finite density counterpart, which will be considered later), to our knowledge has so far never been
studied. One simple estimate can be obtained by assuming that a relation similar to Eq. (26) or Eq. (77)
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holds for this case as well. Specifically,

(@V'00sG* Pt q)r ~ M@y q)r (85)
~ 0. (86)

This would suggest that ((j’y“aagG‘th“q)T is small and can be ignored for aii prac. ~al purposes. An
independent evaluation or a lattice QCD computation are however certai (ly needed to confirm the
above rough estimate.

Condensates of dimension 6

The number of independent condensates grows considerably at dimc ~sica 6. We will not attempt to
discuss all of them in full detail, but will give an overview over the *eray.~e and some recent progress
that has been made in computing some of these condensates at fir ite ter. perature.

The finite temperature behavior of the specific four-quark conde. sate appearing in sum rules of the
vector and axial-vector channels are discussed in some detail ir Ref [°7] based on the hadron resonance
gas model of Eq. (36). Besides Eq. (36), one uses the soft pio.. “aeor m [which can in fact be used to
derive Eq. (43)], giving

: a / 1 —
lim (7%(p)|O|x"(p)) = —-_ (0175, [F2, O]]]0), (87)
p—0,p'—0 fﬂ,
with
.
Fo = / Fxq e 5 4(@). (88)

Here, ¢ = (u, d, s) and 7 is a SU(3) matrix living in flavor space. If one only considers pions, it is
enough to take into account a = 1 - 3. The n~~t ste is to make use of current algebra to compute the
double commutator of Eq. (87). The details of t..’< calculation can be found in Appendix A of Ref. [27]
and will not be repeated here. We here just mention the basic formulas

[Ug, V& 91] — ifabcAfja, (89)
["75&’ Az,a] — ifabcvﬁ,a’ <90)
with
VIO = G\, (91)
AL = s\, (92)

where again ¢ = (u, d, ¢,, 7 are the U(3) flavor matrices (7° = /1/N;) and \* are the SU(3)
color matrices. Fruthermoi. thr convention for which f*° is understood to be zero, was used. After
computing the commu ators one moreover needs to apply the factorization hypothesis of Eq. (35) to
obtain the final result. . whic . can be found in Ref. [27] and which can in principle be generalized to
other four-quark co» "ensa.os if necessary. It however has to be emphasized here that the above method
only provides an ¢ rder or magnitude estimate, as it relies both on factorization (which has systematic
uncertainties that « = dificult to quantify) and the hadron resonance gas model (which is reliable only
at temperature '~ T.). Any QCDSR analysis that strongly depends on the behavior of the four-
quark condensate * nence has to be taken with a grain of salt. Naturally, a reliable finite temperature
lattice QCD compu ation of these condensates would be very helpful.

Next, we discuss some recent progress made in the study of the thermal behavior of dimension 6
gluonic condensates. The number of operators that can generally be constructed from gluonic operators
and covariant derivatives is quite large. However, with the help of the equations of motion, symmetry
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properties of operator indices and the Bianchi identity, they can be reduced to just a few independent
ones, which was done some time ago in Ref.[147]. One possible set of independent operators is the
following:

spin0 : f*°GY,GY Gl GG (93)
Spin2 : STGZ/\GZ)\;Mw STG/O;H g)\;)\m STGZ& Z)\;/\V’ (94)
spind : STG}, Gy, 0 (95)
Here, the notations Ggs , = Dszfw and Ggg.,, = D,‘ij/bngB are used. lu “his paragraph, we further-

more temporarily take all Lorentz indices as lower indices to keep the .io.ation simple. Making use of
the equation of motion

a — A?
Glos=9) s (96)
q

the second operator of Eq. (93) and the second and third opera jors ot q. (94) can be rewritten in terms
of quark fields and hence vanish for pure gauge theory. The anom .lous dimensions of the operators
of Eq. (94) were calculated only relatively recently in Ref.[45]. Furthermore, estimates for the three
operators that remain non-zero in pure gauge theory werc ~iven i Ref. [148]. In this work, the basic
strategy was to first express the two gluonic dimension 4 ~onaensates in terms of chromo-electric and
chromo-magnetic fields and to translate our knowleds- = _ .0 che finite temperature behavior of these
condensates into temperature dependences of chromo-ew ~tric and chromo-magnetic fields. Next, the
dimension 6, spin 0 and spin 2 condensates are expi *ss..” ~“ing the same chromo-electromagnetic fields.
Assuming that the fields are isotropic and angu'ar cc celations can be neglected, this then gives tem-
perature dependences of the dimension 6 condenz .~ Jor more details, we refer interested readers to
Ref. [148].

3.2.2 Condensates at finite density

Let us start with a general discussion on ~r tre: tment of the condensates at finite density. We will here
only consider the behavior of the cond :nsate. .t densities of the order of normal nuclear matter density
po. For such densities one can hop th .« t'.e linear density approximation still gives a qualitatively
correct description. The expectat.on v.'v: of a general (but for simplicity scalar) operator O with
respect to the ground state of de .. matter at temperature 7' = 0 and baryon density p, which we will
denote as (O), throughout this review, s expressed in this approximation as

d*k
'0), ~ {0]0]0) +4/ 53 (Y (K)IOIN (k)
‘k|<kF ( 7T)
d*k
~ (00]0) + 4(N(0)|O|N(0)) e (97)
k| <kp (27)
=~ (0[0]0) + p(N(0)|O|N(0)),
with 322 ) 13
_ (2P
k= (52) (98)
Here, |[N(k)) sta~ds for a one nucleon state with momentum k. Its normalization is defined as
(N (k)N (') = (27)%6 (I — k). (99)

In going from the first to the second line in Eq. (97), we have ignored the dependence of |N(k)) on the
momentum k. Taking this dependence explicitly into account would lead to terms on higher order in p.
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A K? term in the Taylor expansion of |N(k)) would for instance lead to a term proportional to p*3. In
the above linear density approximation, the Fermi motion of nucleons is hence ignored completely and
one in essence is working in the non-interacting Fermi gas limit. It is not a trivial question up to what
densities this approximation can be trusted and at which densities higher order density terms become
significant. We will discuss this issue below for the case of the chiral condensa « ~f v and d quarks for
which higher order terms can be studied systematically using chiral perturbation theory.

Condensates of dimension 3 B
At this dimension, we begin by studying the chiral condensates (gq), = ((« ), + (dd),) and (3s),. In
the linear order density approximation, discussed above, we have

(2}, = (0[ga/0) + p(N[gg|N) = (0[gq|0) = p3~ (100)
(35), =~ (0[35]0) + p(N|3s|N) = (0[3sl0) | nfm-’ (101)

Here, we have introduced the 7N sigma term o,y = 2my(N|qqN) 7 ad the strange quark sigma term
osn = mg(N|Ss|N), which are useful because they are renoi.-alization group invariant and can in
principle be related to 7N [149, 150] or KN [151] scatter. o obse cvables. The values of (N|gg|N) and
(N|ss|N) (as well as the respective sigma terms) can be « ~mpuved directly on the lattice.

Before discussing the sigma term values in detail 'o* == “rst examine the reliability of the linear
density approximation for (gg),. This is the only quantity “r which terms beyond linear order in density
are available and thus the deviation from the line .« . “=vior can be systematically studied and the
density range for which the linear approximation bre.’.s down can be estimated. Calculations of (gq),
based on chiral perturbation theory that go beyo. 1 "ner order in p were performed in Refs. [152, 153].
Following here Ref. [152], one can express the ratio of (gg), and (0|gq|0) as

(0lgql0) f2-ms 10M2% " 56M%

for which the relation between the Fer ai mcm ntum and the density is given in Eq. (98). Keeping only
the term of leading order in density o 1d v sing the Gell-Mann-Oakes-Renner relation of Eq. (19), a result
equivalent to Eq. (100) is recovered. 1.~ fi action D(kp) is related to the derivative of the interaction
energy per particle F(ky) with re_~ect to the pion mass my,

)+ D(kr)|. (102)

1 OE(krp)

D(kr) = 2m,. Om

. (103)

For more details, see Ref. ".52". Here, we simply show the final result in Fig. 10. It is seen in this figure
that for physical pion mass . t'e non-linear terms weaken the reduction of the chiral condensate by
about 20 % at normal suclesr matter density po = 0.17 fm™3. At higher densities, the linear behavior
is modified significant v. At the same time, however, the chiral expansion becomes less reliable at
high densities, mea~'1g ..o terms of even higher orders in p might further change this behavior (if
the expansion is onverg nt at all). For further developments concerning the “stabilization” of the
chiral condensate a. hieh baryon density, see Refs. [154, 155]. The authors of Ref. [153], which treat the
chiral expansic - &."rently and make use of the chiral Ward identity, obtain qualitatively compatible
results with a rea ed chiral restoration due to the non-linear terms. Ref.[153], however, gives reduced
non-linear correctio.is, which are smaller than 10 % at normal nuclear matter density. The difference
between the two approaches gives an approximate estimate of the systematic uncertainties related to
the non-linear terms in chiral perturbation theory. In this context, it is worth mentioning past [156, 157]
and ongoing [158] experimental efforts to measure deeply bound pionic atom spectra, which, if precise
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Figure 10: The ratio (gq),/(0|g¢|0) as a function o1 »aryor density p including non-linear
terms computed by chiral perturbation theory, for tiu.~e aitferent pion mass values, m, = 0,
70MeV and 135MeV. The dashed curve corre: ....i. o the linear density approximation
using the sigma term value o,y = 45 MeV. Taken 1. ~m Fig.5 of Ref. [152].

enough, can strongly constrain the chiral conden.aw. value at finite density. For related theoretical
work, see also Refs. [159, 160, 161].

For (3s), no systematic computation of non-.i~ear terms has yet been performed, even though a
similar approach based on chiral perturk-'*~n theory would in principal be possible. For all other
condensates to be discussed in later se tions, 't is presently not known how to systematically treat
terms beyond linear order. We will thereto. ~ fr cus on the linear terms in the following.

Let us consider the 7N sigma terr., ar pearing in Eq. (100). The traditionally quoted and still widely
used value for this parameter is

oxn =45MeV  [162], (104)

which was based on chiral perturbation Jheory and 7NV scattering data. In the more than 25 years after
this estimate was given, progr :ss } as been made both in lattice QCD and the analysis of 7N scattering
data, which led to a number o1 . wel and more precise determinations of o,y. It should be emphasized
here that (N|gq|N) is not ¢ fin‘.e density object, but the expectation value of a one-nucleon-state, which
can hence be computed ou b : laf ice. Furthermore, making use of the fact that the Feynman-Hellmann
theorem relates the 7N sigma verm to the quark mass dependence of the nucleon mass my,

om
OrN = mqa—mN, (105)
q

many studies have . ~en - onducted that combine lattice data of nucleon masses at several quark masses
with chiral per. ... “~n theory fits to extrapolate the nucleon mass derivative of the quark mass to the
physical point. W' at has emerged from all this is that direct computations of o, from lattice QCD and
analyses based on e..perimental information about the 7N interaction do not agree, the former getting
values around 30 to 40 MeV, while the latter obtain values close to 60 MeV. The corresponding results are
summarized in Table 4, in which we only show works published after 2011. Furthermore, we only quote
the most recent result for each collaboration. Notably, works of both lattice QCD and n/N scattering
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Table 4: Recent o,y values from direct lattice QCD calculations, chiral fits to lattice QCD data and
works analyzing experimental information about pionic atoms and the low energy 7w /N interaction.

Method Collaboration, Year oxn [MeV] Reference
Lattice QCD BMW, 2016 38(3)(3) [163]
Lattice QCD XQCD, 2016 45.9(7.4)(7 8) [164]
Lattice QCD ETM, 2016 37.2(2.6) (4 ) [165]
Lattice QCD RQCD, 2016 35(0, [166]
Lattice QCD JLQCD, 2018 26(3)(.)/2) [167]
Lattice QCD data + ChPT 2012 32 2, [168]
Lattice QCD data + ChPT 2013 52(7 /45(6)* [169]
Lattice QCD data + ChPT 2013 45(0) [170]
Lattice QCD data + ChPT 2013 4115)(4) [171]
Lattice QCD data + ChPT 2015 o0(1)(4) [172]
Lattice QCD data + ChPT 2017 €.9(1.5)/51.7(4.3)°  [173]
Lattice QCD data + ChPT 2017 7).3(1.2)(3.4) [174]
ChPT 2012 59(7) [149]
Roy-Steiner Eqs. (pionic atoms) 2015 59.1(3.5) [150]
Roy-Steiner Eqgs. (7N scat. data) 2018 58(5) [175]

analyses appear to be roughly consistent with each « her, while there is a clear tension between the
two. What the origin of this disagreement is, rem. .. mesently unknown. Moreover, calculations using
a combination of chiral perturbation theory s~ latice QCD data (with a few notable exceptions) lie
roughly between the other two approaches. A po'~utial solution to the above discrepancy was recently
proposed in Ref. [176], in which the nucleon was described as a superposition of two distinct chiral
mutliplets and the 7N sigma term was comp 'ted making use of chiral algebra considerations. We
relegate detailed explanations to Ref.[1/C' br here just mention that the admixture of the second
(non-standard) chiral multiplet is kev for the present discussion as it enhances o,y to a value close to
60 MeV, consistent with those obta.. = frc.n 7N experimental data (Refs. [149, 150, 175]). It would
therefore be interesting to study vhat so.¢ of chiral multiplets are taken into account in the current
lattice QCD studies of the 7N s'gme *erm.

Next, we discuss what is k» ».u about the strange quark sigma term o,y showing up in Eq. (101).
Similar to oy, this quantity car be directly computed in lattice QCD and can at the same time be
related to some combinatica ot -N and KN scattering processes and/or pionic and kaonic atoms.
Analyses relating o,y to 2xp rimental observables however are less developed compared to the o,y
discussion of the last parag. nb Lattice QCD also had (and remains to have) its problems (mainly
because of the difficult ; in ¢- mputing disconnected diagrams), but has in recent years shown consider-
able progress in estima“ing o. v at physical pion masses. Besides calculating o,y directly on the lattice,
some groups have #’,0 useu the Feynman-Hellmann theorem, which, analogous to Eq. (105), gives
8mN

(106)

USN:mSam .
s

We here focus o1. recent direct lattice QCD computations and results based on chiral fits to lattice

4In this work, the authors give values for a fit without and with an explicit A(1232) contribution. The former gives
52(7) MeV, while the latter leads to a value of 45(6) MeV.

°The values quoted in this reference correspond to two separate fits to the same lattice data, using O(p®) and O(p*)
chiral perturbation theory approaches.
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Table 5: Recent o,y values from lattice QCD and ChPT fits to lattice QCD data.

Method Collaboration, Year o, [MeV] Reference

Lattice QCD (Feynman-Hellmann) BMW, 2016 105(41)(37 [163]
Lattice QCD (direct) xQCD, 2016 40.2(11.7) (5.2 [164]
Lattice QCD (direct) ETM, 2016 A1.1(8.21(78)  [165]
Lattice QCD (direct) RQCD, 2016 35(72) [166]
Lattice QCD (direct) JLQCD, 2018 17(18,{) [167]
Lattice QCD data + ChPT 2012 22(20, [168]
Lattice QCD data + ChPT 2013 2 v, [170]
Lattice QCD data + ChPT 2015 27 27)(4) [172]

QCD data. At the end, we will briefly discuss the possibility o° det ...\ining o,y based on experimental
information.

Other than oy, there are quite a large number of param. ‘ers used to quantify the “strangeness
content of the nucleon”, (N|[Ss|N). Another frequently e1. nloyed variable is

(N[3s|N)  2m.c v

S S Bt S A il ) 107
Y= NGy e oww (107)

Other parametrizations are

0g = \1 _y/ TrNs (108)
or )
sN
= 109
st MN’ ( )

where My is the average of proton and n utro. masses. We here focus only on oy, firstly because it is
renormalization group invariant and seco. 1ly d es not depend on oy, which has its own uncertainties
as we have seen in the preceding dicussion. If needed, the quantities y, oy and fr, can easily be
obtained from the above formulas.

Recent results for o,y are sum aarize.' .n Table 5. Here, we again only show results published after
2011 and quote only the most rer eny ~esult of each collaboration. Among the values shown in the table,
the first four are pure lattice Q'™ calcwations that do not rely on chiral perturbation theory fits, while
the latter three use a combir atic 1 of the Feynman-Hellmann theorem, lattice data of the nucleon at
several quark masses and chiral | ~rturbation theory to obtain their result. One observes that the latter
works all have the tender .y t, give relatively small values for o,y. Overall, the numerical errors are
still rather large in compai. n *O the o,x results of Table4. For the direct lattice QCD calculations
this is due to the larg . numerical cost and noisiness of the disconnected diagrams, that are the sole
contribution to ozy. 1'or wor :s that rely on the Feynman-Hellmann theorem of Eq. (106), the lack of
precision is related “~ tnc lact that the nucleon mass my only depends very weakly on the strange
quark mass ms, w iich mcans that my needs to be calculated with extremely high precision to reliably
compute the deriva.‘ve o Eq. (106). Because of these issues, the results of Table5 are still spread over
a wide range a. . .. ~v= precise calculations will be needed to pin down the exact value of o,y .

As a further . ~.nt, let us mention the possibility of determining the strange quark sigma term o,y
from experimental cata. Given the recent and precise measurement of the kaonic hydrogen by the SID-
DHARTA experiment [177], and the planned hadronic deuterium measurement by the SIDDHARTA-2
collaboration at LNF [178, 179] and the E57 experiment at J-PARC [180], it should, in principle, be
possible to go through the same program as in Ref. [150], which was already described schematically in
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Ref. [151]. To our knowledge this task has not yet been carried out and it remains to be seen whether
its outcome would in terms of precision be able to compete with the lattice QCD approaches discussed
above.

There is one more condensate at dimension 3, namely (gv*q),, the lowes’ dimensional Lorentz
violating condensate as shown in Eq. (11). This condensate must be proportic ... ! to the four-velocity
of nucleon matter u*, hence we have

(@"a)p = (q shq) pu. (110)

Going to the (most natural) frame in which the medium is at rest, u* = ‘1,0, 0), we obtain

({@"a), = (d'0),0"°
3
= —piH, (111)
2
where p is the nucleon density. This expression is exact. For tlie strange quark case, we have from an
analogous discussion

(57"s), =0, (112)

which is also exact.

Condensates of dimension 4
We start with the finite density behavior of the dimension 1 gluon condensate (2G%, G*), = (2G?),.
Here we use the conventional definition which incluc e> .". factor %=, hence eliminating the scale depen-
dence of this operator. Not much is known abont th. behavior of the gluon condensate going beyond
linear order in density, as it is presently not kno vi. how to compute higher order terms in a system-
atic way. There are nevertheless a few relativ~v old model calculations, which suggest that the linear
behavior is accurate to a good degree at norma. nuclear matter density and non-linear terms start to
become significant only at larger densities 181, 182]. We will here focus on the linear density term,
about which model independent statemr ats ce1 be made. Making, as before, use of Eq. (97), we can
write o 4 o

(—G%)p 22 (01 =C|0) + p(N|—=G7|N). (113)

To compute the quantity (N[2=C7|N), . (48) can be used. This equation is based on the trace
anomaly, where higher order ay “e: s are neglected and contributions due to heavy quarks ¢, b and ¢
are converted into the squared ¢Mon fie.d term via the heavy quark expansion. If one does not wish to
rely on the heavy quark expa.sio , the same discussion can be straightforwardly repeated keeping the
explicit heavy quark terms m.c. mybb and mytt. Following Ref. [127], we write

(T3)p = (O[T}[0) + e(p)
~ (0|T"|0) + pMy. (114)

in the first line, which is evact, e(p) is the energy density of matter with baryon density p, which
in the linear densi y apyroximation used in the second line, becomes pMy. In the first line pressure
contributions vani.h beca 1se we are considering matter in equilibrium. One can then obtain the linear
density term by compuung ((T%), — (0[T}|0))/p, both using Eqgs. (48) and (114). We thus get

9 s
My = —§<N\%G2|N> + oy + Osn, (115)
and hence 3
a
<N|?G2\N> :—§(MN—UWN—05N). (116)
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Looking at the values of o,y and o,y in Tables4 and 5, which are of the order of 50 MeV, it is clear
that (N|2=G?|N) is to a large degree determined by the nucleon mass value My. The fact that o,y and
o,y are not yet determined with good precision however leads to some uncertainty for (N|2G?|N).
Next, we consider the non-scalar condensates of dimension 4, of which ther are three. We begin
with (giD"q),, which is most straightforward. This condensate must be propo . nal to u*, hence

(qiD"q), = (quaiD*q) ,ut. (117)
As described in Ref. [42], we can furthermore use
1
DY = L0 Pt Py (118)
and
q PTq = —qPTy, (119)
i Pg=myq, (120)
Qi = —myq, (121)

where in the first line I' is an arbitrary gamma matrix. Using "he above relations and equations of
motion, we obtain

= mqty' )y (122)

where in the second and third line we have used ag in u* = (1,0, 0,0) and have proceeded in the same
way as in Eq. (111). We therefore have

lp ), = ;mq,oé“o. (123)

No approximations were used in this ceriva.’» .. From similar considerations, we also obtain the exact

result
(siD*s), = 0. (124)
We next look at the first ar « J>ird condensates in Eq. (11). Studying these, it is convenient to
discuss a more general class of ~nerators, with arbitrary numbers of covariant derivatives, which can

be related to moments of spe :ific nucleonic parton distribution functions. From DIS theory, we have
[42, 183, 184, 185]

(NIS 77, Ty Dy N) = (=) T AL (ST (puy - Pun)s (125)
n_o 1
(NIST G2, D iy -+ Dy, 1 G IN) = (=)= AL (1) ST (B -+ P (126)
My

Here, p,, is the for -mom ntum of the nucleon state |N) and ¢ can stand for all three quark species or
their averages. Th. coef.cients A?(pu?) and AY(u?) are each related to momenta of quark and gluon
parton distribu .-~ at renormalization scale p*:

A =2 [ dna ) + (1) gta ) (127)

Ag(u?) = #/0 dra" g (z, p1?). (128)
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Figure 11: Parton distributions of various quark species (left 1>+ and gluon (right plot) as
a function of Bjorken x, extracted from the fit of Ref.[1 6] ..  the corresponding codes of
Ref. [187] for NLO results at p? = 1 GeV?.

In practice, mostly operators with n values ranging fro.» 2 w0 4 (corresponding to operators with
dimensions 4 to 6) will be of importance. Their exr--*_.I_.. values can be obtained by numerically
integrating the parton distributions fitted in Ref. [186] to . vast amount of experimental data using LO,
NLO and NNLO QCD results. The parton distribu 1., ~~n be extracted for wide p? ranges from the
codes provided in Ref. [187]. As an example and for "ustration, the NLO distributions (times x) are
shown in Fig. 11 at p? = 1 GeV?. For the conven.~. = cf the reader, we give the A9 and A?¢ values for
data fits employing LO, NLO and NNLO ex~ressio. s and scales \/ﬁ = 1GeV and \/,17 = 2GeV in
Table 6. These values are all obtained for the p.~ton. Therefore, to study symmetric nuclear matter,
the average of A* and A%, A? = (A" + A”). is needed, which can also be found in Table 6.
Making use of Egs. (97) and (126), w . have

(STqy'D"q), ~ p(N|STqy"iD"q|N)
2
=P <p“p” - p—g“”>

2My 4
My g L) 120
ST 591D s), = %A; (705 - ig’“’), (130)
STGG™?) , 22 pMy A (55 % g), (131)

where we have in the “aird, fourth and fifth line employed p* = Myu*, which is valid only at leading
order in p.

Condensates of limen ion 5

We begin again witi. “h~ density dependence of the only scalar condensate of this dimension, (GgoGq),.
Worse than its =ace ... counterpart, not much first hand information is available for this quantity even
at leading order 1 density. The only estimate given in the literature is from Ref.[42], which we will
update here. It was assumed in Ref.[42] that the parameter m3, introduced earlier in Eq.(26), is
independent of density. Therefore, one has

(790Gq), ~ (0lggoGql0) + p(N|qgoGq|N) (132)
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Table 6: A? and AY values as defined in Eqgs. (127) and (128) obtained by nunuw "ically integrating the
(proton) parton distributions provided in Refs. [186] and [187]. The err.. are cumputed by integrating
the respective distribution errors. For A? = 2(A“+A%), the errors of A" an'. A, are added in quadrature.

LO | NLO | NNLO
\/E 1 GeV 2 GeV ‘ 1 GeV 2 GeV ‘ 1 GeV 2 GeV
Al 0.735(19) 0.640(15) 0.784(17) 0.67¢(14) 0.819(18) 0.696(14)
Al 0.424(21) 0.380(17) 0.430(18) 0.38."4) 0.448(18) 0.394(14)
Al 0.580(14) 0.510(11) 0.607(12) 0.552110, 0.634(13) 0.545(10)
Aj 0.0378(94) 0.0585(79) 0.053(13) n.072(1.) 0.050(16) 0.071(13)
A 0.401(35)  0.454(21) 0.367(23) 0.4.7076)  0.341(23)  0.411(16)
AY 0.2171(54) 0.1633(39) 0.2178(48) £.20.9(3H) 0.2278(51) 0.1663(36)
Al 0.0812(61) 0.0611(44) 0.0782(52) > 0589(37) 0.0836(56) 0.0610(38)
AL 0.1492(41)  0.1122(29)  0.1480(3c:  ~1114(25)  0.1557(38)  0.1136(26)
A3 0.00110(92)  0.00082(81)  0.0016718) 0.0012(14) 0.0017(23) 0.0012(17)
A 0 0 0 0 0 0
Ay 0.0991(23) 0.0701(15) 0.05 (21 0.0668(14) 0.0984(22) 0.0670(14)
Ad 0.0357(27) 0.0257(18) 0.0327(22) 0.0233(16) 0.0348(28) 0.0240(17)
A 0.0674(17) 0.0479(12) 5.0736(16) 0.0450(11) 0.0666(18) 0.0455(11)
A5 0.00040(18)  0.00105(19)  0.001:1(44) 0.00122(31)  0.00099(57)  0.00110(39)
Af 0.0338(48) 0.0177(21) U220 3(23) 0.0125(11) 0.0283(36) 0.0158(16)
Al 0.0494(12)  0.03265(7.)  0.7449(11)  0.02990(70)  0.0464(11)  0.02960(69)
Al 0.0141(14)  0.00934739) ~ ©.0123(15)  0.00818(92)  0.0139(17) 0.0089(10)
Al 0.03179(90)  0.0210y(u2  0.02860(92)  0.01904(58)  0.0301(10)  0.01923(61)
A 0.000066(46) 0.0007'3(61) 0.00016(14) 0.000105(91) 0.00020(19)  0.00012(12)
A 0 0 0 0 0 0
A 0.02819(67)  .0178u'1)  0.02472(64) 0.01578(40)  0.02531(63)  0.01544(38)
A 0.00741(80)  0.045477(50)  0.0062(10)  0.00396(60)  0.0073(12)  0.00447(68)
A¢ 0.01780(52)  0.,2172(32)  0.01544(59)  0.00987(36)  0.01629(67)  0.00995(39)
A 0.000021(17) 0.610113(25) 0.000092(51) 0.000091(32) 0.000069(74) 0.000092(47)
Al 0.0074(16)  0.00288(55)  0.00402(67)  0.00184(26)  0.0089(17)  0.00352(61)
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with

(N|ggoGq|N) = mg(N|qq|N)
20xN
22m,
=3.84+1.7GeV?2 (133)

Here, we have used Eq.(27), o,x = 45 + 15 MeV, which encompasses mos. f the values in Table4,
and m, = 4.7 £ 0.7 MeV [123], which is the averaged u and d quark me < in the MS scheme at a
renormalization scale of 1 GeV. The value given here is larger than th .t ¢1atea in Ref. [42] because of
the smaller quark mass used here, but consistent within errors. Furth.-m re, the error is larger than in
Ref. [42] because we have assumed a larger uncertainty for o,y. It ~>oula ™ any case be kept in mind
that the above value is not more than a rough estimate, as the - alidity of the assumption of m2 not
to depend on p is not clear. Again, a direct lattice QCD calculat. n of (N|ggoGq|N) would be very
helpful.
The strange counterpart (N|SgoGs|N) can be estimated in .. sim’.ar way. We get

(N|5goGs|N) = m3(N|ss|N)
— 22
=mi—>

=0.31 - 0.28 GeV?, (134)

where we have used Eq. (31), o,y = 60 40 MeV, whi _h approximately represents the values given in
Table 5 and m, = 130 =8 MeV [123], which is ag .~ the most recent PDG value of the s quark mass in
the MS scheme at a renormalization scale 1 GeV. The large error of this estimate obviously originates
from the large uncertainty of o,y. It moreove. reuc. on the somewhat arbitrary assumption that m?
does not depend on the density.

We next consider the non-scalar cond usa.» (N|gy*goGg|N), which can be treated as in Eq. (110,

(Nlg~"goG, 1) = (N|q sigoGa|N)u" (135)
and, going to the nuclear rest fram-,
\Nlg “a0Gq|N) = (N|q'goGq|N)o"°. (136)

About (N|qTgoGq|N) some ¢ der works are available, providing an idea about its order of magnitude.
In Refs. [188, 189, 190] the spera. v

05 = ug\" Gy ysu + dgh G, ysd (137)
was studied. Here, 6"‘ = ~46Wa5Gaaﬁ . Its nucleon expectation value can be related to the above
condensate as

(N|OGIN) = 2(N|gy*gaGq|N) (138)

using the convewn‘im €yo3 = 1 employed in these works (also note that in Refs. [188, 189] ¢* stands
for A% in our notat.on). Furthermore, adjusting their normalization convention to ours, the results of
Refs. [188, 189], using the Gross-Llewellyn Smith sum rule and experimental data, become

(N|q'goGq|N) = —0.5 GeVZ. (139)
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Table 7: Values of (N|q'goGq|N) obtained from different approaches. For details, see the text and the
references cited here.

(Nl|q'goGq|N) [GeV?] method reference
—0.5 Gross-Llewellyn Smith SR [188, .
0.33 QCD sum rule [190]
0.22 vector dominance 190
0.2 non-rel. quark model 1.7
1.2 mé th. work

The sign of this value is different from that quoted in Ref. [42]. O’ the rther hand, Ref. [190] gets

(N|q'goGq|N) = 0.33 GeV? (140)
from a QCD sum rule analysis, while also obtaining

(N|q'goGq|N) = 0.22 Ge (141)
from vector dominance and

(Nlqg'goGq|N) ~ 3.2GeV? (142)

from a non-relativistic quark model. We here gi - ~ new estimate [191], that so far has not been
discussed in published works. The idea is to simply a. < une that a relation analogous to Eq. (133) holds
with m? of equal order of magnitude. We hence e

(NlgtgoC 27 ~ mg(N|q'q|N)
3 2

~ 1.2GeV?. (143)

All the above results are summarized .n Table 7. We see that the results largely differ depending on the
employed method, even its sign is uL.~ cair. It can, however, be conjectured that its absolute value is
of the order of ~ 1 GeV? or smallr c.

As for the strange condensat: (/v ~TgoGs|N), to our knowledge no estimate is currently available.
The simplest way of estimating ..’s matrix element is to use the same strategy as in Eq. (143). We then
have

(N|s'goGs|N) ~ m2(N|s's|N)
= 0. (144)

We hence see that thii conde 'sate will likely be small. Another way of estimating (N|s'goGs|N) is to
assume

(N|s'goGsIN) _ (N|sgoGs|N)
(Nlg'goGq|N) — (NlggoGq|N)
~0.1. (145)

Therefore,

|(N]s'goGs|N)| =~ 0.1 x [(N]q'goGq|N)|
<0.1GeV2 (146)

41



Another non-scalar condensate appearing at dimension 5 is (ST giD*iD"q),, which is presently
constrained only up to leading order in density,

(ST@D"iD"q), ~ p(N|STGD"iD"q|N). (147)

When discussing (N|ST g D*iD"q|N), it is again useful to define a more gens ra1 . atrix element with
an arbitrary number of covariant derivatives, which can be related to specif. moments of the twist-3
distribution function e(z, u?) [42, 192],

(N|ST@iD,,iD,,--iD, q|N) = e,(4*)ST Py -+ b (148)

with
1
en(,uQ):/ dra"e,(x, u?). (149)
0

As usual, we consider the matrix element of Eq. (148) as the a- erae~ over u and d quarks. In that case
e(x, u?) can be decomposed as

en(, 1) = %[6“(% p2) + e, 1) + (=10 (w,17) + (= 1)"e(x, 17)] (150)

where the contributions from the individual quarks are give.. as [192]

(o) = o= [ e N Ia(u 0, g ) ), (151)
where [0, An| is the gauge link to make the abov. (an ity gauge invariant. The symbol n here stands
for a null vector with mass dimension —1. It shoula hewce not be confused with the n of Egs. (148-150).
Egs. (149), (150) and (151) have for a long tu. ~ noe been of much practical use, as e,(x, u?) and/or
e?(xz, u?) was essentially unknown, and had only been obtained from models, such as the bag model
[192], the chiral quark soliton model [195] a. 1 the spectator model [194]. For illustration, we show
in Fig.12 the function e,(z, ?) compu ~d in hese models. In this figure n is taken to be an even
number, e, (x, ;?) is simply denoted 2, e(x) .".d the renormalization scale \/,17 can be assumed to be
close to a typical hadronic scale of « n2 =05~ 1.0 GeV. At this preliminary stage of the analysis, the
renormalization scale is usually nr ¢ ser. 7 ly considered. We will therefore ignore it in the following
discussion.

In past works, only rather ~~ude esiimates for es have been provided, such as e; = 0.36 [146] or
ey = 1.95 [42] (see also Ref. [1 .5]) Recently, the situation has however improved, as some experimental
information about e?(x) has bec me available. To be precise, a few data points of the function

(o) = 5le@) — (@] - 5[ - ea)] (152)
were measured by ana. rzing e ‘perimental data on the beam-spin asymmetry of di-hadron semi-inclusive
DIS obtained by the CL*< :xperiment at Jefferson Lab [196]. In Ref. [196] two schemes were used to
extract eV(r), giv ng res 1ts that even have different signs. The obtained data points are shown in
Fig. 13. It is thus ¢ ~ar that at present no precise estimate on any e, value can be given. It is, however,
possible to get ~der of magnitude estimates by making reasonable assumptions about the relative
strengths of the . d, % and d contributions. We refer the interested reader to Ref. [145] and here just
quote the final resu’ts,

er = (1.744.7) x 1072 (153)
e3 = (1.44+7.5) x 1073, (154)
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3 T T T

bag model
25 chiral quark soliton model
spectator model

e(x)

Figure 12: The function e, (z, u?) as a function of B, ~vkew. ., computed in the bag model (red
curve), the chiral quark soliton model (green curve) a:.' the spectator model (blue curve)
with n = odd and p? taken at a typical hadronic sc. e (see text). The numerical data needed
for this plot have been extracted from Fig. 9 .7 Pof [195]. Taken from Fig. 2 Ref. [145].

The extraction of Eq. (153) is explained in d .2 in Ref. [145], while Eq. (154) was obtained using the
same method. We refrain from giving e,, values vo. higher n because we have no direct information about
the behavior of e(z) at large =, which lea”~ to even larger uncertainties. More detailed experimental
information about e¥(z) will become a- ailable soon [197] through the analysis of the CLAS12 data,
which hopefully will make it possible to gc" me re precise e, values and to go to higher n.

About the strange condensate (7T & DHiD"s), (as well as (N|STsiD*iD"s|N), its linear order
density coefficient) no direct informe«"on s presently available. It is, however, possible to get an

estimate by considering strange - non-strange ratios of the similar and better known condensates of
Eq. (125) [145]. For €} [defined as in L (148), but with strange quarks|, we have

4
A
=(1.5+4.1) x 1073, (155)

e5 2 eg X

and for e

4

A

=(1.5+£81) x 1077, (156)

egﬁegx

where we have usec the NLO values of Table6 at a renormalization scale of 1 GeV and have ignored
their respective uncertainties.

Finally, the linear density terms of the condensates (ST gy*iD"iD"q), and (ST 5y*iD*iD"s), were
already discussed around and after Eqs. (125) and (126).
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Figure 13: The three data points of eV () obtainc.' fro... che beam-spin asymmetry of di-
hadron semi-inclusive DIS at CLAS. In addition to the 'ata points, the extrapolation used
for eV (z) at small z, assuming a 1/2? form, is illus' ated below x ~ 0.13. Taken from Fig. 1
of Ref. [145].

Condensates of dimension 6
Raising the mass dimension to 6, the number ot .~dependent condensates suddenly increases to a fairly
large number. Therefore, a consistent and systematic discussion of the density dependences of all
these condensates has never been atten pted, ~ven though some specific classes of condensates have
been studied, as will be seen below. Oi car reasonably argue that a general discussion of density
dependences of such condensates is sr mevhat premature at the current stage at which their values are
not well known even in vacuum. We -v".1 hr ace not attempt such a discussion here, but only mention
some general features and refer tb : reade. ¢o the works, in which some of these condensates have been
studied. To study the dimensica 6 “ondensates, it would as a first step be useful to determine the
respective independent operatr.. For instance, four-quark operators can be related to each other by
applying Fierz-transformatio s, 73 it was discussed in detail in Ref.[41]. Furthermore, equations of
motion and Bianchi identit’as ca. be used to relate different operators, as shown in Refs. [45, 147] for
scalar and non-scalar purr.y ¢.uoric dimension 6 operators.

Let us review some basic . *ra’ egies used to study these condensates. For the four quark condensates,
the usual method is tc empl v a generalized vacuum saturation approximation similar to Eq. (35) (see
Appendix A of Ref. [4.! for a letailed discsussion)

@EGquﬂ?)p = @Zéqgn%@gqlﬂp - (Gf;qup(@Zq?‘)p, (157)
@Zaqqu/quglh = (@Lqﬁp@'fq/yl)p, (158)

where in the firs iine, all four quark operators have the same flavor, while in the second line the
operators ¢ and ¢ -epresent different flavors. The various two-quark expectation values are further
expanded into color singlet and Lorentz scalar and vector pieces. One then substitutes for instance
Egs. (100) or (101) and expands the result to linear order in p. This gives a crude order of magnitude
estimate, but as it was the case for the same vacuum saturation approximation, it is not clear to what
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degree this approximation is realized in nature. Indeed, a study of the nucleon QCD sum rules at
finite density suggests that the density dependence of the scalar-scalar four-quark condensate should
be considerably weaker than the estimate obtained from Eq. (158) [198]. A first principle lattice QCD
calculation will therefore be needed in the future to have better control over the sy .tematic uncertainties.
Besides the method explained above, certain operators that appear in the OPT, _ € the electromagnetic
current correlator ji™ = ) 4 €ad7nq can be constrained from lepton-hadron deep 1.:lastic scattering
data [199].

As a reference for the interested reader, we in the following give a brief gui’- to the literature dealing
with the density dependence of dimension 6 condensates. Note however thay “he list of works mentioned
here is not necessarily complete. The factorization hypothesis of the fc ir-« nark condensates applied to
finite density, was discussed in Ref. [42], while Ref. [41] studied the alg “br.ac relations between different
four-quark condensates and their evaluation using factorization and *! 2 pe. “irbative chiral quark model
[200]. Further discussions on the role of four-quark condensates ar d their values are given in Ref. [201].
Experimental constraints of dimension 6 condensates appearing the ~ect ,r channel OPE are studied in
Ref. [199], while the same condensates containing strange quark , wer  -onsidered in Ref. [145]. Estimates
of the nucleon expectation values of gluonic dimension 6 opera. cs ar 2 provided in Ref. [147].

3.2.3 Condensates in a homogenous and constan. magn :tic field

In recent years, the effects of a strong magnetic field have « *racted the interest of the hadron physics
community because of the potential existence of such s.~ong tields in heavy-ion collisions and magnetars
[202, 203]. In this context, interesting phenomena such as ‘he chiral magnetic effect [204, 205] or the
magnetic catalysis [206] have been widely discussed ‘se - tor instance Refs. [207, 208] for recent reviews
and further references). This has motivated p: -titicners of both lattice QCD and QCD sum rules
to study the behavior of hadrons under a strong ‘o1 “he order of a typical QCD scale) and constant
magnetic field. For QCD sum rule studies, - i, = »ans that condensates must be determined as a
function of the magnetic field to be used as inpu® The present status of what is known about the
magnetic behavior of the condensates is '...-fly reviewed here. In what follows, we use the notation
B = |B| and will, if not stated otherwi e assuiie the magnetic field to point into the direction of the
z-axis: B = (0, 0, B).

Besides the scalar condensates g'ven m Hq. (10), which will get modified as the magnetic field is
increased, there are also novel conden. tes chat appear once the magnetic field is switched on. These
condensates are different from the ~in Eq. (11), which emerge at finite temperature or density. This can
be understood as follows. Non-scalar c¢. ~densates in hot or dense matter are constructed by considering
all positive parity, gauge invar.an. and independent combinations of quark fields, gluon field strengths
and covariant derivatives tha. 9, not vanish when contracted with u*, the four-velocity of the heat
bath or the dense medium In the magnetic field case, u* is replaced by F),, the electromagnetic field
strength tensor (or combi *at’ons hereof). The non-scalar condensates obtained in this way are

Jimension 3 : (Go,,q) B,
~amension4 : (ST qv,iD,q)p, (STGY'G™)p, (159)
dimension 5 : (¢t"G},,q) B, <g7’y5t“ézyq>3,

Here, (O) g stana. ‘or the expectation value of the operator O with respect to the QCD ground state with
zero temperature aw d zero baryon density, but with a constant and homogenous magnetic background
field. These condensates can be further categorized according to their C-parity. Those with negative
C-parity will be proportional to odd numbers of F},,. For small magnetic fields they will generally be
proportional to B. Those with positive C-parity have to be proportional to even numbers of F},, and
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Figure 14: Left plot: The change of the renormalized clral ¢ densate in a magnetic field
at T'= 0. For the precise definition, see Eqgs. (162) and (1v.). Tae various data points show
results for different lattice spacings a, while the red band c. ~responds to the continuum limit.
Right plot: The same as for the left plot, but showing nly the continuum extrapolated results
at finite temperature. Taken from Figs. 1 and 2 of .*~f. |212].

at small magnetic field will be proportional to B*. Ir wue list shown above, the dimension 3 and 5
condensates have negative C-parity, while the di' ~ensicn 4 ones have positive C-parity. It is possible to
construct positive C-parity operators at dimensior 5, -vhich are not shown here. For a more extended
discussion of operators with higher dimensior. .. »< sative C-parity (whose properties are, however, at
present practically unknown), see Ref. [209].

Condensates of dimension 3

We start with the magnetic behavior of t! e chiral condensate (Gq) 5, about which we currently have the
most detailed information. This is m. r.y t! anks to chiral perturbation theory and recent lattice QCD
calculations, where it is relativelv straign..orward to introduce constant magnetic fields. First, let us
give the chiral perturbation thecry 1. mlt based on Refs. [210, 211], which can be cast in a simple and
analytic form,

(q9) B log(2)eB m2
B g P [ T 1
Olagoy = ez i\ ep | (160)
with
1 * dz z
_ - YR~
lalv) = =153 /0 22¢ [sinh(z) 1]' (161)

According to the la.*ice (,CD calculations to be shown below, this expression is accurate up to magnetic
field values of ¢ L.+ »B ~ 0.1 GeVZ.

A relatively re ~:nt high precision lattice QCD calculation of (gq) g can be found in Ref. [212], where
staggered fermions .vere used to simulate 1+ 1+ 1 dynamical quarks at the physical point. The results
were furthermore extrapolated to the continuum limit. For an earlier result based on the quenched

approximation, see Ref.[213]. The behavior of the chiral condensate as a function of eB is shown on
the left plot of Fig. 14. The definition of AYX, = A(X, + X4)/2 depicted in this figure is

46



Su(B,T) = fn?—jg(w,TWB,T) - <o,oyau|o,o>) +1, (162)
AY.(B,T) = Su(B,T) — %,(0,T), (163)

and analogously for the d quark. m,, is the mass of the degenerate u and d ¢ 1. ~ks, m,q = m, = my.
We here have kept the notation and convention of Ref. [212], where (0, 0|au|0 0) is « positive number.
The above definitions are used to eliminate additive and multiplicative div’ rge ces that appear in the
lattice computations of the condensates. With the help of the Gell-Manu “ akes-Renner relation of
Eq. (19) and keeping in mind the changed sign convention, Eq. (162) can be ~ewiitten as

B, T|uu|B, T)

J
Zu(B,T) = (0,0]au|0,0)

(164)

The left plot of Fig. 14 shows that the average u and d condensate in. veasec with and increasing magnetic
field. This phenomenon is commonly referred to as “magnetic catalsis”. On the lattice, it is possible
to study how the magnetic field dependence changes with inc.~ing cemperature. The corresponding
results are shown in the right plot of Fig. 14. It is interesting .~ sec chat the magnetic field dependence
almost completely vanishes at temperatures around 7,. The presc 1ce of a magnetic field breaks isospin
symmetry, hence causing the u and d quarks to behave differc ~t1-. Therefore, it is not sufficient to only
consider the average AY,, but also the difference between .V, and AY,; which grows with increasing
B. For more details about the quark flavor dependes. = and a comparison of the lattice results with
chiral perturbation theory and models, see Ref.[2'?1 The behavior of the strange quark condensate
has so far not been studied in lattice QCD.

Next, we discuss the non-scalar condensate g . iv the first line of Eq. (159). This quantity is not
only important as an input in QCD sum rule studicz, 1 at also for determining the response of the QCD
free energy density to magnetic fields. As it is ~ou...on, we assume the magnetic field to be parallel to
the z-axis, which means that only the component |joi2q)p will be of relevance here. This condensate
was studied on the lattice for the first ti.c ™ Ref. [213] in the quenched approximation and later in
Ref. [214] in full QCD, by the same gr wip an' under the same conditions as the chiral condensate
discussed above and in Ref. [212]. At elatiy "I small magnetic fields, two parametrizations have been
used to quantify (goi2q) p:

(Go129) B = qrB(0]3q|0) x ¢, (165)
(4012q) B = qy BTy (166)

Here, the quark field ¢q represen.. any of the quark flavors u, d and s, while ¢; is the respective electric
charge. xy is commonly re’erre 1 to as the “magnetic susceptibility of the condensate”, while 7 is called
“tensor coefficient” in Re1. [?.4]. rhe full QCD lattice results obtained in this reference are

Xu = —(2.08 4 0.08) GeV 2,
Xa = —(2.02£0.09) GeV 2, (167)
Xs = —(3.4+1.4)GeV 2,

and

T. = 40.7 £ 1.3 MeV,
T4 =394+ 1.4MeV, (168)
Ts = 53.0 £ 7.2 MeV,
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at a renormalization scale of 2 GeV in the MS scheme®. It was furthermore shown that the linear

behavior of Egs. (165) and (166) is valid up to magnetic fields of about eB = 0.3 GeV?, above which
the effects of higher order terms [O(B?)] become visible. For practical applications, the 7; values
are the preferred choice as their evaluaion does not depend on a separate cale lation of (0|gg|0) and
furthermore have only a mild renormalization scale dependence [214]. Indeed, t'.c ~nomalous dimension
of the operator qo,,q is only —2% for three active flavors [209, 215].

Condensates of dimension 4

At this dimension, we start with the sclalar gluon condensate (%Cﬂ)n, wich was recently studied
using lattice QCD in Ref. [216]. This was done via measuring the inte act ~» measure (in other words,
the trace of the energy momentum tensor), of which the gluonic p«-t s proportional to the scalar
gluon condensate. In this calculation it was found that, analogr..ly to the quark condensate, the
gluon condensate is enhanced with an increasing magnetic field (sce the lc ft plot of Fig. 1 in Ref. [216]).
Quantitatively, the gluon condensate value is roughly increased .- =out 30% at eB = 0.8 GeV?
compared to the vacuum, assuming the vacuum value of Eq. 23) This behavior does not agree with
the earlier study of Ref.[217] (which got a decreasing gluon co..dens e value with increasing B), but
agrees with the more recent works of Refs. [218; 219]. The ci.>nge of the magnetic field behavior of
the gluon condensate with increasing temperature was al. ~ studi :d in Ref.[216] and again a behavior
similar to the one found for the quark condensate was o "ained. the dependence on the magnetic field
weakens as the temperature approaches T, and switchee ite “gn for even larger temperatures, giving
rise to a decreasing gluon condensate with an increasing magnetic field.

We next discuss (ST ¢v,iD,q)p, which has pc ... ~ C-parity and hence is expected to behave as
O(B?) for small B. Unfortunately, there are presen." mno lattice QCD calculations available for this
condensate. Moreover, to our knowledge only o1~ “im;le quark model estimate has been reported so
far. This estimate is given in Appendix E of Retf. 220], which should be consulted for more details.
Schematically, the method employed in Ref. [2.0! can be summarized as

A d4p
O =000 = - [ 5 T olOS @), (169)

(2m)*
where O represents a general operato , th «t can contain gamma matrices or covariant derivatives, S(p)g
stands for the quark propagator with (- e o» more magnetic field insertions and Tr¢ p for the color and
Dirac trace. In this model it is p ssible tu reproduce the magnetic field dependence with rather good
accuracy when setting the (conscitue.*) quark mass to m, = 300 MeV and the (Euclidean) cutoff to

A =1 GeV. For O = ~,iD,, t! ¢ 1 nal result reads

e 1 v v
(o™ "iD ) s = o5 4;B (9" — 914, (170)
with
AQ) 4 m? 3 m? 1 mo
A=log| — | - = +log|1+-2|+2 a — - a . 171
og(“? 5+ og( +A2>+2A2(1+mg/A2) 6 R (1 + mZ/A7) (171)

The tensors gﬂ“’ ind ¢ appearing in Eq.(170) are defined as gﬂ“’ = diag(1,0,0,—1) and ¢" =
diag(0,—1,—1,0). e f,rm gﬁ‘ ¥ — ¢!}V can be understood as part of the electromagnetic counterpart of
the gluonic ope avw, “TGHGE™*. Indeed,

(e} v 1 v (6% 1 17 4
FrFy = 29" P Fag = =5 B(g)" = g1") (172)

SIn Ref. [214], the conventions of positive (0Gq|0) and o, = 5[V, V] Were used. To adjust to our conventions with
negative (0/gq|0) and o, = %[v,,7], we changed the sign of the 7, values given in Ref. [214].
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can be derived for F*” containing only a magnetic field pointing in the direction of the z-axis. Naturally,
the above result is only valid for B values, for which higher order O(B*) terms can be neglected.

For the second condensate at dimension 4, (ST G G**)p which can also be expected to behave as
O(B?) for small B, we presently do not have much information. As gluons do aot couple directly to
the magnetic field, this condensate vanishes exactly in the quenched approxim ... n. In full QCD with
dynamical quarks, it does not necessarily vanish, but can be expected to be strong., suppressed. To
obtain a quantitative estimate, a lattice QCD or model calculation will be -.eec :d in the future.

Condensates of dimension 5

At dimension 5, we will discuss only the two condensates given in tre ty i=1 hine of Eq. (159), as the
behavior of possible other scalar and non-scalar operator expectation. o ues are presently not known.
These two have been considered already a long time ago in Ref. [209] {.ad aw » partly in Ref. [221]), based
on a QCD sum rule calculation of the nucleon magnetic moments. They : re traditionally parametrized

as
<qtaGqu>B = Qf'%F;w<0’q;m,\7 (173>
~ 1 |
(@5t Gl = 5456 E 0law,)- (174)

This parametrization is only valid for small electromag..~tic lcid values. Higher order terms in F),,
have so far not been studied. The two operators gt*G® « ~»- jm:,taéqu generally mix when changing
the renormalization scale. Respective eigenvalues ana ~igenvectors of the corresponding anomalous
dimension matrix are given in Refs.[222, 223]. Th ,_~ometers k and ¢ have been discussed in many
QCD sum rule studies over the years. In particular < niu, Pasupathy and Wilson have studied them
in series of papers in the eighties [224, 225, 226, .'.7! where they have used QCD sum rules of various
channels to determine x and &. In Ref.[224] the -eccor channel sum rules in combination with the
vector-dominance model was used in a one pole «.~d two pole approximation, respectively. The obtained
results were

Kk =0.22, £ —0.44 (one pole), (175)

k=04, ©=-038 (two poles). (176)

In the same paper, they further carric' yut * wo different fits of baryonic magnetic moment sum rules to

experimental data to obtain kK — 7~ = 5.7, and k — 2§ = 8.93. In subsequent papers (Refs. [226, 227]),
they took further baryons into a_:cou..“ for their fit, which led to

k= 0.75, (177)

£ =—1.5. (178)

These values remain rati ~r pop-.ar and are widely used even today. In the same work, a simple
parametrization was als- zgiven ‘or the strange counterparts of £ and £ [and of y, defined in Eq. (165)]:

Ks & Xs
¢ PRI (179)
=0.6. (180)

It however has .. "~ noted here that the newest lattice QCD results for x, and x, [see Eq. (167)] give
Xs/Xq =~ 1.66 anc <0 not agree with the above value, which therefore needs to be taken with a grain of
salt. Moreover, bes. les the most often used values of Egs. (177) and (178),

K =0.2, (181)
£ =—04, (182)
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given in Ref. [223] and partly based on Ref.[222], are also sometimes quoted in the literature (see, for
instance, Ref. [228]). In all, it can be said that x and & likely have orders of magnitude as given in
Egs. (177) and (178) or Egs. (181) and (182). Their precise values remain, however, presently unknown.

4 Analysis strategies

Once the condensates that appear in the OPE of a specific channel are ider. ifie 1, the calculation of the
corresponding Wilson coefficients is completed and the condensate values « e de. ~rmined with sufficient
precision, the remaining task is to extract information about the spect-_' funcion from the sum rules
given for instance in Eqgs. (4) and (5). Obviously, this is not a simp!: ta x «. II(¢?) or II(¢*) are not
known exactly, but only as an expansion in 1/¢*, with coefficients that b, *hemselves have uncertainties
due to incomplete knowledge about the condensates and higher orcer per “urbative o corrections in the
Wilson coefficients. At most, what one can hope for is to extrac. some osasic features of the spectral
function, but not its detailed form. How to extract these featu- c. win ve discussed in this section.

4.1 Derivation of sum rules for practical nu.me.ical analysis

In most present day QCDSR studies, the sum rules of Egs. (1) ard (5) are usually not analyzed in the
form shown in these equations, but are further modified, pa.*‘lvy to improve the OPE convergence and/or
to enhance the contribution of the low energy region - vuc spectral function to the sum rules. There
are multiple ways of doing this, the most popular one beiw.~ the use of the Borel transform, which was
already introduced in the very first QCD sum rule pe o c.s by Shifman et al. [1, 2]. We will discuss
here this Borel transform method in some detai' bu. will later also introduce alternatives, which for
certain purposes can be more effective in practice.
The Borel transform is defined as

S A
(M?) = LyTI(c7) - Jim =1\ dg (g%, (183)
- 12/n:]w2

where the newly introduced parame’cr 71 is referred to as the “Borel mass” because it has units of
mass. Note, however, that M is just .~ art’ icial parameter, which has nothing to do with the mass of
any physical object. Some typical and otv.n used examples of the Borel transform are shown below,

Ly()F =0, (184)

T @) FIn(—¢?) = —kI(M2)F, (185)
() - 0 ).
() - ) i

Here, k is a positiv ¢ inteer. For more related formulas, see Refs. [18, 229]. After applying Eq. (187) to
the dispersion rela ion of £q. (4) [or Eq. (5)], one obtains

1 [ 2
Mopp(M?) = 7 / dse™*/M p(s). (188)
0

As seen in Eq.(183), the Borel transform contains an infinite number of derivatives. All subtraction
terms thus automatically vanish. Moreover, it causes the high energy part of the dispersion integral
to be exponentially suppressed, meaning that the integral converges to a finite value, as long as the
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spectral function itself does not grow exponentially, which does not happen for QCD. It is furthermore
observed in Eq. (186) that higher dimensional terms of the OPE, which are proportional to (1/¢?)*, are
suppressed by a factor of 1/(k—1)!, hence improving the convergence of the OPE. The Borel transformed
sum rules of Eq. (188) are presently most commonly employed in practical QCD35R analyses.

Eq. (188), however, is not the unique QCDSR form. Indeed, sum rules wit} « “*aussian kernel were
derived in Ref. [230], commonly referred to as “Gaussian sum rules”. We will »ot repcat the somewhat
lengthy derivation here, but just give the final form, which reads

1 o0 sft2
(e, 7) = —— /0 dse= T p(s). (189)

Here, ¢ and 7 are free parameters that roughly correspond to tle Borel mass M in Eq.(188). The
advantage of the Gaussian kernel is that two parameters can be variec, which makes it possible to
extract more detailed information about the spectral function Zom ..c sum rules. Furthermore, the
Gaussian kernel has a distinct peak at ¢ = s, which means the t a* y s ructure that might be present in
the spectral function is more likely to be preserved in I1(s, 7), ~ather t'.an smeared out as it is usually the
case for the Borel sum rule. This situation is similar to what has cccurred in nuclear structure studies,
where the Lorentz kernel has proven to be useful [231, 25.] Th . Gaussian sum rule was successfully
applied in Refs. [233, 234] to the nucleon and D meson s.m rules, in combination with a numerical
maximum entropy method (MEM) analysis to be disc -oca velow.

Another way to increase the amount of information . 2t can be extracted from the sum rules is
to promote the parameters appearing in the kerne's (tuca as M or t), which are usually treated as
real valued, to complex numbers. This causes t ~ ker. ~ls to become oscillating functions with varying
frequencies, which can be useful for constraining sy >~tral fits or for MEM analyses. This idea has
in recent years been applied to multiple ME © (~2. rses of sum rules in various channels: the parity
projected Gaussian sum rules for the nucleon [25.! the Borel sum rules of the ¢ meson [236] and the
finite temperature Borel sum rules of S-w~- ~ charmonia [237].

The analyticity of the correlator can also be used to derive sum rules with an analytic, however not
explicitly specified kernel. In the past this I as been done mainly to derive sum rules in a hot or dense
medium, see for instance Refs. [198, 235 238 239]. The in-medium sum rules are usually formulated
using the energy variable w insteac o1 * Using for instance the retarded correlator I1®(w, p) at finite
temperature, which is analytic in .“e upper half of the complex w plane in combination with a function
W (w), which is analytic in the same rc_ion, one can derive

/00 dwy (w)p(w, p) = 1 /OO dwW (w)ImIgpg (w, P), (190)

o0 W*OO

where [ pg(w, p) is th - retarded correlator calculated from the operator product expansion. For more
details, see Ref.[238], ‘or a s milar derivation for the finite density case, see Refs. [198, 235, 239] and
for an application i~ the coutext of the unitary fermi gas, see Ref.[240]. The most important feature
of Eq. (190) is tha, W (w, is arbitrary as long as it is analytic and can hence be chosen depending on
what region of the . nect al function one wants to study. Some care, however is needed when making
this choice as t «w . ~=vergence of the OPE will depend on W (w). For instance if one chooses a kernel
analogous to the « ".e used in Eq. (189), it at first sight would seem advantageous to choose a small value
for 7, such that the spectral function can be extracted with a good resolution. It however turns out
that higher order OPE terms are proportional to increasingly high powers of 1/4/7, therefore destroying
the OPE convergence for too small 7 values. The choice of W (w) thus always has to be a compromise
between the resolution of the extracted spectral function and the OPE convergence.
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4.2 Conventional analysis strategy

The method employed most often in QCD sum rule studies will be described here. As this method has
already been discussed many times in previous reviews, we keep this part brief and refer the interested
reader to older works (see e.g. Ref. [17]) for more details.

We first consider the right hand side of the dispersion relation of Eq. (4). Using he optical theorem
and inserting a complete set of intermediate hadronic states, one gets

() = %Z<0\J\n(pn)><n(pn)\7!0>dTn(2ﬂ)45(4)(q D), (191)

n

where n is summed over all hadronic states which couple to the intc mo’ating field J, including sums
over polarizations and d7,, symbolically denotes the phase space int~-ratic » of the states |n). The sum
rules discussed in the previous section generally only provide infor nation. on an integral of the spectral
function p(s). One hence can only hope to extract some bulk pro, =rtie. of the spectrum, but not all
its detailed features. It therefore has traditionally been the cisto~ in practical sum rule analyses to
make a deliberated guess about the form of the spectral funct.~ ., pa ametrize it with a small number
of parameters and then fit these parameters with the help or .ne sum rules. The most frequently used
ansatz in present-day QCDSR studies is referred to as thr “pole - - continuum” ansatz and reads

p(s) = m|A20(s — m?) +0(s — . ) ImIlopg(s). (192)

Here, m is the mass of the ground state, which is assu.~ed to be manifested as a narrow peak, and
|A]? is the coupling strength of this ground state o .’ - operator J. The variable sy, is referred to
as the threshold parameter. While usually not muc. attention is payed to its physical meaning, its
modification at finite temperature or density ha- . ~en discussed in the context of the finite energy
sum rules as a probe of deconfinement [241] ~* chii~] symmetry restoration [242, 243]. Note that the
above ansatz completely ignores the width of ti.> ground state and potential excited states (including
a continuum) below s;,. [opg(s) stands for the correlator calculated at high energy using the OPE.
Due to asymptotic freedom, it is known .hat e spectral function will approach this limit at s — oo.
Based on the quark-hadron duality [31, 3] (s:e also Section 2.1.2), the second term approximately
parametrizes all excited states that ¢ upl- to J.

In the “pole + continuum” ansa.- tae rarameters |[A|?, m and sy, need to be determined from the
sum rules. Usually, one is most inf :restea *1 m, which can be obtained as follows. First, one substitutes
Eq. (192) into Eq. (188), which lraas o

2 —m /M?%2 __ pr2 2 I —s/M?
|A|%e = M Topg(M?) — 7_r/ dse ImIlopg(s)
Sth

C O 5). (193)
From this equation, m? cun be .erived as

2 1 af(MQ,Sth)
m° = T2 5y) D—1/02) " (194)

After obtaining m = I\? can be easily extracted from Eq.(193). As a result, m? and |\|? become

functions of M «..' <, which are parameters that physical observables should not depend on. The
Borel mass M in »articular is an artificially introduced unphysical parameter, which has nothing to
do with the grouna state mass m. It is therefore customary to show in QCDSR papers the so-called
Borel mass curve, which is nothing but a plot of Eq. (194) with changing M values. The degree of the
(non-)dependence of m on the Borel mass M provides a criterion for determining the quality of the sum
rules.
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However, just checking the Borel mass dependence of m is not enough. There are at least two more
criteria that always need to be checked to ensure the reliability and validity of the sum rules. The first
one is the confirmation of an existent Borel window, which corresponds to a region of M where some of
the approximations used to derive Eq. (194) can be considered to be reliable. The lower bound of the
Borel window is determined by the convergence of the OPE. As the OPE is (like'y ) an asymptotic series,
which is hard to compute up to high orders due to our lack of knowledge about the high-dimensional
condensates, it is not possible to define a rigorous convergence criterion. J iste .d, an often advocated
choice (see, for instance, Ref. [17]) is to demand that the contribution of the " ghest dimensional term
is less than 10 % of all the OPE terms,

terms of highest dim 2
Hopk (M)

I (7)

<0.1. (195)

As the OPE after the Borel transform becomes an expansion in 1,72 tF.s gives a lower bound for the
Borel mass M. The upper bound of the Borel window is dete” mined trom the relative contribution of
the ground state to the whole sum rules. As can be underst ~ . fro n Eq. (188), a larger Borel mass
M means a smaller suppression of high energy contributiorn. to (l.e sum rule. The most frequently
employed condition is

i dse= M pls)

_ _ 0, 196
Jo dse=s/M?p(s) (196)
which can be rewritten using Eqs. (188) and (193) as

A 2 —m2/M

[\l > 0.5. (197)

MQHOPEL IPA

This gives an upper bound for M. If there is a re_ion in M, which satisfies both Eq. (195) and Eq. (197),
this is referred to as “Borel window”. The numbers on the right hand sides of Egs. (195) and (197)
are somewhat arbitrary, indeed other valies (v~ even other kinds of conditions) sometimes are used in
the literature. To allow the reader to ma:. » a re asonable judgement about the accuracy of the QCDSR
approach in each studied case, it is ir portany chat the used conditions and the resulting Borel window
are explicitly stated. A simple Borel ~nrve p ot [showing the left hand side of Eq. (194) as a function of
the Borel mass M| in this sense ccatains ot sufficient information.

Besides the above conditions rei."2d to the Borel window, which have been considered as standard
for QCDSR studies, we will a-' ~cate nere one more criterion that should be checked to ensure the
reliability of the method. T'.s i, related to the sy dependence of m? in Eq.(194). If the “pole +
continuum” ansatz of Eq. ('92) .~ a reasonably good approximation of the real spectral function, this
dependence should be sm Jl. «f, however, the spectrum for s < sy, is dominated by a continuum or
several broad peaks insteaw. f a single sharp peak, an increase in sy, should lead to an increasing m?
value. Especially for e .otic ~hannels with more than three quarks, the contribution of the continuum
is potentially large be -ause | ading order perturbation theory and dimensional analysis dictate it to
increase with a larg~ pac..or of s compared three-quark baryon or two quark meson channels. Indeed,
this issue was poir jed ou. some time ago in the context of pentaquark sum rules in Refs. [244, 245, 246].

4.3 Alteruat ve analysis strategies

The method discus.ed in the previous section is the most popular approach used in current QCDSR
studies. Nevertheless, this does not mean that it is unconditionally the ideal choice. First of all, the
“pole 4+ continuum” ansatz is certainly not for all channels an appropriate assumption. The most
straightforward and natural way of improvement is to introduce a non-zero width to the ground state
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in Eq. (192) by replacing the delta-function with a Gaussion or a Breit-Wigner peak and to treat the
peak width as a free parameter that should, ideally, be determined by the sum rules. Such a strategy
was followed for instance in Ref.[247] to study the p meson at finite density or in Refs.[136, 137] to
study charmonia at finite temperature. It is usually found in such fits that it is n st possible to uniquely
determine both the peak mass and its width. Instead, one obtains multiple cor . ations of mass shifts
and widths, which all reproduce the sum rule well within its uncertainties.

Another method to analyze QCD sum rules was introduced in Ref. [15] T) e essential idea of this
approach is to carry out a proper Monte-Carlo error analysis by generating ~*wussian distributions for
the different condensate input values and fitting the sum rules to each g merated condensate value
configuration. This then gives distributions for |A\|?, m? and s;,, which allc ws one to perform an uncer-
tainty analysis for these parameters. Furthermore, this also makes it j. ~ss’ole to investigate correlations
between, say, m? and the chiral condensate, which can be useful wh-_ con. dering the relation between
hadron masses and the spontaneous breaking of chiral symmetry. 2 tter th. » method was proposed, it has
been applied by several groups. See for instance Refs. [248, 249, 250 257, 252] for a few representative
papers.

A few years ago, still another alternative analysis strategy v. ., prcposed in Refs. [253, 254, 255, 256]
and subsequently further developed and applied by the same -oup to various channels [257, 258, 259,
260, 261, 262]. The essential idea of this approach is to nromot: the threshold parameter s;,, which
conventionally is considered as a constant, to become . fun.*"on which depends on the Borel mass
M. As an ansatz, sy, was proposed to be a power series .“ 7 = 1/M?2. The respective coefficients
are obtained by demaning that the computed hadron .-ass value [Eq.(194)] is as close as possible to
the experimental value over the whole range of thr P~rel window. In this approach, the hadron mass
therefore is regraded as an input. Instead, it is poss.h'e to compute the residue [A\|? (often referred to
as “decay constant”) with improved precision co. ., »are.’ to the conventional approach.

4.3.1 The maximum entropy method

Recently, a novel prescription to analyze ©."'DSRs, based on Bayesian inference theory, was proposed
in Ref. [263]. The advantage of this app oach, v hich is commonly referred to as the maximum entropy
method (MEM), is that it does not requ..~ e.ay explicit assumption about the form of the spectral
function such as the “pole + contin um’ ansatz of Eq. (192). As this approach is still relatively new
and differs from the previously mentio. d mr:thods in many respects, we will briefly recapitulate it here.
For more details, see Refs. [21, 26" ! and the references cited therein.

The basic problem to be solved by MEM can be written down as

G(r) = /000 dwK (z,w)p(w), (198)

where G(z) is given for a '.mit od range of = (for Borel-type QCDSRs, x = M) or for a finite number of
data points (this happens 1. rhe imaginary time formalism of Monte-Carlo approaches, such as lattice
QCD, where x stands .or imagmary time), with an attached error. K(x,w) is the kernel, which for
the sum rules of Eq. (:88) be: omes 2we™*/M* /M? with s = w?. Solving Eq. (198) for p(w) is generally
an ill-posed probler- Tuc Lorategy often adopted is hence to make an educated guess about the form
of p(w), parametr’ ze it w th a small number of parameters and then to fit these parameters such that
Eq. (198) is satisfiec. as a- curately as possible. This is what is done in the conventional QCDSR analysis
described in Se v.c. 1 2. In cases where the “pole + continuum” description is qualitatively accurate, it
will likely be user " and produce approximately correct findings. However, if, say, the spectral function
at low energy is doiinated by a flat continuum instead of a narrow peak, the “pole + continuum” can
potentially lead to misleading results.

In contrast, MEM does not need any strong assumption about p(w), but instead aims at providing
its most probable form, given all the available information, such as asymptotic values of p(w) and the
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positive definiteness of this function. For this purpose, one makes use of Bayes’ theorem, which in the

present context reads

P[G|pI}P[p|1]
P[G|I]

Here, P[A|B] is a conditional probability, for the event A to be realized undrc 1.~ condition of event
B. In Eq.(199), “p” is a specific form of the spectral function, “G” the ir“ rmation from the OPE
[the left hand side of Eq. (188)] and “I” prior information about the spectral fi action such as positive
definiteness and asymptotic values. Finding the maximum of P[p|GI]| wil' give “he most probable form
of p(x). P|G|pI] is usually referred to as “likelihood function” and P[olI| «. the “prior probability”.
Ignoring the prior probability and maximizing only the likelihood f.nct . corresponds to ordinary
x2-fitting.

Let us discuss the forms usually used for the likelihood func.ion ana the prior probability and
in particular how they can be formulated for QCDSRs. For simg icity, v e will here only consider the
application to the Borel sum rules of Eq. (188). The MEM treatr~nt . ~ Gaussian sum rules is discussed
in Ref. [233]. To determine the likelihood function, we assume the’ v e values of the function G(x) are
distributed according to uncorrelated Gaussian distributions ror th. QCDSR analysis discussed here,
we will numerically generate uncorrelated values for each used a..“a point of G(x) that follow a Gaussian
distribution and hence satisfy this assumption. One then . ~s

PlplGI] = (199)

P[G|pl] = e ¥,
1 [rma [G(x) — Gp@)f (200)

T e

L p—
[p} 2<$max - xmin) v

m’ .

If G(z) is obtained using Monte-Carlo methods w.h as in lattice QCD, the correlation between the
values of G(z) at different  have to be taken i»to account by the use of the covariance matrix [264, 265].
o(x) stands for the uncertainty of G(x) at x an’ (7,(x) is defined as the integral on the left hand side
of Eq. (198).

The prior probability should quantify che p. or knowledge of p(w) such as positivity and asymptotic
values. While several parametrizations h« = beea proposed in the literature (see for instance Ref. [266]),
the one used most frequently makes 1 se of the Shannon-Jaynes entropy S|p|, giving

P[Pm Ny 50[5["?

Sl = | [pleo) —me) = ple) o (2],

0 m(w)

(201)

Here, the function m(w), whicu - a input in the MEM analysis, is referred to as “default model”. In the
case of no available data C z) MEM just gives m(w) for p(w) because this function maximizes P[p|I].
The default model is often. *ad t) fix asymptotic values of the spectral function to analytically known
results. In MEM studie, of boiw.. QCD sum rules and lattice QCD, the default model is often set to the
asymptotic high energ 7 limit of the spectral function, which is known from perturbation theory. The
scaling factor «, introdu ~4 .n Eq. (201), will be integrated out in a later step of the MEM procedure.
The Shannon-Jayr as ent. opy of Eq. (201) can be derived from the law of large numbers or axiomatically
constructed from r« vuirer ients such as locality, coordinate invariance, system independence and scaling
[21, 265]. For t' ~ actual calculations, the integrals of Egs. (198), (200) and (201) will be approximated
as sums over dis.e.e points using the trapezoidal rule.
From the above results, the needed probability P[p|GI] can be obtained as

Pp|GI] o P[G|pI|P[p|I] = 9, (202)
Qlp] = aSp] — Lip]. (203)
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Determining the form of p(w) which maximizes Q[p] and, therefore, is the most probable p(w) given
G(z) and I, is now merely a numerical problem, for which the so-called Bryan algorithm is frequently
used [267]. This algorithm, which uses the singular-value decomposition to reduce the dimension of the
configuration space of p(w) and therefore largely reduces the calculation time, has indeed been employed
in all studies applying MEM to QCDSRs so far. It can moreover be proven that . » maximum of Q|[p] is
unique if it exists and, therefore, the problem of local minima does not occur 1265]. Cnce p,(z), which
maximizes @[p| at a specific « value is found, this parameter is eliminate. by averaging p(w) over a
range of o and assuming that P[p|GI] is sharply peaked around its maximuw. °[p,|GI]. The details of
this step, which we will not discuss here, are for instance explained in Ret. | 21].

One important and useful feature of MEM is its ability to providr er or estimates for averages of
the spectral function over some range of w. Defining the variance of , “v" from its most probable form
for fixed v as dp(w), its squared average over the interval (wy, we) ¢ 1 be .ven as

1 w2
2 = - 'S0l Sl
((00)%)eor, o (0r — )2 /[dp] /w1 dwdw'§n0lw, Sl ) Plp|GI]
1 “2 Q N\

= dwdw’ —— , 204
ool () (204)

where the definition i
ol =T 'OU (205)

was used. The p; here stands for the value of p(w;) « v .~ discretized position w;. In going from the first
to the second line in Eq. (204), the Gaussian approxu. » ation for the probability P[p|GI] was employed.
The final error (0p)w,,w, can then be obtained by v in,, the average of \/((6p)?)w, w, Over a. Usually,
the interval (wy, wo) is taken to cover a peak or some otner structure of interest, as illustrated in Fig. 15.
Information about the error of the spectral tu. ~tion is valuable, for instance, to make an informed
judgement about the statistical significance of an extracted peak.

Finally, we review some representativ: tina. *gs of QCDSR MEM analyses. The first one was carried
out for the p meson channel in Ref. [265,. Tt we s found in this work that it is indeed possible to apply
MEM to QCDSRs, but only with a <efault i..odel that has the correct behavior in the low and high
energy limits. In the p meson chann ' tie ¢ ectral function is known to vanish in the low energy limit
(w — 0), as there are no massless state. /ith p meson quantum numbers. At high energy (w — o0)
the spectral function has to appr ac. the perturbative QCD limit. This finding is illustrated in Figs. 16
and 17, where results of test M™M analyses of mock data are shown. A Borel kernel was used with
a range of the Borel mass ecuive ent to the actual Borel window in the p meson sum rule to obtain
these results. Furthermore, the .~ror used in this analysis was generated from the uncertainties of the
condensates via the OPE _xprssion of the p channel. The correct spectral function, denoted as pi,(w)
(which should be reproduc. * if "IEM works perfectly) is depicted as a short-dashed line. In Fig. 16,
an analysis with a con’ vant detault model (long-dashed line) matched to the perturbative high energy
limit is shown. As thi' mode has the wrong low energy limit, the MEM analysis does not work well
and does not repro-ce «.., significant p meson peak. In Fig. 17, default models with correct low and
high energy limits are us. 1, leading to approximate reproductions of the p meson peak. Specifically,

1 O 1
was employed as tr.2 default model with various values for wy and §. These are shown in Fig. 17 as
long-dashed lines. As can be seen in Fig. 17, the details of the spectral functions extracted by MEM
(solid lines) clearly depend on the chosen default model. The position of the lowest peak, however,
approximately stays at the same position. Furthermore, MEM is not able to reproduce the p meson
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Figure 15:  Illustration of a typical error bar adapted .~ MEM studies. The solid line
depicting a peak stands for the spectral function pi.) Th: three horizontal bars indicate
the height of the mean value of the spectral function. ~ver che interval (w1, wa), (0)w; w,, and
of the corresponding errors added to and subtract- . _... it. Taken from Fig. 4.2 of Ref. [21].

width correctly, but instead produces a somewh«* . ~oader peak. This is a general feature of MEM.
If the input data are precise enough, the pos™ i~ ol the lowest peak can usually be reproduced quite
well. The spectral function is however often smea.~d out, such that narrow peak widths are difficult to
extract. This in some sense corresponds te the use of the pole term in the “pole 4+ continuum” ansatz
of Eq. (192), where the ground state is e pproxi nated by a delta function and one does not attempt to
extract the peak width from the sum rule.

Let us review one concrete examp e o” an application of MEM to QCDSRs. The main advantage of
the MEM approach compared to conv *.or J methods is that one does not have to assume any specific
functional form for the spectral f» nction. MEM is therefore especially useful when one does not have
any prior knowledge about the spectra function or when one wants to study the (unknown) modification
of some spectral function in ar c. treme environment such as a hot or dense medium. As an example,
we here summarize a study ¢ ¢l armonium at finite temperature [268]. The melting of charmonium
has long been considered t, be « =ignal of the quark gluon plasma formation in heavy-ion collisions
[269, 270] and has thus at’ rac’ ed rauch interest from both theoreticians and experimentalists. However,
directly computing the chari..~n’ 1m spectral function at finite temperature from first principles of QCD
is challenging even tocay. T is is partly due to the fact that even though lattice QCD is by now able
to perform precise calc 1latio’ s at finite temperature, it is only directly applicable to static quantities
and not dynamical oues such as spectral functions. Lattice QCD can so far only compute correlators
at imaginary time which are related to certain integrals of the respective spectral function.

The OPE side 0. 0 sum rules for charmonium (and similarly, bottomonium) of any channel J
can, after apply ng ... Borel transform, be cast in the following form:

M (v = e AN W)L+ as(v)a’ (v) + 0" (V) $(T) + ¢! (V) ¢e(T) + d’ (v) pa(T)]. (207)

Here, v = 4m?/M?, with the charm quark mass m, and the Borel mass M. Because the heavy quark
condensates can all be expressed as gluonic condensates with the help of the heavy quark expansion,
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Figure 16: Result of an MEM analysis using a constant det« it model with its value fixed to
the perturbative QCD limit. pj,(w) is the function tha. was used to produce the mock data,
and pout(w) shows the spectral function extracted by .."EM. Taken from Fig. 3 of Ref. [263].

the OPE only contains gluonic condensates as non-p. vt.rbative contributions. Light quark condensates
can in principle appear at higher orders in «y, = -t ar. expected to be strongly suppressed. The first
two terms in Eq. (207) are the leading order perturbea'ive term and its first order «ay correction. The
third and fourth terms contain the scalar ana ", 2 gluon condensates of mass dimension 4:

472
s el — 2
b\+ 9(4mg)2G07 ( 08)
. 472
De(r, = ——=—=CGo, 2
where o
Go = (=G}, G")r. (210)

which includes both vacuum wnd temperature dependent parts discussed around Egs. (23) and (49),
respectively. G is defined sinu'~ 1y to Eq. (71), but with an additional factor of a(T") /7. The detailed
expressions of the Wilson oefficienis of the first four terms are given in Ref. [271]. In Ref.[268], only
one dimension 6 term wa. *a'.en ‘ato account, namely,

1
da(T) = a2 (g° G GR G 7. (211)

The more comple’e list of dimension 6 terms together with the corresponding OPE expressions is
given in Ref. [147]. Their influence on the sum rule results is discussed in Ref. [148]. The temperature
dependences of the aunension 4 gluonic condensates can be obtained as explained in Sec.3.2.1. In
Ref. [268] quency.~d 1attice QCD data were used for this purpose. The dimension 6 term was estimated
using the dilute in. ‘anton gas model. For more details, see Refs. [21, 268].

In the notation of Eq. (207), the sum rule can be expressed as

M (v) = / dze™"" o’ (2myx). (212)
0
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Figure 17: Results of the MEM analyses ¢ moc. data with various default models. As in
Fig. 16, the solid lines stand for the output ~f vhe analysis pou(w), the long-dashed lines
for the default model with the paramete = siuc./n in the figure, and the short-dashed lines
for the input spectral function, py,(w). The norizontal bars show the values of the spectral
function, averaged over the peaks ar u v..» corresponding ranges as illustrated in Fig. 15. For
figures ¢), d) and e), the lower errc - bars « f the second peak are not shown because they lie
below the w axis. Taken from Fi;. 4 o R f. [263].

With Eq. (207) at hand an « gl'.on condensates determined, the remaining task is to use MEM to extract
the spectral function from .” - (2°.2). The results of such an analysis are shown in Fig. 18. Let us make
a few comments about .he ohtained spectral functions, focusing especially on the vector channel (lower
plots in Fig. 18), whick is mos™ relevant for experiment. For the vacuum spectrum shown on the left side,
a clear peak is obser~ d su.oly above 3 GeV. This peak in essence corresponds to the J/W state, but also
contains some con ributic 1s from its first and second excited states, ¥’ and W(3770). This is related to
the large and artific.~1 wi .th that is generated by MEM due to its limited resolution. For a more detailed
discussion abot . ...~ moint, including MEM analyses of mock data, see Ref. [21]. The finite temperature
results shown on *.ae right plot of Fig. 18 show a sudden disappearance (melting) of the lowest peak
right above T,.. Th.; sudden change of the spectrum is caused by the strong temperature dependence
of the gluon condensates around 7. For a similar calculation for bottomonium, see Ref. [272]. For
more recent work with an improved kernel and hence an MEM analysis with better resolution, consult

Ref. [237].
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Figure 18: Left plot: spectral functions in the psendoe: lar (upper plot) and vector (lower
plot) channel at 7" = 0, with corresponding errors, . < illustrated in Fig. 15. The dashed lines
show the default model used in the MEM an. ., *~ Right plot: the same spectral functions
at temperatures around 7,. Taken from Fig. 1 ¢ Qef. [268].

5 Hadrons at finite density

5.1 Physics motivation

Understanding the behavior of hadror s in a acase environment such as nuclear matter has been the mo-
tivation not only for theoretical stud ~s, Hut .so for dedicated experimental projects for several decades
(see Refs. [273, 274, 275] for recer. revic~3). Worldwide, there are at present multiple experimental
facilities that plan to investigate ti. vroperties of dense matter and its influence on hadrons. These
include the J-PARC [276] facili*;- in Japan, CBM [277, 278] and PANDA [279] experiments at FAIR in
Germany, HIAF [280] in Chira as well as NICA [281] in Russia.

One of the goals of thes ex, ~rimental efforts is to detect signatures of the (partial) restoration of
chiral symmetry at finite < ens'cy. Defining such signals that are sufficiently simple and experimentally
measurable in practice is, ..” wev r, not a trivial task. One proposal to relate the restoration of chiral
symmetry with physic . obsarvables was made in the early nineties by Brown and Rho in Ref.[282],
where hadron masses vere cc njectured to scale according to the behavior of the chiral condensate at
finite density (the se -alic.l Srown-Rho scaling). Not much later, more evidence for this scaling behavior
was found in Ref. [ (1] for he p meson and other vector mesons, based on a QCDSR calculation at finite
density. Later, QC.°SR <.udies however found that they do not necessarily imply a decreasing p meson
mass with finit - [ =<ity, but are also consistent with a scenario in which it is primarily broadened
[247, 283].

The above histc:y illustrates the basic motivation for studying the behavior of hadrons at finite
density within QCDSRs, but also shows the limitations of the method. As QCDSRs provide a relation
between integrals of the spectral function and various QCD condensates, it also relates the modification
of the spectral function with the behavior of the condensates as a function of density. Therefore,
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the effects of the reduction of the chiral condensate in dense matter (and hence of the restoration
of chiral symmetry) on the hadronic spectrum can in principle be studied. However, sum rules only
provide information about certain integrals of the spectral function, not about detailed features of the
structures that appear in them. Conclusions about the behavior of specific partic’es at finite density are
thus not necessarily unique, as it was found in studies of the p meson mentior - above. Furthermore,
QCDSRs do not only involve the chiral condensate, but also other condensates s.ch as the gluon
condensate, four-quark condensates, the mixed condensate (involving both uar < and gluon fields) and
more condensates with higher mass dimensions, which might or might not . tirectly related to chiral
symmetry and its restoration and hence can obscure the relation between .= modification of spectral
function and the restoration of chiral symmetry. In this context, espec’all - the four-quark condensates
have been considered frequently in recent studies [41, 201, 284, 285, £°6. 287].

Keeping the above issues in mind, we will in the following disc>"_. the “ehavior of various hadrons
at finite density from a QCDSR perspective and review the progress thay has been made during recent
years. Wherever possible, we will furthermore try to assess what ii.“~rr .tion about the QCD vacuum
structure and its modification at finite density can be extractad f~. 1 such QCDSR analyses for each
specific channel.

5.2 Light hadrons

We define light hadrons as hadrons containing u, d o~ = =~ 3 or anti-quarks as valence quarks. The
behavior of these hadrons at finite density has been stu.ied intensively during the years, as they are
relatively easy to produce in comparison with had ... ~~ntaining one or more heavy quarks. Among
them, the vector mesons have attracted the most at.- ation because they decay into di-leptons which
do not feel the strong interaction and hence are . . stiongly distorted due to the surrounding nuclear
medium. Therefore, their properties in a der<e en fironment are one of the most suitable targets for
experimental study. We will in this section thus “~cus on the light vector mesons, but also discuss other
light hadron species in later Sections.

5.2.1 The p meson

Among the various light mesons, the o .ific .tion of the p meson spectral function has been investigated
most extensively both in theory a~.d ex} *.ment because its mass shift at finite density was originally
regarded as the most promising ¢ .nu’ 1ate to detect the partial restoration of chiral symmetry in nuclear
matter [11]. Studies based on b~ *ronic etfective theory later however indicated that the p meson (which
is already rather broad in v.cuv.m with a width of about I', ~ 148 MeV [123]), is more likely to
be modified in a more com»lica.~d manner, that cannot be described by a simple mass shift and/or
broadening. Typically, the e ¢ .iculations find an enhancement of the spectral strength in the low energy
region below the original , “1esca peak [283, 288, 289, 290, 291]. The detailed form of the spectrum
depends however quite strorgly on the channel (longitudinal or transverse), the value of the spatial
momentum and, most impor antly, on the details of the employed model. Furthermore, as already
mentioned earlier, it —vas < _.aonstrated that QCDSRs are consistent not only with a negative mass shift
of the p meson at finite lensity, but also with a scenario in which the p is primarily broadened and
receives only a very sma’. mass shift [247, 283].

We will her. ...' = into the details of these past calculations, but mention some more recent studies
that have been c .ducted based on the QCDSR approach. In Ref.[243], the usefulness and potential
importance of spec.cal moments was emphasized in a study that made use of finite energy sum rules
(see also the earlier work of Ref.[242]). It was moreover checked in the same work to what degree the
sum rules are satisfied by phenomenologically obtained spectral functions. More about the spectral
moments will be discussed later in Section 5.2.3 about the ¢ meson. It will for the moment suffice
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to mention that moments are directly related to QCD condensates of a specific dimension. This is
different form the more widely used Borel sum rules, which involve expansions in inverse powers of the
Borel mass and contain an infinite series of condensates with arbitrary dimension. Computing moments
of experimentally measurable spectra therefore in principle allows one to “meisure” condensates of
a specific dimension. For this to become a realistic possibility, a precise meas .. "ment of the spectral
function in a wide energy range is however necessary, which is not an easy task The au hors of Ref. [286]
focused on the role of the four-quark condensates in the p meson sum rules wh n the chiral symmetry
gets restored. Specifically, they distinguished between chiral even (invarian.) and odd (variant) four-
quark condensates and studied the scenario in which only the chiral odd ¢ ~deusates vanish as chiral
symmetry gets restored while the chiral even ones remain at their v.cu.m values. In Ref.[292] the
behavior of the p (together with the w and the ¢) was studied not .~ rormal nuclear matter, but in
hadronic matter containing strangeness, using a chiral SU(3) mo ' to (~scribe the behavior of the
condensates for this case.

5.2.2 The w meson

Not much theoretical work based QCDSRs has been devote! to wie w meson in recent years. Even
though its width of I',, ~ 8.5 MeV [123] is more than an order of 11agnitude smaller than that of the p,
the corresponding OPE expression is in fact almost the s me «.~ #'.at of the p, the only difference coming
from four-quark condensate terms, vanishing completely once “actorization is assumed. This exemplifies
the fact that QCDSRs generally only have a limited s.»sitivity to the decay widths of resonances. It
also means that many conclusions obtained for the -~ from QYCDSR studies also apply for the w.

On the experimental side, however, valuable new mf rmation about the behavior of the w in nuclear
matter has been obtained during the last few , .rs. Namely, the mass shift and width of the w at
normal nuclear matter density pp have been measred with high precision [293, 294, 295, 296, 297].
Recently, even results about the momentum acpeundc.ice of its width at py have become available [298].
It would therefore be meaningful to revisit the eari.er sum rule calculations and to study how the new
experimental findings could constrain the ve..~vior of the condensates at finite density.

Another interesting topic related to t- = w is t 1e study of its chiral partner (or partners) and how their
spectra will eventually approach each other ~, chiral symmetry gets restored. Generally, it is known
that the chiral partner of the w will be 7 n a-ial vector meson containing both u, d and s components,
that is presumably a mixed state « f tuc - 1285) and the f;(1420). The f1(1285) [f1(1420)] is widely
believed to be dominated by u .. d (s) quark components. In the recent work of Ref.[299], it was
argued that if disconnected diaerams c.a be neglected, the chiral partner of the w is the f1(1285) and
that they therefore should aprroa h each other with increasing density (see Section 5.2.4).

5.2.3 The ¢ meson

The behavior of the ¢ = -son .- nuclear matter has recently attracted renewed theoretical interest, in
part because of the ve -ious e perimental studies that have been performed in the past few years [300,
301, 302, 303, 304, 305] ~r th .t are planed for the future [306]. Recent theoretical studies include works
based on QCDSRs |307], various effective field theories [112, 113, 308, 309, 310] and a work examining
the possibility of ¢ nucler s bound states [311]. Here, we will focus on theoretical investigations related
to QCD sum r1'les anu review them in some detail.

We start froi t'ie correlator

u(q) = [ d'e e (T2 0), (213)
for the operator j,(z) = 5(x)v,s(x), which predominantly couples to the ¢ meson in the vicinity of its

62



pole. We consider the correlator in contracted form,

1

I(¢%) = 3—q2HZ(q), (214)

which is sufficient when studying the ¢ meson at rest with respect to the auci~ar medium. After
computing the OPE, II(¢?) can generally be expressed as
2 2 Q°
H(q:—Q):—COIOg< )+@+@+@ y (215)

We first consider the ¢ meson in vacuum (p = 0), where the first few ~oe’acients ¢, are obtained as

1 o 3m?
602472(”?) @ = " m (216)
4= ( 1%s G2yo> + 2m(0[3s]0), (217)
ce = —2ma [<0!(§vm X% 5)%|0) + §<0|<§w A @ q)|0>] (218)
=u,d,s

Here, we have kept only the most important terms. Higher ~rder corrections due to the strange quark
mass mg or the strong coupling constant a, have bee. considered for instance in Ref. [307] and shown
not to change the qualitative behavior of the result. Als., numerical analyses show that the above
expression is consistent with the ¢ meson dominati g ~ne spectral function at low energy and with a
vacuum mass close to its experimental value. Es ocia. v the m? term is crucial in generating a ¢ mass
that is heavier compared to the p or w.

Next, we turn to the finite density case, + -«c.2 - ¢ condensates already present in the vacuum get
modified. Furthermore, new condensates appear e to the breaking of Lorentz symmetry related to
the presence of nuclear matter. The detail~ € these condensate modifications (within the linear density
approximation) are discussed in Sectior 3.2.2. As a result, the above coefficients ¢, are modified as
follows at linear order in density,

dco =0, de- =0, (219)
2 56 2 .

0cy = K ?MN—|—2—70'3N+ 27UWN+A2MN>p, (220)
448 X

e = - .msgfm(p)” N (0[35|0) p, (221)

where again only the most ess ntial terms have been taken into account. A more complete compilation
can be found in Refs. [44, 50" |. Fspecially, Ref. [44] compiles the complete list of all possible operators
and their Wilson coeff cients at leading order in oy up to dimension 6. The above Egs. (219-221) are
true only at leading oiler in » and should hence not be trusted for densities much larger than normal
nuclear matter dens*'7.

With the abov : inpu. and the numerical values of the parameters discussed in Section 3.2.2, one
can now study the =1m ~ules of the ¢ meson channel both in vacuum and nuclear matter. The most
important qua. «.., *~ be studied in such an analysis will be the mass shift of the ¢ peak. Such work
was carried out i tef. [307], where MEM was used for the analysis of the sum rules. The central result
is reproduced in Fi,. 19, which shows the ¢ meson mass (normalized by its vacuum value) at normal
nuclear matter density as a function of the strange quark sigma term o,y. It is observed in this figure
that the ¢ meson mass shift is rather sensitive to the value of o4y, which we have discussed in Section
3.2.2. Even the sign of the mass shift depends crucially on o4y. This means that a measurement of the
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Figure 19: The ¢ meson mass at normal nuclear ma. ~r de .sity, normalized by its vacuum
value, as a function of the strange quark sigma term ¢ _~. 1aken from the lower plot in Fig. 4
of Ref. [307].

¢ meson mass shift could help constraining the ~lue « ¥ oy, which still has large uncertainties even in
state-of-the-art lattice QCD calculations, as can L~ s.~n in Table 5.

An alternative point of view, which was -l7~an - emphasized in Ref.[243] for the p meson, was
discussed for the ¢ meson spectral function in 1i~fs. [112, 113]. In these works, the importance and
usefulness of spectral moments was stresse” which have been discussed in the QCDSR literature under
the name of finite energy sum rules. Fc. the ¢ meson spectral function discussed above, they can be
written down as

S0
/ dsp(s) = coso + Ca, (222)
[ i = 2
dssp(s) = —s5 — C4, (223)
J0 2
o € 3
dss“p(s) = 550 + c6. (224)
0

Here, sy represents a scal th .t d’vides the low- and high-energy part of the spectrum. It needs to be
determined from the (finite ¢..or Jy) sum rules themselves. The advantage of Eqgs. (222-224) is that they
relate spectral momen s only to condensates of specific dimensions. Terms with condensates of higher
dimension such as in tl.~» Bore. transformed sum rules do not appear. Hence, in cases where the spectral
function is a priori xnown, Kgs. (222-224) can in principle be used to determine certain combinations of
condensates of sor. e spec fic dimension. Conversely, they can also be used to check whether a spectral
function computed v, _ome phenomenological model is consistent with basic requirements of QCD.
How this can bc do i, was demonstrated in detail in Refs. [112, 113].

5.2.4 The f,(1285)

The behavior of the axial vector, isospin zero meson f;(1285) in nuclear matter has so far not been
much studied in QCDSRs or any other method. Motivated by a measurement of this particle in
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1

photoproduction from a proton target, which resu'tel in a relatively small width of 18.4 + 1.4 MeV by
the CLAS collaboration [312], its modificatior = = n-clear medium was recently studied in Ref. [299] in
a QCDSR approach. The main focus of this wors was to regard the w and f;(1285) as chiral partners,
to determine how the partial restoration of ~hiral symmetry manifests itself for these particles and to
what degree they can play the role as e <perin.>ntal probes for this restoration. This is an especially
pressing issue now, as the behavior of w .~ nv:lear matter has been studied in detail in experiments
[294, 295, 297, 298] and analogous str dies on the f1(1285) might become possible by replacing a proton
with a nucleon target at the CLAS e..» rimr nt.

To be precise, w and f;(1287, ~an only be regarded as chiral partners when chiral symmetry is
extended to three flavors. In such a sce..ario ¢ and f;(1420) [the latter being the (mostly) strange coun-
terpart of the f;(1285)] have t, be included in the chiral partner structure. In Ref. [299], it was however
argued that even if taking inuv. .ccount only flavor SU(2), w and f;(1285) can be regarded as chiral
partners in the limit whers disconnected diagrams are neglected. In this limit, the difference between
the w and f;(1285) curre. * corre ators indeed vanishes when chiral symmetry is completely restored.
Based on this approxir-..ion, "ae can expect that the w and f;(1285) spectra should approximately
approach each other i1 nucle. r matter where chiral symmetry is at least partially restored.

The mass of the f,(1.27) as function of density was then studied in Ref. [299] using a conventional
QCDSR analysis 1 :lying « n the “pole 4+ continuum” assumption of Eq. (192). The corresponding result
is shown in Fig. 20, ~her it is observed that the f;(1285) potentially receives a negative mass shift of
about 100 Me\ «. ~~rmal nuclear matter density. It however has to be kept in mind that this result is
obtained by assui'ng a delta function in the “pole + continuum” ansatz even in nuclear medium. As it
was shown in Ref. |.47] for the p meson, changes of the OPE at finite density can also be satisfied with
a smaller change in the mass and a simultaneous increase of the width. A similar effect likely applies
to the f1(1285). The above result should hence be understood as the maximum mass shift that can
expected in nuclear matter.
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from parity-projected QCD sum rules and MEM. The .., green, blue, magenta and light
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normal nuclear matter density, denoted here as p,, Taken from Fig.2 of Ref.[319], where
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5.2.5 The nucleon

The study of nucleon properties at finite density in a QCDSR approach already has quite a long history.
See, for instance, the early nineties worke of n fs.[14, 42, 198, 313, 314, 315]. We will not review these
older studies here, but focus on recent p. ~eress made during about the last ten years.

In the first QCDSR studies of bar~ ons [5s, 114, 316], a proper parity projection was not included in
the formalism, but thanks to Ref.[2'9] 1t i now possible to construct parity projected baryonic sum
rules, and hence to study not only the p. - .tive parity ground state, but also its lowest negative parity
excited state (see also Refs.[237, 5.7 for related discussions). Generalizing this technique to finite
density, one can study the beb- “or of the lowest positive and negative parity nuclear excitations and
can especially examine to wh .t d gree the positive and negative parity spectra approach each other as
chiral symmetry gets partie'ly 1. -tored. Similar questions were recently studied in lattice QCD in the
finite temperature regime 318 . A related QCDSR study at finite density was carried out in Ref. [319)].
In this work, parity-projec. ! ir medium nucleon QCD sum rules were constructed and subsequently
analyzed with MEM. 7 ne pesitions of the lowest peaks in the obtained vacuum spectral functions are
consistent with the grcund st te N(939) and its lowest negative parity excitation N(1535). See Fig. 21.
Increasing the dens* -, v...e peaks exhibit a somewhat surprising behavior. Their positions namely
turn out to be alr 1ost de 1sity independent, meaning that the total energies of both the positive and
negative-parity sta. s ar. not much modified by nuclear matter effects up to normal nuclear matter
density. The re ...~ ~f the positive parity nucleon ground state on the other hand decreases while that
of the negative pc .ty first excited state remains almost unchanged with increasing density. It is shown
in detail in Ref. [31.] that this behavior is closely related to the modifications of the condensates (gq),
and {q'q) ,» at finite density, which demonstrates that these condensates are important for the description
of the in-medium properties of the nucleon and its negative parity excited state. An intuitive picture for
the behavior shown in Fig. 21, however, has so far not been found and requires further investigations.
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Besides the abovementioned work, recent studies of the nucleon at finite density based on QCDSRs
include the ongoing series of papers by Drukarev and collaborators [320, 321, 322, 323, 324, 325] and
other groups [326, 327], including generalizations to decuplet baryons and hyperons [328, 329, 330, 331].
The nuclear symmetry energy is another interesting quantity that was studied .sing QCDSRs during
the last few years. Details can be found in Refs. [332, 333, 334].

5.3 Heavy hadrons

Heavy hadrons are defined in this work as hadrons with at least one ¢ or b v. 'ence quark or anti-quark.
The finite density behavior of such hadrons will be discussed in this se :tic» starting first with mesons
and finishing with baryons.

5.3.1 Charmonium

With the exception of Refs. [335, 336], the behavior of charm onium states in nuclear matter has not
been much studied within QCDSRs in recent years. The earlic~ vork, of Refs. [147, 337] therefore still
remain the state-of-the-art today. Generally, charmonium sta ~s a.c not expected to be much affected
by nuclear matter as they are tightly bound systems with no u o1 d valence quarks which are expected
to be most strongly perturbed by surrounding nuclei. In 27JSRs, finite density effects enter the
calculation through the density dependence of gluonic conde. =ates. Light quark condensates appear in
charmonium (and bottomonium) sum rules only at sec.d order in a;; and are therefore suppressed. In
Ref. [147], where gluonic condensates up to dimensi~» 6 weic taken into account, the J/¥ was found to
receive a negative mass shift of

Amyy - —aMeV (225)

at normal nuclear matter density. It remains t - he se n whether such a small mass shift can be observed
in future experiments. With such a measureme." it would be possible to constrain the finite density
dependence of a certain combination of glnonic condensates.

In this context, we mention the sul ject ¢ charmonium in a magnetic field, which has recently
attracted much attention, especially bec.1ise Hf the large magnetic field which is generated at the
initial stage of non-central heavy-ion -ollisions [202]. In QCDSRs, this was studied for the first time in
Refs. [338, 339]. In these works, a sp.-i<1 er phasis was laid on the mixing effects between 7. and J/ ¥,
which occur because of the existe «ce of o nomogenous and constant magnetic field. According to the
findings of Refs. [338, 339], the r.odul"ations of the correlators due to the magnetic field are saturated
to a large degree by these mix'... effects. Another related direction of work is to study the combined
effect of a magnetic field and dni’e density which was partly done in Ref. [340].

5.3.2 D and B mesor <

During the last decad , the finite density behavior of D (and B) mesons have been studied quite
intensively and contro ersiall - in QCDSRs and various other approaches. The reason for this interest
lies in the possibilit;- ot ..ooing the modification of such mesons produced in nuclei or high density
matter at FAIR, J PARC or other similar facilities. For such an experimental study to be meaningful,
it is important to p.~dur: D mesons in nuclei with sufficiently small momentum such that they remain
in the region .. .°~" density long enough. Only then can potential spectral modifications have a
large enough effect to be experimentally measurable. This currently still appears to be a challenge for
experiments and ne v ideas might be needed [341].

We will here concentrate on theoretical works based on QCDSRs. The discussion given in this
section should hence not be understood as a complete summary of all works about the D and B mesons
at finite density. For more general discussions and more references, see Refs. [275, 342]. We furthermore
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focus on D mesons, which are presently far more relevant for experiments than B mesons, because they
are lighter and therefore easier to produce with high statistics. While this might not be an essential
issue for high-energy heavy ion experiments at the LHC, where a large amount of bottom quarks can be
created and where the behavior of matter at high temperature can be studied, "ower energy collisions
with much fewer bottom quarks are needed to create matter at high densit c. 343, 344]. We will
therefore mention B mesons only briefly at the end of this section.

The study of D mesons in nuclear matter with QCDSRs started witl the paper of Hayashigaki
[345], which found a (negative) mass shift of —48 MeV for the D at normal . - clear matter density. In
this work, OPE terms up to dimension 4 were taken into account. Later, a.ension 5 OPE terms and
further terms that break charge symmetry were included in the analysic ot Ref. |346], which however led
to the opposite conclusion of +45 MeV, albeit with large uncertainti. - re.ated to the determination of
the threshold parameter in the “pole + continuum” ansatz. The mo~. rece..* works of Refs. [55, 347] are
qualitatively consistent with the earlier results of Ref. [345], obtair ng neg ative mass shifts of —46 MeV
and —72 MeV, respectively. Furthermore, Refs. [348, 349] employ a -hirs. SU(3) model to compute the
dimension 3 quark condensate and the dimension 4 gluon con ens- '~ at finite density, which are then
used as input in the QCD sum rule analysis. As a result, they _otai’. negative mass shifts for both D
and D mesons (as well as B and By) of the same order as Rel [340).

Finally, we will here summarize the findings of Ref. [221], in wich MEM was used to study charge-
conjugate-projected Gaussian sum rules [see Eq. (189) fo. the . cific form of the Gaussian kernel]. The
charge conjugate projection, proposed in Ref. [234] for the firs. *ime, makes it possible to disentangle the
D% and D~ spectra and hence to study the respective “tates independently. To discuss this method,
let us consider the correlator of Eq. (1) with the -=rent J(z) coupling to the D meson of interest,
for instance JP (z) = id(z)ysc(z) or JP (x) = ié(z, L(z). In vacuum, the correlators of JP (z) and
JP~ (z) are, of course, identical and will depend ¢ .- on 7 because of Lorentz invariance. Replacing the
vacuum |0) expectation value of Eq. (1) with that o. finite baryon density matter ),, the two correlators
will be different and furthermore depend on w |v. » herc us the notation ¢ = (w, p) and set the momentum

p to zero for simplicity],
17 (w) = 127 (w?) + wII*¥(w?). (226)

Here, 11°4(w?) contains only non-scalar «~nde isates, which vanish in the zero density limit, such as
(@V"q) p, (ST qy*iD*iD¥q), or (qy'o. ,G*Ptq),. Note that in Ref. [234] the variable gy was used instead
of w here. T1°°"(w?) and I1°%(w?) fo. 777 () can be related to D' and D~ as follows,

Loven (2 = %[Hw) P (), (227)
W% (2) = %[m(w) - H—(w)}, (228)

where TT*(w) carries the DT spectrum at positive w and the D~ spectrum at negative w and vice
versa for I17(w). See Fig. .2 for 1 schematic illustration. For the D~ correlator 1P (w), Dt and D~
contributions are simp'y intercnanged.

To disentangle the Dt an | D~ spectra, the charge-conjugate-projected sum rule is constructed by
a method analogous *9 pa.luy-projection for baryonic sum rules [235, 239]. The idea is to introduce the
so-called old-fashic ned cc relator, which for zero-momentum is defined as

Mo () = / dh2e ™0 (o) (T[T (2) 1 (0)]),. (229)

Here, 0(x() represe. ts the Heaviside step function, which is introduced to remove the negative energy
contribution from the correlator. Using I1°(w), the correlators that have only D* or D~ contributions
can be constructed as

HDi (w) _ Hevemold(wQ) + wHOdd’OId(u)Q). (230)
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Figure 22: Schematic illustration of spectral contributio.s to (1°V°"(w?) and I1°94(w?) for
the D correlator. DT and D~ contributions are simply 1.*erchanged for the D~ correlator.
Spectral functions of the old-fashioned correlator of I~ (229" include only spectra at positive
w. Taken from Fig. 1 of Ref. [234], where gy was usc! insvead of w in this review.

Making use of the analyticity of this function, one ca formulate sum rules for the D™ and D~ spectra,
as explained in Ref. [234] for the Gaussian sum i = ca. . The resulting sum rules were analyzed using
MEM, as discussed in Section 4.3.1. We refer the 1. tei sted reader to Ref. [234] for detailed discussions
about adopted input condensate parameters a. * c... analyses and here only show the most important
result about the D meson masses at normal nuclea. matter density as a function of the 7N sigma term
o.n in Fig. 23. As can be seen in this figv ¢, ? oth D™ and D~ mesons receive a positive mass shift. Its
magnitude ranges from 10 MeV to almc t 100 MeV, depending on the o,y value. This shows that rate
of restoration of chiral symmetry, whi h is g~ erned by o,y [see Eq. (100)], determines the size of the
D meson mass shift. A simple quarl me del »icture, that explains this initially surprising finding, was
given in Ref. [350]. Irrespective of the .- n value, the D~ mass shift is always larger than that of the
D*. In the sum rules, this differe . ~ is generated due to the chiral odd terms in the OPE, particularly
(qY*q),, which is proportional to bary.a density. It is rather straightforward to think of an intuitive
quark based picture to unders .an' why the D~ receives more repulsion than the DT at finite density.
The D~ meson has a d valenc. ‘.uark, which can be expected to interact repulsively with the same d
quark existing in nuclear r.att=r, aae to Pauli blocking. For DT, with a d valence quark, such a Pauli
blocking effect is absent &« he - epulsion hence becomes weaker.

In summary QCDST. 1esults so far do not appear to be conclusive. While Refs. [55, 345, 347] obtain a
negative mass shift, it s posit ve for Refs. [234, 346]. It is however not difficult to identify the reason for
this discrepancy. Namei, P _fs. [55, 345, 347] employ a QCDSR approach proposed in Refs. [351, 352],
which extracts the D-N | ~attering amplitude in the zero-momentum limit. Refs. [234, 346] on the other
hand use the more ~onve itional method, partly explained above, which directly analyses the spectral
function and t' = ~oditication of the D meson peak at finite density. The application of the former
method to light -« tor mesons was criticized in Ref. [353] and also later in Ref.[234] for issues related
to the Borel windo. - and specifically for the apparent lack of the pole (or ground state) contribution in
this approach. This criticism has so far not been refuted.

Let us briefly discuss the B meson, which was studied in Refs. [55, 234, 346, 347, 348]. The general
trends are the same as for the D meson, namely Refs. [55, 347, 348] obtain a negative mass shift for
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Figure 23: The 7N sigma term dependence of Dt .~d D~ meson mass shifts at normal
nuclear matter density py. Dashed lines and shadeu areas correspond to errors related to

uncertainties of in-medium condensates exclud’ . o error of o,y. Taken from Fig.6 of
Ref. [234].

the averaged BT and B~ masses, while Refs. [234, 34C] get a positive one. Numerically, the negative
mass shifts of Refs. [55, 347, 348] are of the orw. ol . veral hundreds of MeV, while the positive ones in
Refs. [234, 346] are below 100 MeV. An interesting finding about the masses of the individual Bt and
B~ states was furthermore reported in R .i5. (234, 346]. In both works, the mass splitting between the
two states rapidly increases with increa ing hei vy quark mass, leading to a larger positive mass shift
for B~ and a small negative mass sh’.t for ™ ~. This effect is related to the w-odd terms, which for
B~ have the same sign as the densit v dr pendent w-even terms. For BT, the two contributions almost
completely cancel, leaving only a ¢ aali ~eg itive mass shift.

For further results about othr. ™ and B meson channels, such as Dy, D*, Dy, Dy, By, B*, By and
By, which we will not discuss here, see Qefs. [55, 346, 349].

As a last point, it is worta m :ntioning related works studying D mesons in a constant magnetic
field. Such a study was first pc. ormed in Ref. [354] for the B meson and later in Ref. [220] for the D
meson where more conden ate were taken into account and some trivial mistakes in the calculation of
Ref. [354] were pointed ou. s # result, it was shown that, similar to the charmonium case discussed
at the end of the previous suvsection, mixing effects between pseudoscalar and vector channels are
important to obtain s; ectral unctions that are consistent with the sum rules. For charged D mesons,
Landau level effects fur >~ .10re need to be taken into account. It was found in Ref.[220], that the
above two effects satura.= the sum rules for the charged D mesons, while for neutral ones a further
positive mass shift ‘s nee .ed to be consistent with the OPE.

5.3.3 Heavy b. ryons

Studies about the finite density behavior of heavy hadrons, that is, hadrons with at least one ¢ or
b valence quark, have only begun recently. The A. and A, state properties in nuclear matter were
studied first in Ref. [355] and subsequently in Refs.[356, 357]. The first two works, Refs. [355, 3506]
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obtained an increasing A, (Ap) mass at finite density, leading to 85 MeV (92 MeV) repulsion (sum of
scalar and vector self-energies) in Ref. [355] and a considerably larger 432 MeV (1089 MeV) repulsion
in Ref. [356] at normal nuclear matter density. In Ref. [357] the sum rules were improved by taking into
account oy corrections to the Wilson coefficients and employing the parity projr cted sum rules with a
Gaussian kernel. In the same work, the treatment of the density dependence of . 'r-quark condensates
was studied in detail. Specifically, two treatments of the four-quark condensates we. : considered: the
traditional factorization ansatz of Eqs. (157) and (158) and a parametrizatio . ba .ed on the perturbative
chiral quark model (PCQM) [41, 200]. Applying these two four-quark conde..” ite specifications first to
the finite density QCDSRs for the A (with an s quark instead of a ¢ qua.’). 1w was found that only
the latter PCQM prescription gives a small and negative mass shift for che A at normal nuclear matter
density that is consistent with our knowledge from A hypernucleon sy, ~troscopy [358]. It was therefore
concluded in Ref. [357] that only the PCQM prescription is suitable © r thi. specific sum rule and hence
also for the one of the A.. This then leads to an about 20 MeV a tractic 1 of the A, at normal nuclear
matter density. For A, the attraction turns out to be practically . ~ro The studies performed up to
now are far from being consistent and more work will be ne ded '~ clarify the origin of the various
discrepancies.

Similarly, the finite density behavior of ¥. and ¥ hes becn stadied in Refs. [356, 359]. For X, (%),
a strong repulsion of 323 MeV (401 MeV) was found in Rer. [?59], while an equally strong attraction of
-450 MeV (-232 MeV) was obtained in Ref. [356] for th. sum ot scalar and vector self energies at normal
nuclear matter density. Again, the results are in comnlete <'sagreement. Further studies are warranted
for reaching a final conclusion on this issue.

As for the behavior of Z. and =, in nur'>or natter, only the results of Ref.[356] are presently
available. In this work, only a very weak attrac.’~n of -4 MeV (-2 MeV) was obtained for =Z. (Z;) at
normal nuclear matter density. Furthermore spin—% O =o and (27, (@ here stands for a ¢ or b quark)
baryons in nuclear matter were studied .n Rer [360]. While for the scalar self-energies of ¥, 3% and
=} some attraction was obtained, the total of ¢ alar and vector self-energies turned out to be repulsive
for all studied states. Independent ce cul tions will be needed in the future to check and confirm these
findings.

Finally, doubly heavy spinl baryous, specifically Zgo and Qg (where again () = ¢ or b), in
nuclear matter were studied i« Re .. [361]. In this paper, the scalar self-energies had the tendency to be
much larger than their vector co "nterparts. The sum of scalar and vector self-energy turned out to be
attractive for all investiga’ed - nannels. At normal nuclear matter density, the obtained values for this
sum are —0.97 GeV for Z.., -0.74 GeV for .., —2.86 GeV for =, and —1.04 GeV for . Here, it is
especially worth noting cne remarkably large attraction in the =, channel. It will be interesting to see
if it can be reproduce.' in fut ire works based on the same or other methods and if such a large mass
shift could perhaps »2 1.. ,ared in a future experiment. Very recently, the finite denity behavior of
doubly heavy spir % bar, ons, =g, g, ZHg and Q25 (for the last two, Q # Q') were investigated
in Ref. [362]. The 1.nort d results are qualitatively different from the spin—% case of Ref. [361]. For all
channels, the a .. *~ values of the scalar and vector self-energies are of the same order of magnitude.
For the Q5 ana o channels, both scalar and vector parts have the size of at most a few percent
of the respective vacuum masses, leading for their sum to a weak repulsion in nuclear matter. For the
Epg and =5, states, the self energies are larger, namely around 20 % of the vacuum masses at normal
nuclear matter density pg. Their sum however largely cancel, giving only a very small effect of at most
2% at po.
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6 Exact sum rules at finite temperature

In addition to the conventional sum rules reviewed in the previous sections, it was recently attempted to
derive and make use of exact sum rules. The novel feature of these sum rules is t~ use the infrared (IR)
behavior of the Green function, which is correctly described by hydrodynamics ¢ we consider channels
with conserved currents at finite temperature/density, as well as the ultraviolet (UV) . ~havior described
by the OPE. Originally, such sum rules were derived for the energy-moment’ m  nsor channel [29], and
recently also for the vector current channel [363, 364]. In both cases, the sun. =".es were used to improve
related lattice QCD analyses. We will review these works in the next two . “bseciions, focusing on the
finite temperature and zero chemical potential case unless otherwise ,p. cifiea. As will be discussed
below, the shape of the spectral function at finite temperature becor ‘es ~ather complicated compared
with that at "= 0. Constraints obtained from exact sum rules can therc~re be very helpful.

The physical motivation to investigate the finite temperature and z» ro chemical potential case is
related to the research of quark-gluon plasma, which was realized i1. the e .xrly universe and is now being
created terrestrially in heavy ion collision experiments. Even tliough» much was learned over the years,
there still remain some unsolved problems in this field. For exe e, ¢ t what temperature ground state
and excited state charmonia melt, is still a controversial top.. Al o, hydrodynamics has proven to be
useful for describing heavy ion collision experiments. The deteriiination of its parameters, transport
coefficients, is a theoretically interesting and phenomen~log. ~1""" necessary task. Especially, the bulk
viscosity is believed to behave in a way that is closely relaic? to the QCD phase transition. The sum
rules introduced in this section have the potential to c.~tribute to the current research of these topics.

6.1 Energy-momentum tensor channd!

In this subsection, we review the derivation of sum . :les and their application in the channel of the
energy-momentum tensor, which is a conserve » co.m at. Two sum rules in the shear sector and one in
the bulk sector will be discussed.

6.1.1 Derivation

As the derivation of the exact sum ' ales has so far only been outlined a few times in the literature,
we recapitulate it here [29]. The sta.“i".g point is to consider the integral on the contour C' drawn in
Fig. 24. As the integrand, we cc sider v.e quantity [6G, ,5(w,p) — 5G5V7%(w — 00,p)]/(w — i),
where the § stands for the subt.acti.n of the T = 0 part, 6G* = G — G£_,. The retarded Green

function in the energy-moment ... tensor sector’ is defined as

Finapt) =i / d'ze™0(x") ([T (), Tap(0)])r- (231)

As the retarded functior ‘s an.' tic in the upper half of the complex energy plane, the residue theorem
gives

6GE (iw,p — G

uvsaf3

1 SGE, (', p) — 6GR, y(w" — oo,
R f dw’ pr,af (w p) uv,aff (w o0 p) 7 (232>
C

' v,aﬁ(w” — 00, p) = 5

271 w —w

The subtractio. s .2 *ha T' = 0 part and the w” — oo limit remove any potential UV divergence, such
that the contribu.’on from the half circle on the contour C' can be neglected when we take its radius to

"In this channel, the Green function can alternatively be defined in curved space-time [29] instead of the flat one. The
two definitions differ by a contact term, which is proportional to 64 (xz —y) in coordinate space. This contact term does
not affect the final form of the sum rule, because, as we will see, it is canceled by a similar term coming from the Green
function in the IR limit.
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Figure 24: The contour C' in the complex w’ energy ple ¢, us:d to derive the exact sum
rules. The contour runs infinitesimally above the real ax’~ so that it does not overlap with
the singularities on the real axis. Taken from Fig. 1 ~f Ref. | }64].

infinity. The above equation thus reduces to

A dw

5G;wa,6’( ) 5G;wa,6’(oo p _f)/ ;wa,B( 7p>7 (233>

where we have used 1/(w' —iw) — P(1/w') 4+ imd(w"). 1n the following, we will only consider the Green
function of two identical operators, (i, ) = (.. 4). In this case, the real part of G¥(p) is even in w
while the imaginary part is odd. We thus have

3G 05(00) =36, (o D) = = [ Zpa(ep). (234
where we have introduced the spectr 1 f.nct'on as pu,as(p) = ImGy, ,5(p). It is seen in Eq. (234) that,
the integral of the spectral functio . is cu >« rained by the asymptotic behavior of the Green function in
the UV and IR limits. These are cc rectly described by the OPE and hydrodynamics, respectively, as
long as |p| is small enough. We note that the OPE expression obtained has an ambiguity in form of a
contact term [30]. However, ¢ «ch . ambiguity does not appear in the final sum rule, as it vanishes on
the left-hand side of Eq. (234).

We next proceed to a »1orr concrete discussion in the shear and bulk sectors. We set the direction
of p to the z-axis, in whi™ che corresponding components reduce to the simple forms, G, = G12 12
and G¢ = g"yg afBG iar, with g =diag(1, =1, —1, —1). We consider only these two components, where
the above assumption [(u,v) = (a, §)] is valid. For the general tensor decomposition of G, 5, see
Ref. [365]. We will dorive “*_ sum rule in the shear sector® first, and move to the bulk sector thereafter.

Shear sector
In this sector, we ~onfine our discussion to pure Yang-Mills theory, as the sum rule in full QCD has not
been obtained yet. The OPE at leading order reads [366]

Gy(p) = —3p+ A{a,G?)r, (235)

8This channel is sometimes referred to as the tensor channel.
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where A is an undetermined constant, which can in principle be obtained from a higher-order calculation.
p stands for the pressure. The relation between p, the energy density ¢ and the traceless component of
energy-momentum tensor can be given as (%) = 3(e + p)/4. The gluon condensate is also related to
these thermodynamic quantities as € — 3p = —by{a;G?)r/(87) for weak couplin ,, where by = 11N,/3.
Note the difference to Eqs. (49) and (50), where we use Ny = 3 instead of Ny = O here.

On the other hand, second order hydrodynamics provides the following express.on about the IR
behavior of the retarded correlator [367],

1 1

Gy(p) = —p+inw+ (UTw - §H) w? — §HT‘2 (236)

Here, 7 is a first order transport coefficient (shear viscosity), while = ai.'  are of second order. The

terms proportional to w? and p? are valid only in the conformal li-ait, aw 1 are expected to be modified
in the non-conformal case. If the long time tail caused by the im racti- n among the hydro modes is
taken into account, second order hydrodynamics is modified so .nat ~ non-analytic term (~ w3/2) enters
the expression above. Such an effect is suppressed in the larg > .. linait, both in the weak and strong
coupling limits [368].

Combining these two expressions with Eq. (234), we g~t the fi st sum rule (sum rule 1) in the shear
sector, which reads [29]

€e+p

+ B(e — 3p) = / —5Pn w,0), (237)

where B is an undetermined constant, which w~ int1 ‘duced because the OPE expression has an un-
determined coefficient for the gluon condensate tcr1.. la this derivation, we used only the asymptotic
behavior of the Green function in the UV an * 'R ei.~rgy regions. The former is given by the OPE, in
which the Wilson coefficients are evaluated exac.'v at infinitely large energy, while the latter is given
by hydrodynamics, which is a reliable low ~mergy effective theory for channels of conserved quantities.
Thus, this sum rule is exact, once the unr eterm. 1ed constant is fixed by a higher order OPE calculation.
This sum rule was generalized to the case —ith a lattice discretization later in Refs. [369, 370].

Compared to the more conventic.aal QCDSRs discussed in detail in previous sections, the exact
sum rules do not introduce an UV cu"< d, ¢, that the leading order OPE result becomes exact due to
asymptotic freedom. The UV di- ergence 1s removed by subtracting the spectral function at 7" = 0,
instead of a cutoff. Furthermo:e, hy 'odynamics is used to describe the IR behavior, unlike in the
conventional sum rules, for wr.c. IR quantities do not appear. It is worth mentioning here a similar
approach, which was used in Ref |371] to construct a sum rule from the difference between the vector
and the axial vector spectr . func“ons, in order to discuss the effect of chiral symmetry, its breaking
and restoration. Taking tiis ‘.ffe ence, the UV divergence is removed as it happens for the sum rules
in this paper. These so-callec. W :inberg sum rules (proposed first in Ref. [372] for the vacuum case) are
frequently discussed in the cc 1text of chiral symmetry breaking and its restoration at finite temperature
or density as the vectc~ and axial vector spectral functions should become identical in a situation of
completely restorec cairal symmetry. Recent studies related to this topic can be found for instance in
Refs.[122, 373, 37- 375].

The derivation o. ' second sum rule is somewhat non-trivial. Equation (232) for the shear channel
is first rewritte. as

. L[> wop, (W, p)+ w[RedG, 0G, (oo, p
0G,(iw, p) — G, (00, p) = %/0 dw n(@',p) + ] — +EJ2 P) = 0Gy( )]
2 (= wipy(w',p)
- =z du “2Pn 9
T /0 Ww? 4 w? (238)

74



where we have used the relation

. /°° du 9P (W' P) — w[ReIGy (W', p) — 3Gy (00, P)]

2 2
0o W'+ w

, (239)

in the last line, which is obtained by using the residual theorem for the intesral 6., dw'[0G,(w',p) —
6Gy(00, p)]/ (W' + iw). Subtracting iwdG,' = 2iw?6G,’ [~ dw'/[m(w? 4+ w'?)l “om Eq. (238), which is
necessary to regularize the IR singularity in the integral, we get

. . / 2 2 * / 1 / -1 /
0G,(iw, p) — 0G,(0,p) — iwdG, (0,p) = —w /0 dw ] {5@](/ P s +6p,(0,p)|, (240)

™

where ’ stands for the derivative in terms of energy (w, w’). Taking the .- — 0 limit, this reduces to

1 2 [ 1
§5Gn”(0,p) = %/ dwﬁ [6pp(w, p) —wd, " (0,p |. (241)
0

Here, we have changed the integration variable from w’ to w for .*~.plic cy. We hence obtain the following
second sum rule (sum rule 2) [29] by using the expressions ¢ the Green function in the IR limit [see
Eq. (236)],

%(5Gn/’(0,p) = 2/0 dwi [§0.(00 ~) —wép,(0,p)] . (242)

T w3

Taking furthermore the |p| = 0 limit, we have

1 2 (7
NTr = 5k = %/0 ' [0pn(w,0) — nw] . (243)
In this sum rule, the w? term obtained from hyd( ndynamics in Eq. (236) was used. Eq.(243) is thus
expected to be modified for finite N..

Bulk sector
The OPE as before provides the UV »eb wior in the bulk sector [30], predicting that G¢(p) vanishes in
the w — oo limit. On the other hana, * e I'{ behavior is obtained from hydrodynamics [376, 377] as

Ge(lw=0,p—0)=— (Tg; - 4) (e —3p) — (Tﬁ% - 2) me(S(@fwf}T, (244)
f

where O(m?) terms are neg .ectea.
Making use of these 7syn ptotic expressions, Eq.(234) yields the following sum rule for the bulk
sector,

(=N - (15 -2) > b = g ) (245)

) ™

Because we have o1 itted” O(m?) terms, this sum rule is only valid for light quarks, and becomes exact
for the massle. - c. »ure glue case. This sum rule was derived for the first time in Refs. [376, 377]
for infinitesimal |-, and was generalized to the case of finite density in Ref.[378] and to a non-zero
magnetic field in Rel. [379]. Later, the sum rule for the case where the p = 0 limit is taken first so that
the sound peak does not appear in dp¢(w, p), was obtained in Ref.[29].

Let us furthermore mention that in addition to the sum rules in the shear and bulk components, sim-
ilar sum rules were derived for other components in the energy-momentum tensor channel in Ref. [380].
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6.1.2 Applications

We here review a few possible applications of the above sum rules, starting with the shear sector.

Shear sector

1. In both strong coupling N' = 4 super Yang-Mills theory [29] and tb - we akly coupled QCD [29,
381, 382], the inequality 17, > /2 holds. Through sum rule 2, this ‘roperty constrains the
shear spectral function dp,(p) to be larger than nw at least in som~ w 1 ion [29]. Especially, the
simplest ansatz, for which the spectral function is saturated b~ a .o.~mtzian peak [0p,(w,p =
0) = IMnw/(w? + T?)]° at zero momentum, was shown to be inc - isistent with sum rule 2: the
integrand in this sum rule becomes dp, — nw = —nw?/(w? + ['*). which is negative while the
left-hand side of the sum rule is positive.

2. In pure Yang-Mills theory, it was confirmed that the sh :ar <_ <tral function calculated at NLO
accuracy satisfies sum rule 1 of Eq. (237) [383]. This is o... exa nple, in which an exact sum rule
is used as a consistency check of an explicit spectral func“ion calculation.

Finally, we make a few remarks on possible future appli~atic ~s. ‘irst, the left-hand side of sum rule 1
can be calculated with lattice QCD without having to deai —ith the problem of analytic continuation.
Once the constant B is fixed, it will constrain the specu. 21 tunction and may be used to improve spectral
fits to lattice QCD data. Next, sum rule 2 can potentially Ye of help in determining x, making use of
the spectral function obtained from lattice QCD. Ac.1a'ty, some attempts in this direction have already
been tried in the vector channel, as will be seen -~ the next subsection.

Bulk sector

To obtain dynamical or real time quantities from « lattice QCD calculation, one has to overcome the
well known problem of analytical contir.auw. n, as already mentioned earlier. Namely, lattice QCD
cannot evaluate quantities defined in ree time s ich as spectral functions directly, but can only compute
imaginary time objects. The Green fv iction. © g in Euclidian time for instance can be obtained on the
lattice and is related to the spectral .uns cior as

Y dw cosh|w(T — 1/2T)]
Gra, = /0 gl)(w) sinh(w/2T")

(246)

with Euclidian time 7. Thus, ssv ning an ansatz about the form of the spectral function, or attempting
to get a model-independent resu.. from numerical methods such as MEM [263, 264, 265, 384] becomes
necessary.

1. There are alread: several studies attempting to use exact sum rules to evaluate the bulk viscosity
from lattice QC.). Subs iituting the simplest ansatz for the spectral function®, dpc(w,p = 0) =
9¢T2w/[m(w?~ T2)|, io a preliminary version of the sum rule and matching it with thermodynamic
quantities a1 d the chiral condensate evaluated by lattice QCD, the bulk viscosity ¢ was evaluated
in Refs. [376, 277]. _ater, the sum rule was corrected in Ref. [29], and the abovementioned simple
ansatz we ~ o. “*~ized because at least in pure Yang-Mills theory, the left-hand side of the sum rule
was shown < be negative in lattice QCD [139], which is inconsistent with the simple Lorentzian

9The overall coefficient is determined so that it matches with the definition of 7, p,(w,0) ~ nw, which can be read off
from Eq. (236).

10T (T") was set to the scale at which the values for the running coupling evaluated by lattice QCD [385] and perturbation
theory coincide.
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ansatz, which always yields a positive contribution to the sum rule. Subsequently, a similar
method was attempted by using the correct version of the sum rule and a more sophisticated
ansatz for dp; [386].

2. It was shown that the spectral function calculated at LO [30], and later at NLO [387] satisfies the
sum rule. This provides a cross-check for the perturbative result, as it was ti.> case in the shear
sector.

6.2 Vector current channel

In this subsection, we review the exact sum rules and their applications or t e «orrelator of the conserved
vector current.

6.2.1 Derivation

The derivation of the sum rules given in Refs.[363, 364] is sim’ar to that in the previous energy-
momentum tensor case. The basic equation is still Eq. (234), where ¢ H“'Ww should be replaced with ny,
which is the Green function of the vector current. This functio. has two independent channels, called
transverse and longitudinal. Namely

GE,(p) = PL(p)Gr(p) + P* 11/ 1 (p), (247)
where P}, (p) = g*'g" <5ij - %) and Pl (p) = I — P"(p) with P} (p) = — <g“” — ’%ﬁ’y), are

the projection tensors for transverse and longitudina. ‘hannels. The OPE of both components can be
found in Appendix A. We first derive the sum rcic in the transverse sector, and then continue with
the longitudinal sector.

Transverse sector
The UV behavior is given by the OPE re ult ot =q. (274) in the Appendix. The IR asymptotic behavior
is described by hydrodynamics as [388]

Gr(p) =ic - o1 W* + kpp® + O(w?, wp?, p*). (248)

Here, o is the electrical conducti- ..;7 7; a second order transport coefficient corresponding to the 9yE
term in the current, and xp the transport coefficient corresponding to the V x B term, respectively.
Combining these expressions we get the first sum rule (sum rule 1) in the transverse sector from
Eq. (234),

2 [® 3§
fﬁ~p2+0(p4):;/ dww. (249)
0

This sum rule at |p| = 0 was irst obtained from the current conservation law in Ref. [389].
Using w?Gr(p) ‘. tead of Gr(p) in Eq. (234), we obtain the second sum rule (sum rule 2) in the
transverse channe’ as [30. , 364],

- 1 /o 8 1
—622%% [{‘ G 4 \waf>T + E(s <?G2>T} + §4CF + Nf5<T00>T

A preliminary version of this sum rule at |p| = 0 was in fact derived long time ago in Refs. [390, 391],
however with incorrect coefficients. We note that T, appearing in the above sum rule is not the
energy-momentum tensor itself, but its trace subtracted version.

2 o0

0
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Finally, making use of the same method as in the derivation of sum rule 2 in the shear channel
[Eq. (243)], we can obtain another sum rule (sum rule 3) in the transverse channel [363, 364],

1 " 2 > 1 /
§6GT (07 p) = _/ dw_g [6PT(W7 p) - wapT<07 p)] : (251>
T Jo w
Taking again the |p| = 0 limit, we derive
2 [ 1 5
—oTy = i dwﬁ [0pr(w,0) — ow]. (252)

As in the shear channel, this sum rule holds only in the large N, limi
It was shown and discussed in detail in Refs.[363, 364] that +" = sp.-tral function calculated at
leading order in the weak coupling expansion satisfies the above t iree su v rules.

Longitudinal sector
Hydrodynamics gives the following IR behavior [388],

1+ 0 p?)
w+iDp? + wy” pt)’

Goo(p) = iop? (253)
where D is the diffusion constant. Before discussing .-« sum rules, let us remember that the retarded
Green function in the longitudinal channel is exactlv know 2 at zero momentum [392] from the charge
conservation law,

p00<w7 0) B /./"TLU(S(Q)), (254)

where y, = [ d®x(j%(x)j°(0))/T is the charge s.ceptibility. Therefore, sum rules in the longitudinal
channel provide nontrivial information onlv when p is finite. We hence consider only the finite momen-
tum case in this subsection. Furthermo e, ma“ching Eq. (254) with the hydro result of Eq. (253), we
obtain o/D = x,,.

From Eq. (253), the OPE result ¢ Ec.(2/0), and Eq. (234), we derive the first sum rule (sum rule
1) in the longitudinal channel,

/ , 2 [0
— 4+ Ofp?) = _/ de. (255)
n T Jo w

Next, considering the integ.~" in Eq. (234) with two more powers of w, we are led to

2 o0
0=2 [ dawdpm(w.p). (256)
0

™

which is the second st rule (sum rule 2) in the longitudinal channel. Sum rule 2 was first derived
using the current ¢ ...ervavon in Ref. [389] (note that pog = ps3p?/w?). This implies that the sum rule
is in fact exact for any m mentum value, and one does not need to assume that it is small here.

Finally, increasi.> t+ - powers of w by two in the integral of Eq. (234), we obtain the third sum rule
(sum rule 3) in “ne " -~zitudinal channel as

— 1 /as 8 1
—62 Z q]2cp2 |:{2mf5 <¢f¢f>T + Eé <?G2>T} + gm(s <T00>T]

2 o0
= 2 [ ds o ). (257)
0

m
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6.2.2 Applications

Let us briefly review possible applications of the exact sum rules derived in this subsection. Applications
currently exist only for the zero momentum case, for which the transverse and Jongitudinal sum rules
are degenerate. Therefore, we will not distinguish the two channels below, ans refer only to the sum
rules in the former channel.

1. The earliest vector channel sum rules application is to our knowledgc the study of spectral prop-
erties at the chiral phase transition in Refs. [390, 391]. The authors ~f tu.~e works discussed the
structure of the spectral function at the transition temperature ’ '»nsi, - in the context of soft
modes related to the phase transition [393].

2. Using perturbative QCD, it was shown in Refs. [363, 364] the . vne spectral function calculated at
LO satisfies all three sum rules, therefore demonstrating ag. in thai these sum rules can be used
as a consistency check for perturbative calculations.

3. The sum rules can be applied to the analysis of the spect. . fun tion and transport coefficients in
lattice QCD. As mentioned in Section 6.1, because of the ‘ssue of analytic continuation an ansatz
for the form of the spectral function often needs tc be ass' med in lattice QCD analyses of the
spectral function. Earlier works such as Ref.[392) have [.oposed an ansatz motivated by weak
coupling results, namely!!

p(w)
Cem

== ATppeaA ‘W; 'ipcont(w% (258)

where p(w) = pr(w,p = 0). The two parts,

1 wl/2
prsl) = TR
2

Peon. (W) = Z—ﬂ (1 — 2np (g)) , (260)

(259)

correspond to the transport pc "k .nd  he continuum, which can be derived in the weak coupling
limit. The former is a Lor mtzia.. peak appearing at an energy scale governed by transport
processes [given approxime e1, ~s (mean free path)~! < T, while the latter appears at a scale of
the order of T" and is caus- ? by the process v — ¢¢. However, Eq. (258) generally does not satisfy
sum rule 1 of Eq. (249) To satisfy it, the simple relation Ay = kT2 needs to hold. Furthermore,
it cannot satisfy sum ruie. 2 [Eq.(250)] and 3 [Eq.(252)], because it would generate UV and
IR divergences in t}e 17 spective integrals. This happens because the transport peak and the
continuum are simply -~ mnr ied in Eq. (258), while in principle there should be a smooth crossover
between the two .t least 1n the weak coupling case.

In a later analysi. a mc.e sophisticated form for the spectral function was suggested in Refs. [394,
395]. Here, w. 1nertion only the one given in Ref. [394], which reads
o o(w T
% = §GV5(W — my) + KoPeont(w)B(w — Qo), (261)
p(w)
Cem

= Arppea(w) + gaTé(w — ) + 0(w — Qp)Fopeont (w)
—|—9(w - QO)F&OPItan(W)- (262)

HNote that their conventions differ from ours by a factor of 1/6.
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Here, p|.;(w) = 1/(47w?), while the coefficient of the continuum term is modified to

1 — tanh (QLWYI , (263)

to obtain a better fit. The former expression of Eq. (261) is the ansatz fcr zero temperature (or a
temperature sufficiently below T,), while the latter is an ansatz suitable .u. high temperature. The
former in essence corresponds to the “pole + continuum” ansatz of cc ~ve .tional QCDSR studies,
while the latter is motivated by the transport peak and the UV il ay, veak coupling, briefly
mentioned in Section 2.2. §p is obtained by subtracting the forr_ » fro.~» the latter. Requiring
that it satisfies sum rule 1, the authors of Ref.[394] derived a ¢ .ns. aint on the parameters
appearing in Egs. (261) and (262). Moreover, the spectral functio. can be adjusted consistently
with sum rule 3, as the potential IR divergence is regularize 1« by the cutoff parameters (g, Q7r,
Qo). However, it still violates sum rule 2 because the transp. vt pea : and the UV tail cause a UV
divergence.

/~€0 = Ko + K1

Recently, it was attempted in Ref. [364] to improve this . » atz uch that it can satisfy both sum
rules 2 and 3. Specifically, the proposed ansatz reads

p(w)
Cem
Compared with the previous version of Eq. (262, two teatures are modified. First, the transport

peak and the continuum are smoothly connerted by ‘he function A(w) = tanh (w?/A?), instead
of the jump at w = Qp. Second, the UV tail t. v 1s modified to

% 1
47 v* In(w/Aqep)]t e’

= Arppear(w)[1 — Aw)] + %aT(S(w )+ e (@) AW) + O(w — Q0)Kopran(w)(264)

pran () (265)
which more closely resembles the OPE expi-sion given in Eq. (281), that includes a logarithmic
dependence. These two improveme '~ help to regularize the UV divergence, such that, as a
whole, the spectral function can b : consi: tent with sum rule 2. The spectrum at 7" = 0 remains
the same as in Eq. (261). In Ref. "364, " rules 1 and 2 were furthermore employed to reduce the
number of independent fitting » are neters in Eq. (264). Specifically, thermodynamic quantities of
Ref. [120] were used to express . » ccadensates and T on the left hand side of Eq. (250). For
illustration, we show the rr mlting utted spectral functions at various temperatures in Fig. 25.
With the spectral function fixe sum rule 3 [Eq.(252)] was subsequently used to evaluate the
second-order transport coel cient 7;. These results demonstrate that the sum rules are helpful
for spectral fits to lattic> C,CD data. As shown in Ref. [364], more precise and a larger number
of data points will he wever . » needed for a conclusive determination of the spectral function at
finite temperature.

Let us conclude thi . section with a few remarks about possible future directions. First, the spectral
function at 7' = 0 can n prin: iple be extracted from the experimental cross section for e™e~ — hadron
processes [396]. Th~ =foic, unce physical point lattice data become available, such experimental data
can be used inste d of t e simple ansatz of Eq.(261). Also, as mentioned above, more data points
should be studied .~ fut-.re lattice QCD analyses, such that more accurate spectral functions can be
obtained with t . I_-'» of the sum rules. Finally, we mention potential applications at finite momentum.
The transport co. “acient kg can be determined with lattice QCD nonperturbatively without suffering
from the problem ¢! analytic continuation (see Ref.[397]). Therefore, once the lattice QCD data for
the vector current propagator at finite momentum become available, we expect that sum rule 1 in
the transverse channel [Eq. (249)] will become useful to constrain the shape of the spectral function at
non-zero momentum.
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Figure 25: The appropriately normalized spectrai “mc. .1 of the p meson channel, p(w),
obtained by fitting Eq. (264) to the lattice QCD data ~f Ref. [394]. Here a is the lattice
spacing and Con = €3 ; ¢. Taken from Fig. 5 o1 Ref. [364].

7 Summary and Outlook

In this review article, we have given an overview o1 cecent developments in QCDSR studies. Particular
focus has been laid on reviewing determir auic °s of QCD condensates based on methods such as lattice
QCD or chiral perturbation theory and, where >ossible, on experimental data. In doing this, we have
attempted to provide a comprehensive surve - f the most recent and relevant literature.

We have furthermore not only ¢ itic Jdly :xamined the traditional QCDSR analysis method which
makes use of the Borel transform #.ad su. = quently of the so-called Borel-curves for hadron masses and
residues, but have also looked at ai.~rnatives that are presently being used in the QCDSR community.
These include, for instance, the <e of aiernative kernels different from the Laplace-type obtained using
the Borel transform, or the 7 ppli :ation of the maximum entropy method for extracting the spectral
function from the sum rules

As areas of QCDSR a ,plir ations have grown and multiplied over the years, we necessarily had to
limit ourselves to a limitea . nge of QCDSR applications to be discussed in this review, in order not to
let the article become "nhumraniy lengthy. We have hence focused on applications, for which QCDSRs
can produce relevant esults or experiments and theoretical practitioners of related methods. With
this guiding princir' in ....ad, we have summarized recent works employing QCDSRs to investigate
properties of hadrns at finite density, particularly in nuclear matter. Even though such calculations
have their limitatic ~s ir terms of precision and lack of ability to obtain detailed features of the in-
medium spectr. « .. ~~tions, they are nevertheless useful as they can provide interpretations of observed
hadron spectra i Jlense matter in terms of QCD condensates. In channels containing light (valence)
quarks, this often 1.ads to direct connections between modifications of the spectral function and the
(partial) restoration of chiral symmetry in dense matter. Such calculations are moreover relevant in
view of the fact that lattice QCD studies at finite density are still challenging due to the existence of the
sign problem. Besides the above topic, we have furthermore given a brief overview on the derivation and
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applications of exact sum rules, a topic that that has been studied already long ago, but has attracted
renewed interest in recent years. Some of these exact sum rules are presently being used in spectral fits
to lattice QCD data and can in the future potentially be used to determine certain combinations of QCD
condensates or hydrodynamic transport coefficients. Another area, where QCDS™s continue to be used
frequently, but which we have not covered in this review, is the study of exotics ..~ channels with four,
five or even more valence quarks or hadronic molecules. We refer interested readers .o Ref. [12] for an
earlier review. Another interesting and important topic is the behavior of hs dro s at finite temperature
[19], especially for understanding experimental measurements from heavy-ion - illisions. Here, QCDSRs
however have to compete with lattice QCD and new ideas such as those pro, ~sea in Refs. [236, 263] are
needed in order to be competitive.

Finally, let us give an outlook about how QCDSR studies might '=v_:lop in the future. Certainly,
the fields described in the previous paragraph will remain the ones v I.are , "JDSR can provide the most
meaningful contributions to the field of hadron physics and QCD. “urthe. more, as we have emphasized
in this article, the determination of QCD condensates has advanced « ~nsi erably during the last decade.
It is especially worth mentioning the very precise information n ,w a- . lable about the dimension 3 quark
(or chiral) condensate, in vacuum, at finite temperature and 1.. a co .stant and homogenous magnetic
field'2. Such results, as well as similar ones for other cona.~sates, can and are often being taken
into account in modern QCDSR analyses. Together wit! the nc rel analysis methods that have been
developed over the years, this shows that the field of QCL'Rs 1. _ontinuously evolving and will hopefully
continue to do so in the future.

In all, we hope that this article will be useful for (D practitioners as a reference for the most
up-to-date QCD condensate values, for researchers .° ~diacent fields to get an idea about the present
status of QCDSR studies and for interested beginner. ‘s a starting point in their study of this subject.
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A Operator procducv expansion of correlator and UV tail in
the vector ch.vael

In this Appendix, we L ovide OPE and UV tail expressions for various vector correlators. The OPE is
obtained as

5Gr(w,p) =2 4} 2[{2mf5 (G sy, + 1125<%G2>T}+§%5<T]90>T] +OW™), (266)

SGE (w,p) = QqufplQPQ [{2mf5<¢f¢f>T = < G2> }+§5<TJ90>T]+O(M—6). (267)

12There is however still rather large uncertainty about its behavior at finite density. Even the value of its linear order
density coefficient, the 7N sigma term, is still controversially discussed.
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We decompose the quark component of the traceless energy-momentum tensor as

9
TOO —_ T/OO - TOO _TOO 268
;o 4Cr + Nf + Nf ’ ( )
where
1

=T} T, (269)

S

f
T =N "TP + T, (270)

- N
T =20p ) TP ~ 1" (271)

f/

Here, T} = —GH*GY a0+ " G* /4 is the gluon component of th” wraceless part of the energy-momentum

tensor. A standard renormalization group (RG) analysis yield ' t'.e fc lowing scaling properties [398]:

T'OO(I{) _ In ("ig/AéCD)] 7700 0)
f In (IQQ/A(%CD\ | on 272)
- N 272
. In (K3/A )| -
FOO()) — 0/2Qen ) | 00
() | In (K212 ) (o),

where x and kg are renormalization scales, Aq. is e QCD scale parameter, a’ = 8Cr/(3by), and
a = 2(4Cr + N¢)/(3by), where by = (11N, — 2Ny),3, .-hich appears in the expression

47
bo ln(nQ/AéCD) '
2 2

Note that 7% is independent of x. In the 1 — ¢ o limit, it is natural to choose the RG scale as k? = w?.
We see that, except for the 7% term all teri. s in Eq. (268) are suppressed logarithmically at large w.
Thus, Eqs. (266) and (267) become

1 - 1 /o 8§ 1 w4 p?
§Gr(w,p) = € Zq?]? {{27)7]-6 \hw_f>T + 1—2(5 <?G2> } + 310+ ) <TOO>T}

as(k) = (273)

p2
O _4> (274)
2
WCi(erp) = e qu ({2mf5<wf¢f> 1126<%G2>T} * §4CF1+Nf6<TOO>T} +0(W™).
(275)

Next, we briefly ex rlain b sic idea of the derivation of the spectral UV tail at high energy. The UV
behavior of the retar”=d . __.or current correlator is described by the OPE expressions of Egs. (266) and
(267). Among the three °rms, only (T})O}T is not RG invariant. This operator yields imaginary parts
of the retarded cor.-late , as can be understood as follows. The scaling relations of Eq. (272) can be
rewritten as

bo

T/OO ET/OO 1
P00 = TP + o't () o
bo

T%(k) ~ T00<ﬁ0)+a1n< )47r T

TIOO
(276)
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when k is close to kg. It was shown in Ref.[30] that the factor In(k3/k?) generates an imaginary
contribution im, due to the analytic continuation to real time. Following this prescription, the imaginary
parts of the retarded correlators of Egs. (266) and (267) read

Spr(p) = é* Z f8w + P as(w) (20F5 (T"P(w)), + ié <TO' (w,\ \) , (277)

p f -y
5p00 QZ f9

This expression is valid when the OPE is reliable, that is, for w > T', /.qc »
Especially, in the chiral and weak coupling limits, the operator ex, ~c*ation values at the renormal-
ization scale kg ~ T read

)(2CF5<T’00( ) +—6< ’m,} ) (278)

Tm T
T, = N..- — 2
(T®) o (279)
2T4
TOO =92 NCT(_ -, 2
which, by using the scaling relation of Eq. (272), leads to
90 0) = Cun s (14320 ) () o2 L 1/ Aaen) ] (281)
= LCem 5 3 | As\K v ’
pr(p w2 w2 0 27 In (w/Aqep)
9 2 24 atl
p? -, Ar?T* [n (ko /Aqep)
J = Cem 1422 )ar ~ ’ 282
poo(p) C w4 < -+ ) o KJO)l CF 27 l:h’l (Q}/AQCD) ( 8 )

Here, we have retained terms up to next-to-lec "uig - *der in the small |p| expansion.
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