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Abstract

We review the recent status of the QCD sum rule approach to study the properties of hadrons in
vacuum and in hot or dense matter. Special focus is laid on the progress made in the evaluation of
the QCD condensates, which are the input of all QCD sum rule calculations, and for which much
new information has become available through high precision lattice QCD calculations, chiral
perturbation theory and experimental measurements. Furthermore, we critically examine common
analysis methods for QCD sum rules and contrast them with potential alternative strategies. The
status of QCD sum rule studies investigating the modification of hadrons at finite density as well
as recent derivations of exact sum rules applicable to finite temperature spectral functions, are also
reviewed.
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1 Introduction

The QCD sum rule (QCDSR) method, formulated and proposed in the seminal papers of Shifman,
Vainshtein and Zakharov [1, 2] in the late seventies (for earlier attempts, see also Refs. [3, 4, 5]), is
today still being frequently used as a tool to compute hadronic properties from QCD1. Initially, its
main purpose was to compute basic observables such as ground state masses or magnetic moments
of hadrons. Such calculations were rather successful [8] (see, however, Ref. [9] for a discussion about
exceptional channels), which led to the firm establishment of the method in the hadron physics/QCD
community.

QCDSRs rely on several approximations and assumptions such as the truncation of the operator
product expansion (OPE) or the pole dominance of the sum rules, as will be discussed in detail in Section
2. These approximations typically limit the precision of QCDSR predictions to about 10% to 20%.
Nevertheless, even with the advancement of lattice QCD, which is by now able to precisely compute
many hadronic observables with physical pion masses and up to four active flavors [10], QCDSR still
have a role to play. Typical settings and problems for which QCDSR can be relevant even today are the
following. 1) QCDSR provide non-trivial relations between hadronic observables and the QCD vacuum
(condensates). Especially interesting in this context is the relation between hadronic properties and the
spontaneous breaking of chiral symmetry. 2) The behavior of hadrons at finite density can be studied
in QCDSR at least up to densities of the order of normal nuclear matter density [11]. The status
of such works will be discussed in Section 5. In lattice QCD such calculations are presently still not
possible because of the sign problem, which prevents efficient important sampling techniques to work.
3) QCDSRs often do not require heavy numerical analyses and can hence be used for first exploratory
studies to obtain a rough idea on what the final result will look like. This can lead to important hints, for
instance for more precise lattice QCD studies. 4) QCDSRs can provide constraints on certain integrals
(moments) of hadronic spectral functions (see for example Section 6 of this review for a derivation
of such sum rules at finite temperature). These can be used either for checks for spectral functions
computed from hadronic models, for determining condensate values in case the spectral function itself
is known, or for constraining parameters in spectral fits of lattice QCD data. 5) QCDSR studies of
exotic hadrons are possible and indeed have become rather popular in recent years [12]. Care is, however,
needed as for states with more than three quarks, the OPE convergence often becomes problematic and
the continuum contribution to the sum rules tends to be significant.

The goal of this review is to summarize some of the recent progress in the field of QCDSRs. As
this method by now already has a rather long history, a large number of reviews have been written
over the years [8, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Hence, to avoid too many redundancies, we
will only touch briefly upon the QCDSR derivation and its basic features, but instead discuss novel
developments in more detail that have roughly occurred during the last decade. We will particularly
focus on up-to-date estimates of the QCD condensates in vacuum, finite temperature, finite density
and in a constant and homogeneous magnetic field, taking into account the latest results from lattice
QCD and chiral perturbation theory. Non-scalar condensates, which become non-zero only in a hot,
dense or magnetic medium will also be reviewed and updated estimates for them will be given wherever
possible. We will furthermore describe advancements in analysis techniques, using alternative forms of
sum rules (in contrast to the most frequently employed Borel sum rules) and the maximum entropy
method, which can be used to extract the spectral function from the sum rules without relying on any
strong assumption about its form [21].

As a disclaimer for the reader, let us note that no attempt to discuss all possible applications of
QCDSRs and to review the corresponding recent literature, will be made in this article. Considering the
large number of QCDSR related papers that appear on the arXiv weekly if not daily, this would clearly

1Similar sum rules were formulated even before by other authors in Refs. [6, 7].
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go beyond the intended scope for this review and the ability and time of the authors. We will, however,
review recent works studying the modification of hadrons in nuclear matter, as these will potentially
have a large impact on related experimental studies planned at various experimental facilities such
as FAIR, NICA, HIAF and J-PARC. As a second application, we will outline the derivation of exact
sum rules at finite temperature, discuss their properties and provide specific sum rules for the energy-
momentum tensor and vector current correlators. These can be useful either to constrain fits of spectral
functions to lattice data or to determine certain combinations of condensate values or hydrodynamic
transport coefficients.

This review article is organized as follows. In Section 2, a brief introduction of the basic QCDSR
features, such as the dispersion relation and the OPE is given and followed by a detailed discussion about
our present knowledge of QCD condensates in vacuum, at finite density, temperature and in a constant
and homogeneous magnetic field in Section 3. In Section 4, traditional and more advanced analysis
techniques for practical QCDSR studies are reviewed. Section 5 discusses applications of QCDSR to
studies of hadronic spectral functions in dense matter. In Section 6, the derivations of several exact sum
rules are reviewed and their potential applications discussed. Finally, Section 7 gives a short summary
and outlook. In Appendix A, specific OPE expressions for various correlators needed for the derivation
of the exact sum rules in Section 6 are provided.

2 Formalism of QCD sum rules

In this section, we will introduce the QCDSR method, its basic idea and concrete implementation.
Following partly Ref. [21], we will also examine the inputs and tools required for this method, the
operator product expansion (OPE) and the QCD condensates arising from the non-trivial vacuum of
QCD. We will furthermore discuss how QCDSRs can be generalized to the case of non-zero temperature,
density or magnetic field, especially how the QCD condensates are modified in hot, dense or magnetic
matter and how new Lorentz-symmetry-violating condensates are generated. Finally, we will review
how information about physical states can be extracted from the sum rules. In particular, we will
critically asses the “pole + continuum” assumption, which is routinely used in QCDSR studies, but is
not necessarily universally applicable for all channels and becomes particularly questionable for finite
density and/or temperature and/or magnetic field spectra.

2.1 Basics

The method of QCD sum rules relies in essence on two basic concepts: the analyticity of the two-point
function (correlator) of an interpolating field and asymptotic freedom of QCD. As will be shown in more
detail below, the former allows one to derive dispersion relations that relate the deep Euclidean region of
the correlator with an integral over its imaginary part (the spectral function) in the physical (positive)
energy region. The latter, asymptotic freedom, then makes it possible to systematically compute the
correlator in the deep Euclidean region using the OPE, which incorporates both perturbative and non-
perturbative aspects into the calculation and becomes exact in the high-energy limit. The OPE gives rise
to an expansion of non-perturbative expectation values of operators with increasing mass dimension and
corresponding Wilson coefficients that are used to describe the short-distance dynamics of the correlator
and can be obtained perturbatively. One is then left with equations that relate certain integrals of the
spectral function (or in other words, sums of contributions of physical states, hence the name “sum
rules”) with the result of the OPE. The high-energy part of the spectral function is furthermore often
substituted by the analytically continued OPE expression, making use of the quark-hadron duality.
Integrals that only involve the low-energy part of the spectral function can thus be derived from QCD
via the OPE. Let us discuss each step outlined above more explicitly.
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Figure 1: The contour C on the complex energy of the variable s, used in Eq. (2). The wavy
line represents the location of potential poles and cuts of the correlator Π(s). Taken from
Fig.A.1 of Ref. [21].

2.1.1 The dispersion relation

Variations of the dispersion relation derived here are used in many branches of physics [22, 23, 24]. In
some fields, they are referred to as Kramers-Kroenig relations [25, 26]. First, we define the correlator
as

Π(q2) = i

∫
d4xeiqx⟨0|T [J(x)J†(0)]|0⟩. (1)

Here, J(x) is a general operator that in principle can have Dirac or Lorentz indices, in which case
Π(q2) becomes a matrix. For simplicity these non-essential complications are ignored here. The symbol
⟨0| denotes the non-trivial QCD vacuum, but can be generalized for instance to the ground state of
nuclear matter as will be done later. Furthermore, when considering sum rules at finite temperature,
the retarded correlator should be used instead of the above time-ordered one, because it has suitable
analytic properties when regarded as function of q0 = ω [27, 28] (see also Section 6).

The function Π(q2) is known to be analytic on the whole complex q2 plane except the positive real
axis, where it can have poles and cuts, which correspond to the physical states that are generated by
the operator J†(0). Making use of this analyticity, we employ the Cauchy theorem to obtain

Π(q2) =
1

2πi

∮

C

ds
Π(s)

s− q2

=
1

2πi

∮

|s|=R

ds
Π(s)

s− q2
+

1

2πi

∫ R

0

ds
Π(s+ iϵ)− Π(s− iϵ)

s− q2
. (2)

Here, R denotes the radius of the large circle in Fig. 1. Next, we take R to infinity, which means
that the first term in Eq. (2) vanishes if Π(s) decreases fast enough at |s| = R → ∞. As will be
demonstrated in the next paragraph, this is not the case in many practical situations and therefore
subtraction terms have to be introduced. We will here for simplicity assume that the first term indeed
vanishes for |s| = R → ∞. The second term can be cast into a simple form by the Schwarz reflection
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principle, which gives

Π(s+ iϵ)− Π(s− iϵ) = 2iImΠ(s+ iϵ). (3)

We hence have derived the dispersion relation as

Π(q2) =
1

π

∫ ∞

0

ds
ImΠ(s+ iϵ)

s− q2
=

1

π

∫ ∞

0

ds
ρ(s)

s− q2
, (4)

where we have defined ImΠ(s+ iϵ) = ρ(s).

Let us for a moment return to the case where the first term in Eq. (2) does not vanish for |s| = R → ∞
and/or the integral on the right hand side of Eq. (4) diverges, in which case subtraction terms have to
be introduced to tame the divergence. If this divergence is logarithmic, one only needs one subtraction
term,

Π̃(q2) ≡ Π(q2)− Π(0)

=
q2

π

∫ ∞

0

ds
ρ(s)

s(s− q2)
. (5)

The same prescription can be applied arbitrary many times by subtracting the Taylor expansion of
Π(q2) around q2 = 0 term by term, by which power like divergences of any order can be eliminated,
which suffices for all practical applications in QCD. Note that Π(0) is a divergent constant in the above
example, which, however, does not play any important role in the formulation of the final form of the
sum rules. Indeed, applying the Borel transform to Eq. (5), this constant (or any positive power of
q2) vanishes. In fact, the correlator is in any case only well defined modulo power terms of q2 (see
Refs. [29, 30]). We conclude this section by noting that the discussion preceding Eq. (4) is not the only
path to derive a dispersion relation. As will be seen later in Section 6.1.1, the derivation of exact sum
rules at finite temperature can be done using a somewhat different method.

2.1.2 The quark-hadron duality

One more concept often mentioned in relation to the derivation of QCD sum rules is the so-called
quark-hadron duality. We refer the interested reader to Refs. [31, 32] for more detailed discussions and
here only give a brief description. The quark-hadron duality was first proposed in Ref. [33] and says
that a hadronic and experimentally measurable spectral function ρ(s) appropriately averaged over a
certain energy range can be described by the corresponding expression calculated from QCD and its
degrees of freedom, quarks and gluons. More precisely, one sometimes distinguishes between a local
and global quark-hadron duality [32]. The former refers to the case where the non-energy-averaged
hadronic spectral function agrees with its QCD counterpart within uncertainties. At low energies, this
local duality is often strongly violated due to the sharp resonance peaks which cannot be accurately
described by perturbative QCD. On the other hand, at high energies, where hadronic resonances are
wide and overlapping, the localy duality is often satisfied rather well. In practical QCD sum rule
analyses, one makes use of this and approximates the spectral function above a certain threshold sth
by its QCD expression [see Section 4.2 and especially Eq. (192)]. The global quark-hadron duality in
contrast refers to the (approximate) equality between an integrated hadronic spectral function and the
integral of the same quantity computed from QCD. Specifically, considering Eq. (4), this corresponds
to the statement that Π(q2) on the left-hand side for sufficiently large Q2 = −q2 is equal to the integral
of ρ(s)/[π(s− q2)] on the right-hand side, where ρ(s) is the hadronic spectral function.

6



2.2 The operator product expansion

Here we discuss the second technique used to derive the sum rules, the operator product expansion
(OPE). Originally proposed by Wilson [34], it can in position space be summarized as

Â(x)B̂(y)
x→y−−→

∑

n

Cn(x− y)Ôn

(x+ y

2

)
. (6)

Here, Â(x) and B̂(y) are arbitrary operators defined at positions x and y. The essence of the above
equation is that if x is sufficiently close to y, the product of Â(x) and B̂(y) can be expanded in a series
of local operators Ôn defined somewhere in between x and y [we could just as well have written Ôn(x) or
Ôn(y) instead of Ôn

(
x+y
2

)
], with corresponding coefficients Cn(x−y), which depend only on the distance

between x and y and are simply C-numbers. The Cn(x − y) are called Wilson coefficients, which are
governed by the short distance dynamics of x− y and can therefore due to asymptotic freedom of QCD
be calculated perturbatively if the distance x − y is small enough. Potential contact terms, which are
proportional to δ(4)(x− y) or its derivative, are neglected in all the OPE expressions of our manuscript.
This causes no problem because such terms do not appear in the final form of the sum rule after the
Borel transform.

After taking the expectation value with respect to some general state |Ω⟩ (which can be the vacuum,
the thermal ensemble or the ground state of nuclear matter) it is usually assumed that the expectation
values of the local operators Ôn are position independent. Thus, computing the Fourier transform of
Eq. (6) sandwiched between |Ω⟩, we obtain

i

∫
d4xeiq(x−y)⟨Ω|Â(x)B̂(y)|Ω⟩ |q2|→∞−−−−→

∑

n

Cn(q)⟨Ω|Ôn|Ω⟩, (7)

where Cn(q) denotes the Fourier transform (times i) of Cn(x− y). Using dimensional analysis, one can
easily determine the functional forms of Cn(x − y) and Cn(q). In the short distance or large energy
limit where the OPE is applicable, low energy scales such as light quark masses can be ignored, such
that x− y or q are the only dimensional quantities that can appear in Cn(x− y) and Cn(q) (this is not
necessarily true for channels involving heavy quarks c or b, where the simple arguments given here have
to be modified). Assuming the mass dimensions of Â(x), B̂(y) and Ôn to be dA, dB and dn, we get for
Cn(x− y),

Cn(x− y)
x→y−−→

[
1

(x− y)2

](dA+dB−dn)/2

, (8)

and for Cn(q),

Cn(q)
|q2|→∞−−−−→ qdA+dB−dn−4. (9)

In the last equation, we have ignored potential logarithmic factors of log(−q2/µ2) (µ2: renormalization
scale), which occur for dA+dB −dn−4 ≥ 0, but are not important for the discussion here. As we see in
Eq. (9), operators Ôn with the smallest values of dn dominate the expansion if q2 is large enough. The
operators Ôn are generally constructed from quark fields (which have mass dimension 3/2), gluon field
strengths (mass dimension 2) and covariant derivatives (mass dimension 1). If the state |Ω⟩ corresponds
to the vacuum (|0⟩), only Gauge- and Lorentz-invariant operators can have non-zero expectation values.
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Up to mass dimension 6, these are

dimension 0 : 1,

dimension 3 : ⟨0|q̄q|0⟩,
dimension 4 : ⟨0|Ga

µνG
aµν |0⟩,

dimension 5 : ⟨0|q̄σµνtaGaµνq|0⟩,
dimension 6 : ⟨0|q̄qq̄q|0⟩, ⟨0|q̄γ5qq̄γ5q|0⟩, (10)

⟨0|q̄taqq̄taq|0⟩, ⟨0|q̄γµtaqq̄γµtaq|0⟩, . . .
⟨0|fabcGaν

µ G
bλ
ν G

cµ
λ |0⟩,

. . .

Here, ta = λa/2, λa being the Gell-Mann matrices, while fabc stands for the structure constants of the
SU(3) (color) group. We have in Eq. (10) for simplicity only considered one species of quarks, which
is denoted as q. In the above list we have not included the gauge non-invariant gluon condensate of
dimension 2, ⟨0|Aa

µA
aµ|0⟩. The potential existence and relevance of this condensate has generated a

fairly large body of work (see for instance Refs. [35, 36, 37, 38, 39, 40]), but is nevertheless far less
established than those given in Eq. (10) and is usually not considered in present-day QCD sum rule
studies. At dimension 6, we have shown only a few representative examples of all possible four-quark
condensates, of which some can be related by Fierz-transformations [41]. For the gluonic condensates
at dimension 6, one can in fact construct one more operator with two covariant derivatives and two
gluon fields, which however can be rewritten as a four-quark condensate by the use of the equation of
motion. With the exception of the four-quark condensates, the above list is therefore complete up to
dimension 6.

Once one starts to consider the case of finite temperature, density or magnetic field, more condensates
can be constructed because Lorentz symmetry gets partly broken by these external fields. For the case
of finite temperature and density, the most simple way to do this is to define a normalized four-vector
uµ (u2 = 1) with spatial components that correspond to the velocity of the hot or dense medium and to
then assemble all possible combinations of quark fields, gluon field strengths, covariant derivatives and
uµ as before. In this derivation, one usually considers the medium to be colorless and invariant with
respect to parity and time reversal, which we will assume as well in the discussions of this review. The
details of this procedure have been discussed for instance in Refs. [42, 43]. Here, we just reproduce the
final findings, which are

dimension 3 : ⟨Ω|q̄γµq|Ω⟩,
dimension 4 : ⟨Ω|ST q̄γµiDνq|Ω⟩, ⟨Ω|q̄iDµq|Ω⟩, ⟨Ω|ST Gaµ

α G
aνα|Ω⟩,

dimension 5 : ⟨Ω|ST q̄iDµiDνq|Ω⟩, ⟨Ω|ST q̄γαiDµiDνq|Ω⟩, ⟨Ω|q̄γµσαβGaαβtaq|Ω⟩, (11)

dimension 6 : ⟨Ω|ST q̄γµtaqq̄γνtaq|Ω⟩, ⟨Ω|ST q̄γµiDνiDαiDβq|Ω⟩, . . .
⟨Ω|ST Ga

αβiD
µiDµGaαβ|Ω⟩, ⟨Ω|ST Gaα

δ iD
βiDµGaνδ|Ω⟩, . . .

. . .

8



Here the letters ST stand for the operation of making the Lorentz indices symmetric and traceless,

ST Oµν =
1

2
(Oµν +Oνµ)− 1

4
gµνO α

α , (12)

ST Oµνα =
1

6
(Oµνα +Oµαν +Oνµα +Oναµ +Oαµν +Oανµ)

+
1

3
(gµνAα + gµαAν + gναAµ), (13)

ST Oµναβ =
1

24
(Oµναβ + 23 other orderings of µναβ)

+
1

6
(gµνBαβ + gµαBνβ + gµβBνα + gναBµβ + gνβBµα + gαβBµν)

+
1

3
C(gµνgαβ + gµαgνβ + gµβgνα). (14)

Aµ can easily be obtained from the tracelessness condition of ST Oµνα,

Aµ = −1

6
(O αµ

α +O µα
α +Oµ α

α ). (15)

In Eq. (14), we define Bαβ to be symmetric and traceless. From the tracelessness condition of ST Oµναβ,
we then have

Bαβ =
1

16

[
(O δ σ

δ σ +O δσ
δσ +O σδ

δσ )gαβ

− (O δαβ
δ +O δβα

δ +O αδβ
δ +O βδα

δ +O αβδ
δ +O βαδ

δ

+Oα δβ
δ +Oβ δα

δ +Oα βδ
δ +Oβ αδ

δ +Oαβ δ
δ +Oβα δ

δ )
]
, (16)

C = − 1

24
(O δ σ

δ σ +O δσ
δσ +O σδ

δσ ). (17)

It is noteworthy that the 0 component of the Lorentz violating dimension 3 condensate is just ⟨Ω|q†q|Ω⟩,
which is nothing but the quark number density of the state |Ω⟩. Furthermore, the first and third
condensates on the second line of Eq. (11) are proportional to the quark and gluon components of the
energy momentum tensor.

We do not provide the complete set of independent operators of dimension 6 in Eq. (11), but again
only a few representative examples. For the complete list of operators appearing in the vector channel
OPE, see Ref. [44]. A recent discussion about the independent Lorentz violating gluonic operators of
dimension 6 and a calculation of their anomalous dimensions is given in Ref. [45]. Moreover, the non-
scalar condensates appearing in a magnetic field generally have a different structure. They will be
discussed in Section 3.2.3.

Finally, we consider the renormalization group (RG) effect on the OPE. The expectation values
of the operators in Eq. (7) make sense only when the energy scale is specified at which the operators
and their corresponding Wilson coefficients are evaluated. In the present case, q is the natural choice
for the scale, which we take to be large in the derivation of the sum rule. On the other hand, the
expectation values obtained from, say, lattice QCD, are evaluated at a finite energy scale such as T .
Such expectation values evaluated at different scales are related by RG equations. The perturbative
RG equation provides scaling properties additional to the canonical dimension dn,

On(q) ∼
(
ln(q0/ΛQCD)

ln(q/ΛQCD)

)an

On(q0), (18)

where an is proportional to the anomalous dimension of the operator On. Furthermore, a general
operator may mix with other operators of the same dimension due to the RG effect. This point is
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not always taken into account in the conventional sum rule analysis, in which the finite UV cutoff is
introduced so that the effect of the anomalous dimension is negligible. However, for the exact sum rules
to be reviewed in Sec. 6, we will consider the infinite energy limit, in which this effect has to be taken
into account.

This RG effect actually generates a very useful byproduct, particularly handy for finite temperature
calculations [30]. The correlator from the OPE is at finite T usually calculated in imaginary time. To
obtain the retarded Green function, which plays a central role for the derivation of the exact sum rules,
one needs to do an analytic continuation to real time. The logarithmic factor coming from the RG
scaling/mixing of Eq. (18) gives a constant imaginary contribution after such an analytic continuation,
which means that the OPE can predict the spectral function at high energy. As the other parts in
the OPE [Cn(q)] have polynomial (and possibly logarithmic) dependence on q, the resultant spectral
function has the same q dependence, This structure in the spectral function is called UV tail. The
explicit form of the UV tail in the vector channel is given in Appendix A.

2.2.1 Status of higher order Wilson coefficient computations

Over the years, higher order αs terms of Wilson coefficients have been computed for many channels.
We will give a short overview of these calculations here. Reviewing the numerous purely perturbative
computations, which in principle correspond to Wilson coefficients of the identity operator, would
however go beyond the scope of this review. With the exception of a number of exotic channels, we will
therefore only consider terms involving condensates of at least mass dimension 3.

Mesonic correlators
The most detailed information about NLO and NNLO αs terms is available for two-quark mesonic
channels. Let us first consider currents with two light quarks. For the vector and axial-vector channels,
the NLO αs corrections of the dimension 3 quark condensate (which appears at linear order in the quark
massmq) were computed for the first time in Ref. [46]. For the same vector and axial-vector channels, αs

and α2
s terms of the dimension 3 quark condensate and the dimension 4 gluon condensate were calculated

in Ref. [47] The same terms were computed similarly for the vector, scalar and pseudoscalar channels in
Ref. [48] (see also Ref. [49]). For all the above channels, the LO quark condensate terms are of order O(1)
while those for the gluon condensate are of orderO(αs). The mixed condensate ⟨0|q̄σµνtaGaµνq|0⟩, whose
Wilson coefficient is proportional to mq and the strong coupling g, at LO is known to vanish for the
vector current correlator [1]. It would hence be useful to calculate the respective NLO term, especially
in the phenomenologically important vector channel. To our knowledge, this has presently not yet been
done for any channel. The NLO corrections in the four-quark operator Wilson coefficients for the vector
and axial-vector channels were obtained in Ref. [50] (this reference is unfortunately rather difficult to
find online, the corresponding results are however reproduced and further discussed in Refs. [51, 52]).

Next, we discuss αs corrections for heavy-light quark current correlators, about which much less is
known and presently only NLO terms for the quark condensate ⟨qq⟩ have been computed. This was
first done in Ref. [53] for the pseudoscalar channel. Later, in Ref. [54] the same αs correction was also
calculated for the vector channel. The appendix of Ref. [54] is especially useful, as it gives explicit OPE
expressions of pseudoscalar and vector channels both before and after the Borel transform. Futhermore,
results for the scalar and axial-vector channels are available in Ref. [55].

Finally, we turn to meson current correlators with two heavy quarks (quarkonia), which have only
gluonic operators in their OPE, as heavy quark condensates can be recast as gluonic condensates
with the help of the heavy quark expansion. In principle, light quark operators can also contribute,
but appear only at order O(α2

s) and will therefore not be discussed here. The NLO corrections to
the Wilson coefficient of the dimension 4 gluon condensate for the scalar, pseudoscalar, vector and

10



axial-vector channels were obtained in Ref. [56]. These are the only NLO results available so far for
quarkonium correlators.

For mesons containing four or more quarks, NLO calculations have up to now only been carried
out for purely perturbative terms. For a large number of light tetraquark channels, this was done in
Ref. [57].

Baryonic correlators
For baryonic channels, only a few NLO terms have been obtained so far. The first attempt to compute
αs corrections to the dimension 3 chiral condensate term were made in Ref. [58]. Later, more terms in
more channels (NLO terms of the dimension 3 chiral condensate, the dimension 5 mixed condensate and
dimension 6 four-quark condensates for both the proton and ∆ channels), were calculated in Ref. [59],
which were however not fully consistent with those of Ref. [58]. The results of Ref. [58] and parts of
Ref. [59] were further corrected in Refs. [60, 61]. More recently, perturbative corrections to the Wilson
coefficient of the dimension 3 vector condensate (which vanishes in vacuum, but is non-zero at finite
density) were obtained in Ref. [62].

For exotic baryons with at least five valence quarks or anti-quarks, no NLO corrections to non-
perturbative condensate terms have so far been computed. Purely perturbative NLO αs terms were
however obtained in Refs. [63, 64] for light quark pentraquark correlators.

3 The QCD condensates

It has long been known that non-perturbative quantum fluctuations generate condensates, which break
chiral or dilatation symmetries. These symmetries are present in the Lagrangian of massless QCD,
but are not reflected in the hadronic spectrum. Nevertheless, with a complete and non-perturbative
understanding of QCD still missing, many features of these condensates are not yet well understood
and established. Until not long ago, the QCD condensates were for instance thought of as properties
of the QCD vacuum, while it was recently claimed in Ref. [65] that they are in fact properties of
hadrons themselves. This led to a vigorous debate about the true nature of the condensates (see for
example Refs. [66, 67, 68]). We will in this section not go into the intricate details of this debate, but
pragmatically focus on what is presently known about the individual condensate values and about their
modifications in extreme environments.

3.1 Vacuum

The vacuum condensate that is presently by far best known and understood is the quark (or chiral)
condensate averaged over the lightest u and d quarks: ⟨0|qq|0⟩ = (⟨0|uu|0⟩ + ⟨0|dd|0⟩)/2. It is an
order parameter of chiral symmetry breaking i.e. its value being non-zero means that this symmetry is
spontaneously broken in the vacuum. Earliest estimates of the quark condensates have been obtained
based on the Gell-Mann-Oakes-Renner relation [69],

f 2
πm

2
π = −2mq⟨0|qq|0⟩. (19)

Here, fπ and mπ are the pion decay constant and mass, which can be measured experimentally, while
mq is the averaged u and d quark mass. This relation is however not exact because Eq. (19) is only
the leading order result of the chiral expansion and receives corrections due to non-zero quark masses
[70, 71]. Nowadays, lattice QCD is able to compute the chiral condensate at the physical point with
good precision and with most (if not all) systematic uncertainties under control. The Flavour Lattice
Averaging Group (FLAG) [72] presently (November 2018) gives an averaged value of

⟨0|qq|0⟩ = −[272(5)MeV]3 [73, 74, 75, 76, 77] (20)
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for Nf = 2 + 1 flavors in the MS scheme at a renormalization scale of 2 GeV (see their webpage for
updates).

The strange quark condensate ⟨0|ss|0⟩ is much less well determined. Old QCDSR analyses studying
the energy levels and splittings of baryons led to a value of ⟨0|ss|0⟩/⟨0|qq|0⟩ = 0.8± 0.1 [8]. From the
lattice, there are to our knowledge at present only two publicly available results, which read

⟨0|ss|0⟩ = −[290(15)MeV]3 (Nf = 2 + 1 + 1) [78], (21)

⟨0|ss|0⟩ = −[296(11)MeV]3 (Nf = 2 + 1) [79]. (22)

Both are given in the MS scheme at a renormalization scale of 2 GeV. In Ref. [78], similar values were
obtained for both ⟨0|ss|0⟩ and ⟨0|qq|0⟩: ⟨0|ss|0⟩/⟨0|qq|0⟩ ≃ 1.08(16). The tendency of this result does
not agree with the above-mentioned older estimate of Ref. [8], which is smaller than 1 and is still widely
used in practice. It would therefore be helpful to have further independent lattice computations that
could check the reliability of Eqs. (21) and (22).

The gluon condensate is usually defined as a product with the strong coupling constant, which is a
scale-independent quantity: ⟨0|αs

π
Ga

µνG
aµν |0⟩ ≡ ⟨0|αs

π
G2|0⟩. A first estimate of its value was obtained

in Refs. [1, 2] from an analysis of charmonium sum rules, for which the gluon condensate is the leading
order non-perturbative power correction. Their value

⟨0|αs

π
G2|0⟩ = (0.012± 0.004)GeV4 (23)

is frequently used even in current QCDSR studies, simply because no significant progress in its deter-
mination has since been made and no later estimate can beyond any doubt claim to be more reliable.
Over the years, estimates have been given that are a few times larger [80] or smaller [81], which shows
that the systematic uncertainties in the determination of this condensate are still large. For further
details and references, we refer the reader to Table 1 of Ref. [82] for a compilation of available gluon
condensate estimates.

It is, however, worth discussing here some recent progress in computing the gluon condensate on
the lattice. At first sight this seems to be a relatively straightforward task as the operator Ga

µνG
aµν

is directly related to the plaquette in a lattice QCD computation. Attempts in this direction were
accordingly made already in the very early days of lattice QCD calculations [83, 84]. The situation has,
however, turned out to be more complicated than initially expected, because one in principle needs to
subtract a perturbative contribution from the lattice result to obtain the purely non-perturbative value
of the gluon condensate. The way one defines (and truncates) this perturbative part will therefore
change the final value of the gluon condensate obtained in the calculation. Recently, the technique
of the numerical stochastic perturbation theory was used to compute the corresponding perturbative
series to high orders (up to α35

s !), after which it was subtracted from the respective lattice observable.
For more detailed discussions about this issue, see Refs. [85, 86]. The final values obtained for the gluon
condensate in this approach are

⟨0|αs

π
G2|0⟩ = 0.028(3)GeV4 (α20

s ) [85], (24)

⟨0|αs

π
G2|0⟩ = 0.077GeV4

[
δ⟨0|αs

π
G2|0⟩ = 0.087GeV4

]
(α35

s ) [86]. (25)

Here, δ⟨0|αs

π
G2|0⟩ is an estimate of the uncertainty due to the truncation prescription of the perturbative

series. The contents of the round brackets indicate the highest perturbative order taken into account.
The lattice results tend to be considerably larger than the phenomenological estimate of Eq. (23), but
likewise have large systematic uncertainties due to the needed subtraction of the perturbative part. In
all, it can be concluded from the above discussion that the gluon condensate values presently are not
much more than order of magnitude estimates with large uncertainties.
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As a final remark, let us here mention the non-local generalisation of ⟨0|αs

π
G2|0⟩, which is a result

of a resummation of covariant derivatives between the two gluonic operators. For a detailed discussion,
see Ref. [87].

Next, we consider ⟨0|q̄σµνtaGaµνq|0⟩ ≡ ⟨0|q̄σGq|0⟩ the mixed quark-gluon condensate of dimension
5. Its value is usually given in combination with the strong coupling constant g and the dimension 3
chiral condensate,

m2
0 ≡

⟨0|q̄gσGq|0⟩
⟨0|q̄q|0⟩ . (26)

Here, condensates containing q again stand for the average over u and d quark condensates. Information
about m2

0 was extracted already long time ago from sum rules of the nucleon channel [88],

m2
0 = (0.8± 0.2)GeV2. (27)

The above value is still most frequently employed in the contemporary QCD sum rule literature. Other
estimates for m2

0 (or ⟨0|q̄gσGq|0⟩) have been given in the global color symmetry model [89], the field
correlator method [90], Dyson-Schwinger equations [91], an effective quark-quark interaction model [92],
the instanton liquid model [93, 94] and holographic QCD [95]. To obtain an estimate of m2

0 that is more
reliable than Eq. (27), a precise lattice QCD computation would certainly be most helpful. Two lattice
calculations were in fact already performed more than 15 years ago [96, 97]. Ref. [96] obtained a result,
that is significantly larger than Eq. (27), m2

0 ≃ 2.5GeV2, while Ref. [97] reported a value consistent
with Eq. (27), m2

0 = 0.98(2)GeV2. The lattice results hence have clearly not yet converged and updated
calculations would be desirable. One possible problem for the above lattice studies is the potential
mixing of q̄σGq with lower dimensional operators, which can occur on the lattice, but was not taken
into account in Refs. [96, 97]. This issue needs to be carefully handled in any future lattice calculation.

The strange mixed quark-gluon condensate ⟨0|s̄σGs|0⟩ is parametrized in a similar way,

m2
1 ≡

⟨0|s̄gσGs|0⟩
⟨0|s̄s|0⟩ , (28)

or, alternatively by the ratio with the u and d counterpart,

R ≡ ⟨0|s̄gσGs|0⟩
⟨0|q̄gσGq|0⟩ . (29)

For R, a number of estimates have been given during the years [98, 99, 100, 101], which can roughly be
summarized in the following range

R = 0.9± 0.2. (30)

Note, however, that Ref. [94] obtains a value that is considerably smaller (R ≃ 0.5). This translates to

m2
1 = Rm2

0

(⟨0|ss|0⟩
⟨0|qq|0⟩

)−1

= 0.8± 0.3GeV2, (31)

where we have used Eqs. (27), (30) and ⟨0|ss|0⟩/⟨0|qq|0⟩ = 0.95 ± 0.15, which combines QCDSRs and
lattice calculations for this last quantity. For ⟨0|s̄σGs|0⟩, no lattice QCD calculation has yet been
performed, which hopefully will be done in the future.

At dimension 6, there is one condensate constructed only from gluon fields, ⟨0|g3fabcGaν
µ G

bλ
ν G

cµ
λ |0⟩,

where, as for the dimension 4 gluon condensate, appropriate powers of the strong coupling constant are
multiplied. The value of this quantity is not well known, with only one available estimate based on the
dilute instanton gas model [102],

⟨0|g3fabcGaν
µ G

bλ
ν G

cµ
λ |0⟩ = 48π2

5

1

ρ2c
⟨0|αs

π
G2|0⟩, (32)
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where ρc is the instanton radius. We here use ρc ≃ 0.3 fm, which is based on an estimate from the
instanton liquid model, for which the instanton density is fitted to the dimension 4 gluon condensate
value, which fixes ρc [103, 104, 105] and lattice QCD measurements [106, 107]. With Eq. (23), one gets

⟨0|g3fabcGaν
µ G

bλ
ν G

cµ
λ |0⟩ ≃ 0.045GeV6. (33)

It would certainly be useful to test the above estimate in an independent lattice QCD calculation, which
was already tried in Ref. [108] some time ago. However, here again the problem of mixing with lower
dimensional operators occurs, which has to be treated with care.

At dimension 6 there are furthermore a large number of four-quark condensates that can have a non-
zero value in vacuum. These condensates have attracted some interest because of a proposed scenario,
in which the chiral symmetry could be broken by non-zero four-quark condensates, while the more
common “two-quark” condensate ⟨0|qq|0⟩ vanishes [109, 110]. Generally, the four-quark condensates
can be given as

⟨0|qiαqkβqlγqmδ |0⟩, (34)

for which the color indices (i, k, . . . ) and the spinor indices (α, β, . . . ) have to be contracted to give
a color and Lorentz singlet. This can be done in various ways, which leads to multiple independent
condensates, of which some are given in Eq. (10) for illustration. None of these four-quark condensates
are however well constrained in any meaningful way. The only method presently known to obtain a
concrete numerical value for them is the so-called vacuum saturation approximation (also sometimes
referred to as factorization), which reads [1]

⟨0|qiαqkβqlγqmδ |0⟩ ≃
1

144

(
δimδklδαδδβγ − δilδkmδαγδβδ

)
⟨0|qq|0⟩2. (35)

The idea behind this approximation is to insert a complete set of states between the two q and q quarks
and to then assume that the vacuum contribution dominates the sum of states, such that one ends up
with the squared chiral condensate ⟨0|qq|0⟩2. This approximation was shown to be valid in the large
Nc limit [111], but it is not known to what degree it is violated in real QCD with Nc = 3. To take into
account the violation of this approximation, the symbol κ is frequently introduced and multiplied to
the right-hand side of Eq. (35). The case κ = 1 thus stands for the vacuum saturation approximation,
while values different from 1 parametrize its violation. During the years a number of values have been
obtained, which depend on the studied channel and also on the flavor content of q. The proposed
estimates range from close to 1 [81] to 2 ∼ 3 [18] and even up to ∼ 6 [15]. For the case of s quarks, a
value of ∼ 7 was reported from an analysis of finite energy sum rules in the ϕ meson channel [112, 113].

Condensates with mass dimensions larger than 6 can play an important role in sum rules derived
from interpolating fields with three or more quarks, where the convergence of the OPE is usually slower.
As it was discussed in Ref. [114], the leading order OPE terms are composed of a number of loops (if the
interpolating field has n quarks, the number of loops is n− 1 for the leading order OPE term at leading
order in αs). These loops are numerically suppressed due to their momentum integrals. Going to higher
order OPE terms, some of these loops are cut, hence less numerically suppressed and therefore enhanced
compared to the leading order terms. As a general rule of thumb, one thus should compute the OPE
up to the point where all loops are cut, to achieve satisfactory OPE convergence. For interpolating
fields with n quarks, one hence can expect terms up to ⟨0|qq|0⟩n−1 [that is, terms with mass dimension
3(n − 1)] to give a significant contribution to the OPE. For baryonic currents with three (five) quark
fields, one should therefore at least take into account terms up to dimension 6 (12), while for tetraquark
current, one needs terms up to dimension 9. To evaluate condensates with dimensions larger than 6,
usually some sort of vacuum saturation approximation similar to Eq. (35) is used. Results based on
this approximation should, however, be treated with care, as their systematic uncertainties are large
as we have seen for the four-quark condensates above. The OPE hence becomes less reliable as the
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number of quark fields in the interpolating fields are increased. This means that QCD sum rule studies
of exotics such as tetraquarks or pentaquarks have considerably larger systematic uncertainties and are
less reliable than those of quark-antiquark mesons or three quark baryons.

3.2 Hot, dense or magnetic medium

In this Section, we will discuss the evaluation of QCD condensates in a hot, dense or magnetic medium.
We will not only consider the modification of condensates that are non-zero already in vacuum, but also
of the Lorentz violating condensates of Eq. (11), which only appear at finite temperature or density,
and similar ones that appear in a magnetic field. The OPE in essence divides the correlator into a
low-energy part that involves the condensates and a high-energy part that is treated perturbatively as
Wilson coefficients. For most applications, it therefore only makes sense to consider the condensates
at relatively low temperatures and densities (T ≲ ΛQCD ∼ Tc, ρ ≲ Λ3

QCD ∼ ρ0, where Tc is the critical
temperature of the hadron - quark-gluon plasma phase transition and ρ0 the normal nuclear matter
density) because only here the division of scales remains valid and condensates can be treated as low-
energy objects. We will in the following discuss the evaluation of condensates at finite temperature,
density and a magnetic field separately. At low temperatures and densities, both effects can be combined
as independent superpositions, as it was done for instance in Ref. [115].

3.2.1 Condensates at finite temperature

The study of the thermal behavior of condensates has quite a long history, several theoretical approaches
being at our disposal for this task. At low temperatures below Tc, the hadron resonance gas (HRG)
model and/or chiral perturbation theory, which consider the effect of a hot pion (and, if needed, other
hadrons) gas, can be applied. At very high temperatures much above Tc, on the other hand, perturbative
QCD and hard thermal loop (HTL) approaches can be used. While HTL methods cannot be employed to
calculate the QCD condensates directly, they can be of use to compute thermodynamic quantities such as
energy density and pressure, which in turn are needed to estimate the gluon condensate behavior at finite
temperature. Furthermore, lattice QCD in recent years has become increasingly powerful in simulating
hot QCD for realistic pion masses and is nowadays the most precise tool to study condensates at finite
temperature2. We will in this section review recent progress especially of lattice QCD in evaluating the
various condensates that are used in QCDSRs, starting from those with the lowest dimension.

Lattice QCD has so far mostly been used to study scalar condensates of low dimensions (see the
following two Subsections). Therefore, one often considers a free and dilute gas of pions and, if needed,
kaons and the η meson in QCDSR studies. Condensates in this model are expressed as [27]

⟨O⟩T = ⟨0|O|0⟩+
3∑

a=1

∫
d3k

2E(k)(2π)3
⟨πa(k)|O|πa(k)⟩nB[E(k)/T ], (36)

with E(k) =
√
k2 +m2

π and nB(x) = (ex − 1)−1. Here and throughout the rest of this review, the
thermal expectation value ⟨O⟩T is defined as

⟨O⟩T ≡ Tr(Oe−H/T )

Tr(e−H/T )
. (37)

2Alternative methods to estimate the temperature dependences of the condensates have been proposed in the literature.
Especially, approaches which make use of QCD sum rules by introducing a temperature dependence for the continuum
threshold parameter sth (see Sec. 4.2), are frequently discussed. The temperature dependences of the condendates are in
such approaches related to the behavior of the threshold parameters. For more details, see for instance Refs. [19, 116]

15



Furthermore, the normalization

⟨πa(k)|πb(p)⟩ = 2E(k)(2π)3δabδ3(k − p) (38)

for the pionic states is used. Clearly, this model is only applicable for sufficiently low temperatures
below Tc, where pions are the dominant thermal excitations. We will assess the range of validity of this
approximation in the following Subsection which discusses the chiral condensate of dimension 3, as for
this quantity reliable lattice QCD data are available for a wide range of temperatures.

Condensates of dimension 3
At dimension 3, we consider the chiral condensate, which is naturally important for understanding what
phase of chiral symmetry is realized at what temperature. Therefore, it has been studied intensively in
chiral perturbation theory [117] and later in lattice QCD. We will here not attempt to give a full account
of past works, but just give an overview of state-of-the-art lattice QCD studies about the behavior of
⟨qq⟩T and ⟨ss⟩T at finite temperature.

Computing the chiral condensate as a function of temperature in full QCD with several active flavors,
realistic quark masses and even taking the continuum limit is by now an achievable task. In recent
years, two groups, the BMW collaboration and the HotQCD collaboration have provided such results,
of which some will be reproduced here. The chiral condensate on the lattice generally requires both
multiplicative and additive renormalizations. One convenient way of removing such renormalization
artifacts is to consider a renormalization group invariant quantity involving the chiral condensate and
furthermore to subtract the vacuum part from the condensate at finite temperature.

The BMW collaboration for this purpose introduced ⟨ψψ⟩R [118],

⟨ψψ⟩R = −
[
⟨ψψ⟩l,T − ⟨ψψ⟩l,0

]ml

X4
, (l = u, d), (39)

where X is an arbitrary quantity with dimension of mass. Here, we have kept the original notation used
in Ref. [118], where the chiral condensate is defined with an opposite sign compared to our conventions.
Hence, for instance, ⟨ψψ⟩l,0 > 0. The results of Ref. [118] are shown in Fig. 2 including different lattice
sizes with varying discretizations and the continuum limit (gray band). It is seen that the results for
all discretizations lie close to each other and that hence the continuum limit can be safely taken.

The HotQCD collaboration on the other hand introduced the similar quantity ∆R
q [119],

∆R
q = d+ 2msr

4
1

[
⟨ψψ⟩q,T − ⟨ψψ⟩q,0

]
, (40)

where q either represents u, d quarks or the s quark. Here, the same sign convention as in Eq. (39) is
employed. The artificial parameter d is determined such that ∆R

q approximately vanishes in the high
temperature limit. In Ref. [119] it was obtained as d = 0.0232244. Finally, r1 is a parameter determined
from the slope of the static quark anti-quark potential evaluated on the lattice, which is used to convert
lattice units into physical units. In Refs.[119, 120], r1 = 0.3106 fm was used. We show the results given
numerically in Ref. [120] for ∆R

l (l = u, d) and ∆R
s in Fig. 3. As for the BMW results, ∆R

l and ∆R
s

do not much depend on the number of lattice sites Nτ in the imaginary time direction and can hence
assumed to be already close to the continuum limit.

For applying these lattice findings to actual QCDSR calculations, it is helpful to convert them
into quantities that are easier to use. For the u and q quark condensates, it seen both in Figs. 2
and 3 that ⟨ψψ⟩R and ∆R

l approach a constant at high temperatures. Assuming that the condensate
completely vanishes in this temperature region, one can convert both ⟨ψψ⟩R and ∆R

l into ⟨qq⟩T/⟨0|qq|0⟩.
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Figure 2: The quantity ⟨ψψ⟩R defined in Eq. (39) as a function of temperature for different
Nt, which are the number of lattice sites in the imaginary time direction. The gray band
corresponds to the continuum limit. Taken from the left plot in Fig. 4 of Ref. [118].

Specifically, we have

⟨qq⟩T
⟨0|qq|0⟩ = 1− ⟨ψψ⟩R(T )

⟨ψψ⟩R(∞)
(BMW collaboration), (41)

⟨qq⟩T
⟨0|qq|0⟩ = 1− d−∆R

l (T )

d−∆R
l (∞)

(HotQCD collaboration). (42)

For ⟨ψψ⟩R(∞), we use the largest temperature data point provided by the BMW collaboration, while
for ∆R

l (∞) we use a fit to all data above 300 MeV given in Ref. [120]. The result of this fit is indicated
by the dashed line in the left plot of Fig. 3. Values of ⟨qq⟩T/⟨0|qq|0⟩ from both collaborations are shown
and compared in the left plot of Fig. 4. The BMW (continuum limit) result is shown by the gray band,
while the data points are from HotQCD. Both findings agree qualitatively, even though there is still a
small (∼ 10 MeV) discrepancy seen in the temperature at which the condensate drops most steeply.
This shows that some systematic uncertainties that go beyond the errors shown in Fig. 4 still remain,
likely related to the continuum extrapolation [118] and the setting of the scale, which are, however,
reasonably well under control. If needed, one can extrapolate the above results to lower temperatures
by a simple pion gas model [27, 117], as described in the following paragraph.

We next compare the lattice QCD results to those of the pion gas model and examine up the what
temperatures it is able to describe the lattice data reasonably well. In this model, the chiral condensate
at finite temperature can with the help of PCAC and current algebra be given as [27, 121]

⟨qq⟩T
⟨0|qq|0⟩ = 1− T 2

8f 2
π

B1

(mπ

T

)
, (43)
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Figure 3: The quantity ∆R
q defined in Eq. (40) for q = l = u, d (left plot) and q = s (right

plot) for various Nt, which are the number of lattice sites in the imaginary time direction.
Adapted from Fig. 8 of Ref. [119]. Numerical data used to compute the data points are
taken from Ref. [120]. The dashed black line represents the result of a constant fit to the
data points above 300 MeV.

where we have defined

Bn(x) =
1

ζ(2n)Γ(2n)

∫ ∞

x

dyy2(n−1)

√
y2 − x2

ey − 1
. (44)

The corresponding curve is shown as a solid black line in the left plot of Fig. 4, for which we have used
fπ = 93 MeV and mπ = 140 MeV. Comparing this curve to the lattice data, it is observed that the pion
gas model remains approximately valid up to temperatures of about 140 MeV but quickly breaks down
for higher temperatures. This gives a rough idea about the reliability of this model. To improve the
consistency with lattice data, one could try to improve it by adding other hadron species and further
artificial terms3. Doing this, it is possible to extend its range of applicability to temperatures slightly
above Tc (see for instance Ref. [122]).

For the strange quark condensate, more input is needed as ∆R
s , shown on the right plot of Fig. 3

does not approach any constant value even for temperatures larger than those shown. We therefore use
the value given in Eq. (21) and ms = 96± 6 MeV [123] (for which we have symmetrized the upper and
lower error for simplicity). With these values and r1, given earlier, we can obtain ⟨ss⟩T/⟨0|ss|0⟩ from
∆R

s . The result is shown in the right plot of Fig. 4. In contrast to the u and d condensate, the strange
quark condensate does not decrease suddenly around Tc, but shows only a gently decreasing behavior,
approaching zero at temperatures above around 2Tc. Such a qualitative difference between the u, d
and s condensates was already predicted in models such as the Nambu-Jona-Lasinio model [124] and
can be easily understood by considering a pion gas model, for which the matrix element ⟨π|ss|π⟩ is
very small [125] and hence the leading order contribution of Eq. (36) almost vanishes. The fact that
the error in the right plot of Fig. 4 increases with increasing T , is explained from the relatively large
error of ⟨0|ss|0⟩ in Eq. (21). Once this condensate is determined with better precision, it will become
possible to considerably decrease the error for ⟨ss⟩T/⟨0|ss|0⟩.

To summarize, the chiral condensates are by now known with rather good precision and only small

3“Artificial terms” here are terms that have no apparent physical interpretation [unlike the second term on the right
hand side of Eq. (43)], but are introduced to get better agreement with lattice QCD data. In Ref. [122], for instance, a
term −αT 10 was added to the right hand side of Eq. (43) for this purpose.
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Figure 4: The ratio ⟨qq⟩T/⟨0|qq|0⟩, with q = u, d (left plot) and ⟨ss⟩T/⟨0|ss|0⟩ (right plot)
for various Nt, which are the number of lattice sites in the imaginary time direction. For
⟨T |qq|T ⟩/⟨0|qq|0⟩, Eqs. (41) and (42) and the corresponding data provided by the BMW [118]
and HotQCD [120] collaborations were used. For ⟨ss⟩T/⟨0|ss|0⟩, the data for ∆R

s together
with the values of ⟨0|ss|0⟩, ms and r1 (see text) were employed.

systematic uncertainties from lattice QCD. These results can now be used in QCD sum rule analyses
without having to rely on the pion gas model.

The non-scalar condensates ⟨qγµq⟩T and ⟨sγµs⟩T , which can be related to baryon densities (see
Section 3.2.2), remain exactly zero in a heat bath with vanishing chemical potential.

Condensates of dimension 4
At dimension four, we first discuss the thermal behavior of the scalar gluon condensate ⟨αs

π
Ga

µνG
aµν⟩T .

In vacuum, it has been difficult to compute this quantity on the lattice because of renormalization
issues. At finite temperature, however, it is relatively simple to obtain the difference ⟨αs

π
Ga

µνG
aµν⟩T −

⟨0|αs

π
Ga

µνG
aµν |0⟩ as it can (within certain approximations) be related to thermodynamic quantities such

as energy density and pressure.
First, we follow the discussions of Refs. [126, 127], where the trace anomaly,

T µ
µ =

β(g)

2g
Ga

µνG
aµν +

∑

q

mqqq. (45)

was used. Here, T µν and β(g) are the QCD energy momentum tensor and β-function, respectively. The
one-loop perturbative β-function is given as

β(g) = − 1

(4π)2

(
11− 2

3
Nf

)
g3 +O(g5), (46)

Nf denoting the number of flavors. The contributions of c, b and t quarks to the sum in the second
term on the right side of Eq. (45) can be evaluated using the heavy quark expansion, which gives,

qq = − 1

12mq

αs

π
Ga

µνG
aµν +O(m−3

q ). (47)

The heavy quark expansion is only valid for quarks with masses larger than typical QCD scales and is
hence not applicable to u, d and s quarks. Substituting the above result into Eq. (45), it is found that the
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π
Ga

µνG
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tions from the u+ d quark and s quark condensates to the same equation. See text for more
details.

heavy quark terms
∑

q=c, b, t

mqqq cancel exactly in the limit mq → ∞ with their respective contributions

from the first Ga
µνG

aµν term (the term proportional to Nf in the β-function). We therefore just need
to keep the light quark contributions in Eq. (45) and can set Nf to 3. We thus have

T µ
µ = −9

8

αs

π
Ga

µνG
aµν +muuu+mddd+msss+O(α2

s,m
−3
c ,m−3

b ,m−3
t ). (48)

Based on the above trace anomaly equation, one can compute the thermal behavior of the gluon
condensate. For simplicity of notation, we define δf(T ) as the vacuum subtracted value of the quantity
f(T ): δf(T ) ≡ f(T )− f(0). From Eq. (48), we therefore obtain

δ⟨αs

π
Ga

µνG
aµν⟩T = −8

9

[
δT µ

µ (T )−muδ⟨uu⟩T −mdδ⟨dd⟩T −msδ⟨ss⟩T
]
. (49)

Note that

δT µ
µ (T ) = ϵ(T )− 3p(T ), (50)

where ϵ(T ) is the energy density and p(T ) the pressure. Both of them are known with good precision
from present day lattice calculations [120, 128]. The behavior of the quark condensates as a function
of temperature is known as well, as we have seen in the previous Section. Applying these results to
Eq. (49), the temperature dependence of the gluon condensate can be extracted. The respective results
are shown in Fig. 5, for which we have used the lattice data provided in Ref. [120]. For ϵ(T ) and p(T )
the continuum extrapolated results are employed. For the quark condensate terms we use the Nτ = 8
data, which are already close to the continuum limit and for which a relatively large number of data
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points are available. It is clear from Fig. 5 that the ϵ(T )− 3p(T ) term dominates the thermal behavior
of the gluon condensate. The u and d condensate terms are suppressed due to their small quark masses,
while the s quark condensate term gives a non-negligible correction. Note that δ⟨αs

π
Ga

µνG
aµν⟩T/T 4

approaches zero for large T only because of the 1/T 4 factor, whereas δ⟨αs

π
Ga

µνG
aµν⟩T is a negative and

monotonously decreasing function of T . This means that the non-vacuum subtracted gluon condensate
⟨T |αs

π
Ga

µνG
aµν |T ⟩ will switch its sign from positive to negative and further continue to decrease with

increasing temperature. Using Eq. (23) for the vacuum gluon condensate, the transition from positive
to negative sign occurs at about T ≃ 260 MeV. The thermal behavior of the gluon condensate can also
be estimated based on the pion gas model [27],

δ⟨αs

π
Ga

µνG
aµν⟩T = −m

2
πT

2

9
B1

(mπ

T

)
. (51)

The absolute value of this expression is however much too small compared to the lattice QCD result of
Fig. 5, which can be understood from the suppressive factor m2

π, which is absent in the chiral condensate
formula of Eq. (43) and points to the fact that contributions of higher mass hadrons will be significant
and hence need to be taken into account to get a better description at small temperatures.

Let us next discuss the non-scalar condensates of dimension 4. The quark condensate ⟨ST q̄γµiDνq⟩T
represents the quark contribution to the (trace subtracted) energy-momentum tensor. To our knowledge,
no lattice QCD data are presently available for this condensate. It is, however, possible to compute its
low-temperature behavior from the pion gas model. In this context, it is convenient to generalize the
discussion to a larger class of condensates by defining

⟨πa(p)|ST q̄γµ1Dµ2 · · ·Dµnq|πa(p)⟩ ≡ (−i)n−1Aπ(q)
n (µ2)ST (pµ1 · · · pµn). (52)

The superscript a, which represents the three pion states, is not meant to be summed, but should be
understood as an expectation value of a single pion state. For ST (pµ1 · · · pµn), the specific expressions
for practically relevant cases are

ST (pµ1pµ2) = pµ1pµ2 −
1

4
p2gµ1µ2 , (53)

ST (pµ1pµ2pµ3) = pµ1pµ2pµ3 −
1

6
p2(pµ1gµ2µ3 + pµ2gµ1µ3 + pµ3gµ1µ2), (54)

ST (pµ1pµ2pµ3pµ4) = pµ1pµ2pµ3pµ4 −
1

8
p2(pµ1pµ2gµ3µ4 + pµ1pµ3gµ2µ4 + pµ1pµ4gµ2µ3

+ pµ2pµ3gµ1µ4 + pµ2pµ4gµ1µ3 + pµ3pµ4gµ1µ2)

+
1

48
p4(gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3). (55)

These are consistent with the general expressions of Eqs. (12-17). Considering the theory of (fictious)

deep inelastic scattering (DIS) off a pion target, the coefficients A
π(q)
n (µ2) can be related to moments of

pion quark distribution functions,

Aπ(q)
n (µ2) = 2

∫ 1

0

dxxn−1
[
q(x, µ2) + (−1)nq(x, µ2)

]
. (56)

The variable x is usually referred to as “Bjorken x” and in this context specifies the fraction of total
hadron momentum carried by the considered parton (here quark q or anti-quark q). The pion quark
distribution functions are not known as well as those of the nucleon (see Section 3.2.2) because there are
no direct DIS data with a pion target. It is however possible to constrain them from Drell-Yan dilepton
production and direct photon production in πN reactions [129, 130]. Together with QCD evolution
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of Ref. [130] at a renormalization scale of µ2 = 1GeV2.

equations, one can thus extract the quark and gluon distributions as a function of the energy scale
µ2. Estimates for A

π(u+d)
2 (µ2) and A

π(u+d)
4 (µ2) were given in Ref. [27] based of the parton distribution

functions provided in Ref. [129]. We will update and slightly generalize this discussion here. For this
purpose we use the parton distributions of Ref. [130], which is an update of Ref. [129] and especially
discriminates between u+ d and s, quarks, which is essential for obtaining an accurate estimate for the
condensate with strange quarks. The NLO version of these parton distributions are shown in Fig. 6 for

a scale of µ2 = 1GeV2. For the valence quarks (denoted as q in the figure), we have qπ = uπ
+

v + d
π+

v

with uπ
+

v = d
π+

v = uπ
−

v = dπ
−

v . Note that this is different from the treatment in Refs. [27, 129], where

the definition qπ = uπ
+

v = d
π+

v was used. For the u and d sea quarks (denoted as q) qπ = uπ
+

s = uπ
+

s =

dπ
+

s = d
π+

s = uπ
−

s = uπ
−

s = dπ
−

s = d
π−

s , therefore assuming exact isospin symmetry. For the strange
quark distributions (denoted as s), we have sπ = sπ

+
= sπ

+
= sπ

−
= sπ

−
. The distributions for π0 can

be obtained as fπ0
= (fπ+

+ fπ−
)/2.

To compute A
π(q)
n (µ2), let us first define the following integrals

qn(µ
2) =

∫ 1

0

dxxn−1qπ(x, µ2), (57)

qn(µ
2) =

∫ 1

0

dxxn−1qπ(x, µ2), (58)

sn(µ
2) =

∫ 1

0

dxxn−1sπ(x, µ2). (59)

Using these, A
π(q)
n (µ2) = 1

2
[A

π(u)
n (µ2) +A

π(d)
n (µ2)] for all three pion states (π+, π− and π0) can be given
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Table 1: Aπ(q) and Aπ(g) values as defined in Eq. (56) obtained by numerically integrating the parton
distributions of the pion provided in Ref. [130]. Only non-zero values are shown in this table.

LO NLO
√
µ2 1 GeV 2 GeV 1 GeV 2 GeV

A
π(q)
2 0.598 0.537 0.614 0.544

A
π(s)
2 0.0255 0.0431 0.0257 0.0474

A
π(g)
2 0.393 0.441 0.380 0.433

A
π(q)
4 0.136 0.103 0.142 0.104

A
π(s)
4 0.00238 0.00274 0.00154 0.00207

A
π(g)
4 0.0446 0.0282 0.0593 0.0367

A
π(q)
6 0.0645 0.0447 0.0676 0.0450

A
π(s)
6 0.000666 0.000665 0.000351 0.000409

A
π(g)
6 0.0149 0.00749 0.0222 0.0108

as

Aπ(q)
n (µ2) =

1 + (−1)n

2

[
qn(µ

2) + 4qn(µ
2)
]
. (60)

For the strange quark case, one obtains

Aπ(s)
n (µ2) = 4

1 + (−1)n

2
sn(µ

2). (61)

For the convenience of the reader, we tabulate A
π(q)
n (µ2) and A

π(s)
n (µ2) for scales

√
µ2 = 1GeV and√

µ2 = 2GeV for both LO and NLO fits of Ref. [130] in Table 1. Unfortunately, no error estimates
are given for these parton distributions, which is why we can only quote absolute values in Table 1.
This situation is likely to improve in the future, due to new global fits to experimental data [131]
and direct lattice QCD calculations of parton distributions [132] and their moments [133]. The latter
would make it possible to compute the partonic content not only of pions, but also of other hadrons,
for which experimental measurements are not feasible. A consistent determination of valence quark,
sea quark (including strangeness) and gluonic parton distributions from lattice QCD remains, however,
challenging.

To estimate the corrections due to mesons with larger masses (such as kaons and η mesons), it is
useful to have at hand some information about their partonic components. Especially for the strange
quark condensate, effects due to pions are suppressed while mesons containing strange valence quarks
can be expected to give significant contributions. Even though there are some efforts to compute the
parton distributions of the kaon (see for instance Refs. [134] or [135] for a recent model based calculation),
the related uncertainties are still large due to lack of experimental data. Here, we follow Ref. [27] and,
partly, Ref. [134] and simply assume that the valence parton distributions are flavor independent, while
the sea and gluon distributions are the same for all pseusoscalar mesons. Based on these assumptions,
we get, after averaging over the different kaon states,

AK(q)
n (µ2) =

1 + (−1)n

2

[1
2
qn(µ

2) + 4qn(µ
2)
]
, (62)
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Table 2: Same as Tab. 1, but for the kaon.

LO NLO
√
µ2 1 GeV 2 GeV 1 GeV 2 GeV

A
K(q)
2 0.371 0.341 0.379 0.346

A
K(s)
2 0.295 0.275 0.301 0.280

A
K(g)
2 0.393 0.441 0.380 0.433

A
K(q)
4 0.0719 0.0548 0.0753 0.0555

A
K(s)
4 0.0506 0.0387 0.0530 0.0393

A
K(g)
4 0.0446 0.0282 0.0593 0.0367

A
K(q)
6 0.0329 0.0229 0.0345 0.0231

A
K(s)
6 0.0224 0.0157 0.0235 0.0158

A
K(g)
6 0.0149 0.00749 0.0222 0.0108

and

AK(s)
n (µ2) =

1 + (−1)n

2

[
qn(µ

2) + 4sn(µ
2)
]
. (63)

Equally, we obtain for the η-meson (assuming that it is a pure flavor octet state)

Aη(q)
n (µ2) =

1 + (−1)n

2

[
1

3
qn(µ

2) + 4qn(µ
2)

]
, (64)

and

Aη(s)
n (µ2) =

1 + (−1)n

2

[
4

3
qn(µ

2) + 4sn(µ
2)

]
. (65)

The tabulated values corresponding to the above results are given in Tables 2 and 3.
With the above A parameter values, we can now estimate the

⟨ST q̄γµiDνq⟩T =
1

2

(
⟨ST ūγµiDνu⟩T + ⟨ST d̄γµiDνd⟩T

)
(66)

condensate at low temperatures. Using Eqs. (36) and (52) and performing the momentum integral, the
result reads

⟨ST q̄γµiDνq⟩T =
dπA

π(q)

360

[
8π2T 4B2

(mπ

T

)
− 5m2

πT
2B1

(mπ

T

)]
ST (uµuν), (67)

with uµ = (1, 0, 0, 0). The Bn(x) functions are defined in Eq. (44) and dπ stands for the number of
degrees of freedom of pions, dπ = 3. For the strange quark case, we have, similarly,

⟨ST s̄γµiDνs⟩T =
dπA

π(s)

360

[
8π2T 4B2

(mπ

T

)
− 5m2

πT
2B1

(mπ

T

)]
ST (uµuν). (68)
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Table 3: Same as Tab. 1, but for the η meson.

LO NLO
√
µ2 1 GeV 2 GeV 1 GeV 2 GeV

A
η(q)
2 0.480 0.435 0.495 0.444

A
η(s)
2 0.632 0.566 0.651 0.576

A
η(g)
2 0.393 0.441 0.380 0.433

A
η(q)
4 0.131 0.0990 0.136 0.0992

A
η(s)
4 0.174 0.131 0.180 0.132

A
η(g)
4 0.0446 0.0282 0.0593 0.0367

A
η(q)
6 0.0637 0.0442 0.0664 0.0442

A
η(s)
6 0.0847 0.0587 0.0885 0.0588

A
η(g)
6 0.0149 0.00749 0.0222 0.0108

It is straightforward to extend the above results to include contributions of more meson states. One
simply adds the same terms, replacing dπ, A

π(q) and mπ with the corresponding values of the kaon
and η mesons, specifically dK = 4 and dη = 1. The results of such a calculation are shown in Fig. 7,
for which the NLO values at 1 GeV of Tables 1, 2 and 3 were used. The plots show that the pions
dominate the thermal behavior of the condensates at temperatures below T = 50 MeV, above which
the kaon and η meson contributions start to become non-negligible. This is particularly true for the
strange quark condensate, for which the pion contributions are strongly suppressed because of the small
strange parton content of the pion. Not surprisingly, the kaons therefore play the dominant role for this
condensate already around T = 100 MeV. It is expected that more hadron states come into play as the
temperature increases above 100 MeV and approaches Tc. The curves shown in Fig. 7 should hence be
understood as lower limits.

The quark condensates ⟨q̄iDµq⟩T and ⟨s̄iDµs⟩T can be shown to scale with the light quark and
strange baryon densities, as will be demonstrated in the discussion following Eq. (117). They therefore
vanish exactly for the finite temperature and zero density case considered here.

The last condensate to be discussed in this section is the spin 2 gluon condensate, ⟨ST Gaµ
α G

aνα⟩T .
Its thermal behavior is not known well, as lattice QCD calculations of this quantity including dynamical
quarks have not yet been performed. There is, however, some information that can be extracted from
quenched lattice data as well as the free hadron gas model. Let us start with a discussion based on
quenched lattice QCD results, following the method proposed in Refs. [136, 137]. The idea is to recognize
that the gluonic operator ST Gaµ

α G
aαν = Gaµ

α G
aαν − 1

4
gµνGaβ

α G
aαβ is nothing but the energy-momentum

tensor of QCD without quarks [times (−1)],

T µν = −Gaµ
α G

aαν +
1

4
gµνGaβ

α G
aαβ. (69)

The same energy-momentum tensor can be expressed using the thermodynamic quantities of energy
density ϵ(T ) and pressure p(T ),

T µν = [ϵ(T ) + p(T )]
(
uµuν − 1

4
gµν
)
+

1

4
[ϵ(T )− 3p(T )]gµν , (70)

where uµ is the four-velocity of the heat bath. Therefore, comparing the trace subtracted parts of the
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Figure 7: The dimension 4, spin 2 quark condensate at finite temperature in the free hadron
gas model. The red curve corresponds to only pion contributions, to which kaons are added
in the blue curve and furthermore the η contribution in the green curve. In the left plot the
value of ⟨ST q̄γ0iD0q⟩T/T 4 = 1

2

(
⟨ST ūγ0iD0u⟩T + ⟨ST d̄γ0iD0d⟩T

)
/T 4 is shown, based on

Eq. (67) and using the NLO values at 1 GeV in Tables 1, 2 and 3. The right plot shows the
same quantity, but for ⟨ST s̄γ0iD0s⟩T/T 4.

above equations, one obtains

⟨ST Gaµ
α G

aαν⟩T = G2(T )ST (uµuν), (71)

G2(T ) = −[ϵ(T ) + p(T )]. (72)

Note that in Refs. [136, 137] G2(T ) was defined with an additional factor of αs(T )/π. To avoid the
uncertainties related to the determination of the temperature dependence of αs(T ), we here define
the condensate without this factor. As mentioned earlier, the quantities ϵ(T ) and p(T ) can nowadays
be determined from lattice QCD with good precision. Because we are here working in the quenched
approximation, quenched lattice QCD data have to be employed for consistency. We for this purpose
use the data provided in Ref. [138], which lead to the result shown as black data points in Fig. 8.

To consider the same quantity in the free hadron gas model, it is useful to define the following matrix
element,

⟨πa(p)|ST Ga
αµ1
Dµ2 · · ·Dµn−1G

aα
µn
|πa(p)⟩ ≡ (−i)n−22Aπ(g)

n (µ2)ST (pµ1 · · · pµn), (73)

where, as before, the superscript a is not summed. The theory of DIS relates this matrix element to an
integral of the gluonic parton distributions functions of the pion,

Aπ(g)
n (µ2) =

1 + (−1)n

2

∫ 1

0

dxxn−1g(x, µ2). (74)

The gluonic parton distribution of the pion, given in Ref. [130], is shown as a blue curve in Fig. 6 for
µ2 = 1GeV2 in an NLO scheme. The values of the integrals for n = 2, 4 and 6 are given in Table 1. In
the approximations used here, the respective values for kaons and the η meson (given in Tables 2 and 3)
are identical to those of the pion. Computing the momentum integral, we get, in analogy to Eqs. (67)
and (68),

⟨ST Gaµ
α G

aαν⟩T = −dπA
π(g)
2

180

[
8π2T 4B2

(mπ

T

)
− 5m2

πT
2B1

(mπ

T

)]
ST (uµuν). (75)
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Figure 8: The dimension 4 and spin 2 gluon condensate value at finite temperature in the
free hadron gas model (solid lines) and from quenched lattice QCD (black data points). The

red, blue and green hadron gas model curves are obtained from Eq. (76) with A
π(g)
2 (A

K(g)
2 ,

A
η(g)
2 ) NLO values at 1 GeV from Tables 1 (2, 3). The lattice QCD data points are obtained

from Eq. (72) and the data of Ref. [138] with Tc = 260 MeV [139].

The minus sign in the above equation is a result of interchanging the Lorentz indices of the second
gluon operator which is antisymmetric. This immediately leads to

G2(T ) = −dπA
π(g)
2

180

[
8π2T 4B2

(mπ

T

)
− 5m2

πT
2B1

(mπ

T

)]
. (76)

It is again straightforward to generalize this result to include more pseudoscalar mesons. One simply
has to add further terms in which the mπ, dπ and A

π(g)
2 are replaced by those of kaons and η mesons.

In Fig. 8, we compare Eqs. (72) and (76), for the latter showing the curves including only pion con-
tributions (red curve), pion + kaon contributions (blue curve) and pion + kaon + η meson contributions
(green curve). The quenched lattice QCD points do not deviate much from zero until temperatures
close to Tc, where a sudden drop is observed, reflective of the first order phase transition occurring in
quenched QCD. The small temperature dependence of G2(T ) in quenched lattice QCD at low temper-
atures can be understood from the lowest energy excitations of the theory. These are glueballs, whose
lowest mass has been estimated to be larger than 1.5 GeV [140] and are therefore strongly suppressed
at temperatures below Tc. The free hadron gas, which can be trusted to give an accurate result for
T ≲ 100 MeV, on the other hand gives a stronger temperature dependence for low T . One can expect
this temperature dependence to become even stronger as the effects of more hadrons are taken into
account. To accurately determine the behavior of G2(T ) around Tc a lattice QCD computation that
includes dynamical quarks will however be needed.

Condensates of dimension 5
Our knowledge of the dimension 5 condensate temperature dependences is presently still rather limited.
Nevertheless, some pieces of information are available, which we summarize here. We start with the

27



dimension 5 scalar condensate, ⟨q̄σµνtaGaµνq⟩T about which up to today only four works have been
published in the literature: one lattice QCD study [141], one based on the global color symmetry model
[142], one on the liquid instanton model at

finite T [143] and one on Dyson-Schwinger equations [144]. As it is customary in vacuum [see
Eq. (26)], this condensate is usually parametrized relative to the dimension 3 chiral condensate,

m2
0(T ) ≡

⟨q̄gσGq⟩T
⟨q̄q⟩T

. (77)

In the lattice QCD calculation of Ref. [141], which was done using the quenched approximation and
Kogut-Susskind (or staggered) fermions, it was found that m2

0(T ) does not show any temperature
dependence within errors for the probed temperature range (from zero to slightly above Tc). This
means that ⟨q̄gσGq⟩T , which like ⟨q̄q⟩T is an order parameter of chiral symmetry, quickly (but smoothly)
approaches 0 around Tc. As Ref. [141] is already somewhat old, it would be interesting to repeat it with
dynamical quarks and a lattice fermion prescription with better chiral properties. Furthermore, the
problem of potential mixing with condensates of lower dimension, which can happen on the lattice,
deserves a careful investigation. The result nevertheless is suggestive and in essence consistent with the
findings of models described in Refs. [142, 143, 144].

We next turn to the non-scalar condensates [listed in the third line of Eq. (11)], about which unfor-
tunately not much is known. Let us use Eq. (36) to provide a simple estimate. About the finite density
counterpart of ⟨ST q̄iDµiDνq⟩T , some information was recently obtained from the twist-3 parton dis-
tribution function of the nucleon, e(x) in Ref. [145] (see the discussion about dimension 5 condensates
in Section 3.2.2). At finite temperature, one presumably could do the same by considering the corre-
sponding distribution function of the pion, which however presently is not known. We will hence have
to resort to a cruder estimate. For this purpose, we follow Ref. [146] to get

⟨πa(p)|q̄DµDνq|πa(p)⟩ ≃ −P q(π)
µ P q(π)

ν ⟨πa(p)|q̄q|πa(p)⟩

≃ − 1

16
pµpν⟨πa(p)|q̄q|πa(p)⟩, (78)

where P
q(π)
µ is the average four-momentum of the quark q in the pion state |πa(p)⟩. Going to the second

line, we assume that half of the momentum of the pion is carried by gluons and the rest is evenly
distributed among the two valence quarks. After making the above expression traceless, using Eq. (36),
carrying out the momentum integral and treating the scalar quark condensate as described in Ref. [27],
one obtains

⟨ST q̄DµDνq⟩T, π ≃ dπ⟨0|q̄q|0⟩
11520f 2

π

[
8π2T 4B2

(mπ

T

)
− 5m2

πT
2B1

(mπ

T

)]
ST (uµuν). (79)

Similarly, the contributions from kaons and the η meson read

⟨ST q̄DµDνq⟩T,K ≃ dK⟨0|q̄q|0⟩
23040f 2

K

[
8π2T 4B2

(mK

T

)
− 5m2

KT
2B1

(mK

T

)]
ST (uµuν), (80)

⟨ST q̄DµDνq⟩T, η ≃
dη⟨0|q̄q|0⟩
34560f 2

η

[
8π2T 4B2

(mη

T

)
− 5m2

ηT
2B1

(mη

T

)]
ST (uµuν). (81)

Here, we have assumed the momentum to scale with the number of valence quarks. Applying the same
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Figure 9: Estimates of the dimension 5, spin 2 quark condensate value at finite temperature
based on Eqs. (79-84). As in Fig. 7, the red curve corresponds to only pion contributions,
to which kaons are added in the blue curve and furthermore the η contribution in the green
curve. In the left (right) plotm00 ≡ ⟨ST q̄D0D0q⟩T/⟨0|q̄q|0⟩ (m00

s ≡ ⟨ST s̄D0D0s⟩T/⟨0|s̄s|0⟩)
is shown. Note that for m00

s the pion contribution vanishes in the approximation used here.

method to the respective strange quark condensate, one gets

⟨ST s̄DµDνs⟩T, π ≃ 0, (82)

⟨ST s̄DµDνs⟩T,K ≃ dK⟨0|s̄s|0⟩
23040f 2

K

[
8π2T 4B2

(mK

T

)
− 5m2

KT
2B1

(mK

T

)]
ST (uµuν), (83)

⟨ST s̄DµDνs⟩T, η ≃
dη⟨0|s̄s|0⟩
17280f 2

η

[
8π2T 4B2

(mη

T

)
− 5m2

ηT
2B1

(mη

T

)]
ST (uµuν). (84)

It is possible to extend this approach by including further hadrons. However, doing so would not be very
meaningful, as already Eq. (78) is not much more than a crude order of magnitude estimate. Indeed, it
was shown in Ref. [145] that the nucleon matrix element of the same operator estimated based on the
above method turns out to be about 5 - 10 times larger than what is extracted from experimental in-
formation about e(x) of the nucleon. Using Eqs. (79-84), the behavior of m00 ≡ ⟨ST q̄D0D0q⟩T/⟨0|q̄q|0⟩
and m00

s ≡ ⟨ST s̄D0D0s⟩T/⟨0|s̄s|0⟩ are shown in the left and right plots of Fig. 9, respectively, for
illustration.

The condensates ⟨ST q̄γµDνDωq⟩T and ⟨ST s̄γµDνDωs⟩T vanish in the free hadron gas model, as
can be understood from the prefactor 1+ (−1)2 in Eqs. (60)-(65) and remembering that n is 3 here [see
Eq. (52)]. A somewhat more intuitive explanation for this result can be obtained from an argument
similar to that given in Eq. (78), where covariant derivatives are interpreted as average momenta of the
quarks they operate on. In this picture the above two condensates become proportional to ⟨ST q̄γµq⟩T
and ⟨ST s̄γµs⟩T , which scale linearly with the respective quark densities and thus vanish in the zero
baryon chemical potential case. We hence do not consider these condensates any further.

The final condensate to be discussed at dimension 5 is ⟨q̄γµσαβGaαβtaq⟩T , which (in contrast to
its finite density counterpart, which will be considered later), to our knowledge has so far never been
studied. One simple estimate can be obtained by assuming that a relation similar to Eq. (26) or Eq. (77)
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holds for this case as well. Specifically,

⟨q̄γµσαβGaαβtaq⟩T ≃ m2
0⟨q̄γµq⟩T (85)

≃ 0. (86)

This would suggest that ⟨q̄γµσαβGaαβtaq⟩T is small and can be ignored for all practical purposes. An
independent evaluation or a lattice QCD computation are however certainly needed to confirm the
above rough estimate.

Condensates of dimension 6
The number of independent condensates grows considerably at dimension 6. We will not attempt to
discuss all of them in full detail, but will give an overview over the literature and some recent progress
that has been made in computing some of these condensates at finite temperature.

The finite temperature behavior of the specific four-quark condensates appearing in sum rules of the
vector and axial-vector channels are discussed in some detail in Ref. [27] based on the hadron resonance
gas model of Eq. (36). Besides Eq. (36), one uses the soft pion theorem [which can in fact be used to
derive Eq. (43)], giving

lim
p→0,p′→0

⟨πa(p)|O|πb(p′)⟩ = − 1

f 2
π

⟨0|[Fa
5 , [F b

5 ,O]]|0⟩, (87)

with

Fa =

∫
d3xq̄(x)γ0γ5

τa

2
q(x). (88)

Here, q = (u, d, s) and τa is a SU(3) matrix living in flavor space. If one only considers pions, it is
enough to take into account a = 1 - 3. The next step is to make use of current algebra to compute the
double commutator of Eq. (87). The details of this calculation can be found in Appendix A of Ref. [27]
and will not be repeated here. We here just mention the basic formulas

[F a
5 , Vb,α

µ ] = ifabcAc,α
µ , (89)

[F a
5 , Ab,α

µ ] = ifabcVc,α
µ , (90)

with

Va,α
µ = q̄γµτ

aλaq, (91)

Aa,α
µ = q̄γµγ5τ

aλaq, (92)

where again q = (u, d, s), τa are the U(3) flavor matrices (τ 0 =
√
1/Nf ) and λα are the SU(3)

color matrices. Fruthermore, the convention for which fab0 is understood to be zero, was used. After
computing the commutators, one moreover needs to apply the factorization hypothesis of Eq. (35) to
obtain the final results, which can be found in Ref. [27] and which can in principle be generalized to
other four-quark condensates if necessary. It however has to be emphasized here that the above method
only provides an order of magnitude estimate, as it relies both on factorization (which has systematic
uncertainties that are difficult to quantify) and the hadron resonance gas model (which is reliable only
at temperatures below Tc). Any QCDSR analysis that strongly depends on the behavior of the four-
quark condensates hence has to be taken with a grain of salt. Naturally, a reliable finite temperature
lattice QCD computation of these condensates would be very helpful.

Next, we discuss some recent progress made in the study of the thermal behavior of dimension 6
gluonic condensates. The number of operators that can generally be constructed from gluonic operators
and covariant derivatives is quite large. However, with the help of the equations of motion, symmetry
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properties of operator indices and the Bianchi identity, they can be reduced to just a few independent
ones, which was done some time ago in Ref. [147]. One possible set of independent operators is the
following:

spin 0 : fabcGa
µνG

b
ναG

c
αµ, G

a
µαG

a
να;µν , (93)

spin 2 : ST Ga
κλG

a
κλ;µν , ST Ga

µκG
a
νλ;λκ, ST Ga

µκG
a
κλ;λν , (94)

spin 4 : ST Ga
ρκG

a
σκ;µν . (95)

Here, the notations Ga
αβ;µ ≡ Dab

µ G
b
αβ and Ga

αβ;µν ≡ Dab
ν D

bc
µ G

c
αβ are used. In this paragraph, we further-

more temporarily take all Lorentz indices as lower indices to keep the notation simple. Making use of
the equation of motion

Ga
αβ;β = g

∑

q

q̄γα
λa

2
q, (96)

the second operator of Eq. (93) and the second and third operators of Eq. (94) can be rewritten in terms
of quark fields and hence vanish for pure gauge theory. The anomalous dimensions of the operators
of Eq. (94) were calculated only relatively recently in Ref. [45]. Furthermore, estimates for the three
operators that remain non-zero in pure gauge theory were given in Ref. [148]. In this work, the basic
strategy was to first express the two gluonic dimension 4 condensates in terms of chromo-electric and
chromo-magnetic fields and to translate our knowledge about the finite temperature behavior of these
condensates into temperature dependences of chromo-electric and chromo-magnetic fields. Next, the
dimension 6, spin 0 and spin 2 condensates are expressed using the same chromo-electromagnetic fields.
Assuming that the fields are isotropic and angular correlations can be neglected, this then gives tem-
perature dependences of the dimension 6 condensates. For more details, we refer interested readers to
Ref. [148].

3.2.2 Condensates at finite density

Let us start with a general discussion on our treatment of the condensates at finite density. We will here
only consider the behavior of the condensates at densities of the order of normal nuclear matter density
ρ0. For such densities one can hope that the linear density approximation still gives a qualitatively
correct description. The expectation value of a general (but for simplicity scalar) operator O with
respect to the ground state of dense matter at temperature T = 0 and baryon density ρ, which we will
denote as ⟨O⟩ρ throughout this review, is expressed in this approximation as

⟨O⟩ρ ≃ ⟨0|O|0⟩+ 4

∫

|k|<kF

d3k

(2π)3
⟨N(k)|O|N(k)⟩

≃ ⟨0|O|0⟩+ 4⟨N(0)|O|N(0)⟩
∫

|k|<kF

d3k

(2π)3
(97)

≃ ⟨0|O|0⟩+ ρ⟨N(0)|O|N(0)⟩,

with

kF =
(3π2ρ

2

)1/3
. (98)

Here, |N(k)⟩ stands for a one nucleon state with momentum k. Its normalization is defined as

⟨N(k)|N(k′)⟩ = (2π)3δ(3)(k − k′). (99)

In going from the first to the second line in Eq. (97), we have ignored the dependence of |N(k)⟩ on the
momentum k. Taking this dependence explicitly into account would lead to terms on higher order in ρ.
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A k2 term in the Taylor expansion of |N(k)⟩ would for instance lead to a term proportional to ρ5/3. In
the above linear density approximation, the Fermi motion of nucleons is hence ignored completely and
one in essence is working in the non-interacting Fermi gas limit. It is not a trivial question up to what
densities this approximation can be trusted and at which densities higher order density terms become
significant. We will discuss this issue below for the case of the chiral condensate of u and d quarks for
which higher order terms can be studied systematically using chiral perturbation theory.

Condensates of dimension 3
At this dimension, we begin by studying the chiral condensates ⟨qq⟩ρ = 1

2
(⟨uu⟩ρ + ⟨dd⟩ρ) and ⟨ss⟩ρ. In

the linear order density approximation, discussed above, we have

⟨qq⟩ρ ≃ ⟨0|qq|0⟩+ ρ⟨N |qq|N⟩ = ⟨0|qq|0⟩+ ρ
σπN
2mq

, (100)

⟨ss⟩ρ ≃ ⟨0|ss|0⟩+ ρ⟨N |ss|N⟩ = ⟨0|ss|0⟩+ ρ
σsN
ms

. (101)

Here, we have introduced the πN sigma term σπN ≡ 2mq⟨N |qq|N⟩ and the strange quark sigma term
σsN ≡ ms⟨N |ss|N⟩, which are useful because they are renormalization group invariant and can in
principle be related to πN [149, 150] or KN [151] scattering observables. The values of ⟨N |qq|N⟩ and
⟨N |ss|N⟩ (as well as the respective sigma terms) can be computed directly on the lattice.

Before discussing the sigma term values in detail, let us first examine the reliability of the linear
density approximation for ⟨qq⟩ρ. This is the only quantity for which terms beyond linear order in density
are available and thus the deviation from the linear behavior can be systematically studied and the
density range for which the linear approximation breaks down can be estimated. Calculations of ⟨qq⟩ρ
based on chiral perturbation theory that go beyond linear order in ρ were performed in Refs. [152, 153].
Following here Ref. [152], one can express the ratio of ⟨qq⟩ρ and ⟨0|qq|0⟩ as

⟨qq⟩ρ
⟨0|qq|0⟩ ≃ 1− ρ

f 2
π

[σπN
m2

π

(
1− 3k2F

10M2
N

+
9k4F

56M4
N

)
+D(kF )

]
, (102)

for which the relation between the Fermi momentum and the density is given in Eq. (98). Keeping only
the term of leading order in density and using the Gell-Mann-Oakes-Renner relation of Eq. (19), a result
equivalent to Eq. (100) is recovered. The function D(kF ) is related to the derivative of the interaction
energy per particle Ē(kF ) with respect to the pion mass mπ,

D(kF ) =
1

2mπ

∂Ē(kF )

∂mπ

. (103)

For more details, see Ref. [152]. Here, we simply show the final result in Fig. 10. It is seen in this figure
that for physical pion masses, the non-linear terms weaken the reduction of the chiral condensate by
about 20% at normal nuclear matter density ρ0 = 0.17 fm−3. At higher densities, the linear behavior
is modified significantly. At the same time, however, the chiral expansion becomes less reliable at
high densities, meaning that terms of even higher orders in ρ might further change this behavior (if
the expansion is convergent at all). For further developments concerning the “stabilization” of the
chiral condensate at high baryon density, see Refs. [154, 155]. The authors of Ref. [153], which treat the
chiral expansion differently and make use of the chiral Ward identity, obtain qualitatively compatible
results with a reduced chiral restoration due to the non-linear terms. Ref. [153], however, gives reduced
non-linear corrections, which are smaller than 10% at normal nuclear matter density. The difference
between the two approaches gives an approximate estimate of the systematic uncertainties related to
the non-linear terms in chiral perturbation theory. In this context, it is worth mentioning past [156, 157]
and ongoing [158] experimental efforts to measure deeply bound pionic atom spectra, which, if precise
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Figure 10: The ratio ⟨qq⟩ρ/⟨0|qq|0⟩ as a function of baryon density ρ including non-linear
terms computed by chiral perturbation theory, for three different pion mass values, mπ = 0,
70MeV and 135MeV. The dashed curve corresponds to the linear density approximation
using the sigma term value σπN = 45MeV. Taken from Fig. 5 of Ref. [152].

enough, can strongly constrain the chiral condensate value at finite density. For related theoretical
work, see also Refs. [159, 160, 161].

For ⟨ss⟩ρ no systematic computation of non-linear terms has yet been performed, even though a
similar approach based on chiral perturbation theory would in principal be possible. For all other
condensates to be discussed in later sections, it is presently not known how to systematically treat
terms beyond linear order. We will therefore focus on the linear terms in the following.

Let us consider the πN sigma term, appearing in Eq. (100). The traditionally quoted and still widely
used value for this parameter is

σπN = 45MeV [162], (104)

which was based on chiral perturbation theory and πN scattering data. In the more than 25 years after
this estimate was given, progress has been made both in lattice QCD and the analysis of πN scattering
data, which led to a number of novel and more precise determinations of σπN . It should be emphasized
here that ⟨N |qq|N⟩ is not a finite density object, but the expectation value of a one-nucleon-state, which
can hence be computed on the lattice. Furthermore, making use of the fact that the Feynman-Hellmann
theorem relates the πN sigma term to the quark mass dependence of the nucleon mass mN ,

σπN = mq
∂mN

∂mq

, (105)

many studies have been conducted that combine lattice data of nucleon masses at several quark masses
with chiral perturbation theory fits to extrapolate the nucleon mass derivative of the quark mass to the
physical point. What has emerged from all this is that direct computations of σπN from lattice QCD and
analyses based on experimental information about the πN interaction do not agree, the former getting
values around 30 to 40 MeV, while the latter obtain values close to 60 MeV. The corresponding results are
summarized in Table 4, in which we only show works published after 2011. Furthermore, we only quote
the most recent result for each collaboration. Notably, works of both lattice QCD and πN scattering
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Table 4: Recent σπN values from direct lattice QCD calculations, chiral fits to lattice QCD data and
works analyzing experimental information about pionic atoms and the low energy πN interaction.

Method Collaboration, Year σπN [MeV] Reference

Lattice QCD BMW, 2016 38(3)(3) [163]
Lattice QCD χQCD, 2016 45.9(7.4)(2.8) [164]
Lattice QCD ETM, 2016 37.2(2.6)(4.72.9) [165]
Lattice QCD RQCD, 2016 35(6) [166]
Lattice QCD JLQCD, 2018 26(3)(5)(2) [167]

Lattice QCD data + ChPT 2012 32(2) [168]
Lattice QCD data + ChPT 2013 52(7)/45(6)4 [169]
Lattice QCD data + ChPT 2013 45(6) [170]
Lattice QCD data + ChPT 2013 41(5)(4) [171]
Lattice QCD data + ChPT 2015 55(1)(4) [172]
Lattice QCD data + ChPT 2017 64.9(1.5)/51.7(4.3)5 [173]
Lattice QCD data + ChPT 2017 50.3(1.2)(3.4) [174]

ChPT 2012 59(7) [149]
Roy-Steiner Eqs. (pionic atoms) 2015 59.1(3.5) [150]
Roy-Steiner Eqs. (πN scat. data) 2018 58(5) [175]

analyses appear to be roughly consistent with each other, while there is a clear tension between the
two. What the origin of this disagreement is, remains presently unknown. Moreover, calculations using
a combination of chiral perturbation theory and lattice QCD data (with a few notable exceptions) lie
roughly between the other two approaches. A potential solution to the above discrepancy was recently
proposed in Ref. [176], in which the nucleon was described as a superposition of two distinct chiral
mutliplets and the πN sigma term was computed making use of chiral algebra considerations. We
relegate detailed explanations to Ref. [176], but here just mention that the admixture of the second
(non-standard) chiral multiplet is key for the present discussion as it enhances σπN to a value close to
60 MeV, consistent with those obtained from πN experimental data (Refs. [149, 150, 175]). It would
therefore be interesting to study what sort of chiral multiplets are taken into account in the current
lattice QCD studies of the πN sigma term.

Next, we discuss what is known about the strange quark sigma term σsN showing up in Eq. (101).
Similar to σπN , this quantity can be directly computed in lattice QCD and can at the same time be
related to some combination of πN and KN scattering processes and/or pionic and kaonic atoms.
Analyses relating σsN to experimental observables however are less developed compared to the σπN
discussion of the last paragraph. Lattice QCD also had (and remains to have) its problems (mainly
because of the difficulty in computing disconnected diagrams), but has in recent years shown consider-
able progress in estimating σsN at physical pion masses. Besides calculating σsN directly on the lattice,
some groups have also used the Feynman-Hellmann theorem, which, analogous to Eq. (105), gives

σsN = ms
∂mN

∂ms

. (106)

We here focus on recent direct lattice QCD computations and results based on chiral fits to lattice

4In this work, the authors give values for a fit without and with an explicit ∆(1232) contribution. The former gives
52(7) MeV, while the latter leads to a value of 45(6) MeV.

5The values quoted in this reference correspond to two separate fits to the same lattice data, using O(p3) and O(p4)
chiral perturbation theory approaches.
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Table 5: Recent σsN values from lattice QCD and ChPT fits to lattice QCD data.

Method Collaboration, Year σsN [MeV] Reference

Lattice QCD (Feynman-Hellmann) BMW, 2016 105(41)(37) [163]
Lattice QCD (direct) χQCD, 2016 40.2(11.7)(3.5) [164]
Lattice QCD (direct) ETM, 2016 41.1(8.2)(7.85.8) [165]
Lattice QCD (direct) RQCD, 2016 35(12) [166]
Lattice QCD (direct) JLQCD, 2018 17(18)(9) [167]

Lattice QCD data + ChPT 2012 22(20) [168]
Lattice QCD data + ChPT 2013 21(6) [170]
Lattice QCD data + ChPT 2015 27(27)(4) [172]

QCD data. At the end, we will briefly discuss the possibility of determining σsN based on experimental
information.

Other than σsN , there are quite a large number of parameters used to quantify the “strangeness
content of the nucleon”, ⟨N |ss|N⟩. Another frequently employed variable is

y =
⟨N |ss|N⟩
⟨N |qq|N⟩ =

2mq

ms

σsN
σπN

. (107)

Other parametrizations are

σ0 = (1− y)σπN , (108)

or

fTs =
σsN
MN

, (109)

where MN is the average of proton and neutron masses. We here focus only on σsN , firstly because it is
renormalization group invariant and secondly does not depend on σπN , which has its own uncertainties
as we have seen in the preceding discussion. If needed, the quantities y, σ0 and fTs can easily be
obtained from the above formulas.

Recent results for σsN are summarized in Table 5. Here, we again only show results published after
2011 and quote only the most recent result of each collaboration. Among the values shown in the table,
the first four are pure lattice QCD calculations that do not rely on chiral perturbation theory fits, while
the latter three use a combination of the Feynman-Hellmann theorem, lattice data of the nucleon at
several quark masses and chiral perturbation theory to obtain their result. One observes that the latter
works all have the tendency to give relatively small values for σsN . Overall, the numerical errors are
still rather large in comparison to the σπN results of Table 4. For the direct lattice QCD calculations
this is due to the large numerical cost and noisiness of the disconnected diagrams, that are the sole
contribution to σsN . For works that rely on the Feynman-Hellmann theorem of Eq. (106), the lack of
precision is related to the fact that the nucleon mass mN only depends very weakly on the strange
quark mass ms, which means that mN needs to be calculated with extremely high precision to reliably
compute the derivative of Eq. (106). Because of these issues, the results of Table 5 are still spread over
a wide range and more precise calculations will be needed to pin down the exact value of σsN .

As a further point, let us mention the possibility of determining the strange quark sigma term σsN
from experimental data. Given the recent and precise measurement of the kaonic hydrogen by the SID-
DHARTA experiment [177], and the planned hadronic deuterium measurement by the SIDDHARTA-2
collaboration at LNF [178, 179] and the E57 experiment at J-PARC [180], it should, in principle, be
possible to go through the same program as in Ref. [150], which was already described schematically in
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Ref. [151]. To our knowledge this task has not yet been carried out and it remains to be seen whether
its outcome would in terms of precision be able to compete with the lattice QCD approaches discussed
above.

There is one more condensate at dimension 3, namely ⟨q̄γµq⟩ρ, the lowest dimensional Lorentz
violating condensate as shown in Eq. (11). This condensate must be proportional to the four-velocity
of nucleon matter uµ, hence we have

⟨q̄γµq⟩ρ = ⟨q̄ ̸uq⟩ρuµ. (110)

Going to the (most natural) frame in which the medium is at rest, uµ = (1, 0, 0, 0), we obtain

⟨q̄γµq⟩ρ = ⟨q†q⟩ρδµ0

=
3

2
ρδµ0, (111)

where ρ is the nucleon density. This expression is exact. For the strange quark case, we have from an
analogous discussion

⟨s̄γµs⟩ρ = 0, (112)

which is also exact.

Condensates of dimension 4
We start with the finite density behavior of the dimension 4 gluon condensate ⟨αs

π
Ga

µνG
aµν⟩ρ = ⟨αs

π
G2⟩ρ.

Here we use the conventional definition which includes the factor αs

π
, hence eliminating the scale depen-

dence of this operator. Not much is known about the behavior of the gluon condensate going beyond
linear order in density, as it is presently not known how to compute higher order terms in a system-
atic way. There are nevertheless a few relatively old model calculations, which suggest that the linear
behavior is accurate to a good degree at normal nuclear matter density and non-linear terms start to
become significant only at larger densities [181, 182]. We will here focus on the linear density term,
about which model independent statements can be made. Making, as before, use of Eq. (97), we can
write

⟨αs

π
G2⟩ρ ≃ ⟨0|αs

π
G2|0⟩+ ρ⟨N |αs

π
G2|N⟩. (113)

To compute the quantity ⟨N |αs

π
G2|N⟩, Eq. (48) can be used. This equation is based on the trace

anomaly, where higher order αs terms are neglected and contributions due to heavy quarks c, b and t
are converted into the squared gluon field term via the heavy quark expansion. If one does not wish to
rely on the heavy quark expansion, the same discussion can be straightforwardly repeated keeping the
explicit heavy quark terms mccc, mbbb and mttt. Following Ref. [127], we write

⟨T µ
µ ⟩ρ = ⟨0|T µ

µ |0⟩+ e(ρ)

≃ ⟨0|T µ
µ |0⟩+ ρMN . (114)

in the first line, which is exact, e(ρ) is the energy density of matter with baryon density ρ, which
in the linear density approximation used in the second line, becomes ρMN . In the first line pressure
contributions vanish because we are considering matter in equilibrium. One can then obtain the linear
density term by computing (⟨T µ

µ ⟩ρ − ⟨0|T µ
µ |0⟩)/ρ, both using Eqs. (48) and (114). We thus get

MN = −9

8
⟨N |αs

π
G2|N⟩+ σπN + σsN , (115)

and hence

⟨N |αs

π
G2|N⟩ = −8

9
(MN − σπN − σsN). (116)
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Looking at the values of σπN and σsN in Tables 4 and 5, which are of the order of 50 MeV, it is clear
that ⟨N |αs

π
G2|N⟩ is to a large degree determined by the nucleon mass valueMN . The fact that σπN and

σsN are not yet determined with good precision however leads to some uncertainty for ⟨N |αs

π
G2|N⟩.

Next, we consider the non-scalar condensates of dimension 4, of which there are three. We begin
with ⟨q̄iDµq⟩ρ, which is most straightforward. This condensate must be proportional to uµ, hence

⟨q̄iDµq⟩ρ = ⟨q̄uαiDαq⟩ρuµ. (117)

As described in Ref. [42], we can furthermore use

Dα =
1

2
(γα D̸+ D̸γα) (118)

and

q D̸Γq = −q ⃗D̸Γq, (119)

i D̸q = mqq, (120)

qi ⃗D̸ = −mqq, (121)

where in the first line Γ is an arbitrary gamma matrix. Using the above relations and equations of
motion, we obtain

⟨q̄uαiDαq⟩ρ = mq⟨q̄ ̸uq⟩ρ
= mq⟨q†q⟩ρ (122)

=
3

2
mqρ,

where in the second and third line we have used again uµ = (1, 0, 0, 0) and have proceeded in the same
way as in Eq. (111). We therefore have

⟨q̄iDµq⟩ρ =
3

2
mqρδ

µ0. (123)

No approximations were used in this derivation. From similar considerations, we also obtain the exact
result

⟨s̄iDµs⟩ρ = 0. (124)

We next look at the first and third condensates in Eq. (11). Studying these, it is convenient to
discuss a more general class of operators, with arbitrary numbers of covariant derivatives, which can
be related to moments of specific nucleonic parton distribution functions. From DIS theory, we have
[42, 183, 184, 185]

⟨N |ST q̄γµ1Dµ2 · · ·Dµnq|N⟩ ≡ (−i)n−1 1

2MN

Aq
n(µ

2)ST (pµ1 · · · pµn), (125)

⟨N |ST Ga
αµ1
Dµ2 · · ·Dµn−1G

aα
µn
|N⟩ ≡ (−i)n−2 1

MN

Ag
n(µ

2)ST (pµ1 · · · pµn). (126)

Here, pµ is the four-momentum of the nucleon state |N⟩ and q can stand for all three quark species or
their averages. The coefficients Aq

n(µ
2) and Ag

n(µ
2) are each related to momenta of quark and gluon

parton distributions at renormalization scale µ2:

Aq
n(µ

2) = 2

∫ 1

0

dxxn−1
[
q(x, µ2) + (−1)nq̄(x, µ2)

]
, (127)

Ag
n(µ

2) =
1 + (−1)n

2

∫ 1

0

dxxn−1g(x, µ2). (128)
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Figure 11: Parton distributions of various quark species (left plot) and gluon (right plot) as
a function of Bjorken x, extracted from the fit of Ref. [186] and the corresponding codes of
Ref. [187] for NLO results at µ2 = 1GeV2.

In practice, mostly operators with n values ranging from 2 to 4 (corresponding to operators with
dimensions 4 to 6) will be of importance. Their expectation values can be obtained by numerically
integrating the parton distributions fitted in Ref. [186] to a vast amount of experimental data using LO,
NLO and NNLO QCD results. The parton distributions can be extracted for wide µ2 ranges from the
codes provided in Ref. [187]. As an example and for illustration, the NLO distributions (times x) are
shown in Fig. 11 at µ2 = 1GeV2. For the convenience of the reader, we give the Aq and Ag values for
data fits employing LO, NLO and NNLO expressions and scales

√
µ2 = 1GeV and

√
µ2 = 2GeV in

Table 6. These values are all obtained for the proton. Therefore, to study symmetric nuclear matter,
the average of Au and Ad, Aq

n = 1
2
(Au

n + Ad
n), is needed, which can also be found in Table 6.

Making use of Eqs. (97) and (126), we have

⟨ST q̄γµiDνq⟩ρ ≃ ρ⟨N |ST q̄γµiDνq|N⟩

=
ρ

2MN

Aq
2

(
pµpν − p2

4
gµν
)

=
ρMN

2
Aq

2

(
δµ0δν0 − 1

4
gµν
)
, (129)

⟨ST s̄γµiDνs⟩ρ ≃
ρMN

2
As

2

(
δµ0δν0 − 1

4
gµν
)
, (130)

⟨ST Gaµ
α G

aνα⟩ρ ≃ ρMNA
g
2

(
δµ0δν0 − 1

4
gµν
)
, (131)

where we have in the third, fourth and fifth line employed pµ = MNu
µ, which is valid only at leading

order in ρ.

Condensates of dimension 5
We begin again with the density dependence of the only scalar condensate of this dimension, ⟨q̄gσGq⟩ρ.
Worse than its vacuum counterpart, not much first hand information is available for this quantity even
at leading order in density. The only estimate given in the literature is from Ref. [42], which we will
update here. It was assumed in Ref. [42] that the parameter m2

0, introduced earlier in Eq. (26), is
independent of density. Therefore, one has

⟨q̄gσGq⟩ρ ≃ ⟨0|q̄gσGq|0⟩+ ρ⟨N |q̄gσGq|N⟩ (132)
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Table 6: Aq and Ag values as defined in Eqs. (127) and (128) obtained by numerically integrating the
(proton) parton distributions provided in Refs. [186] and [187]. The errors are computed by integrating
the respective distribution errors. For Aq

n = 1
2
(Au

n+A
d
n), the errors of A

u
n and A

d
n are added in quadrature.

LO NLO NNLO
√
µ2 1 GeV 2 GeV 1 GeV 2 GeV 1 GeV 2 GeV

Au
2 0.735(19) 0.640(15) 0.784(17) 0.679(14) 0.819(18) 0.696(14)

Ad
2 0.424(21) 0.380(17) 0.430(18) 0.385(14) 0.448(18) 0.394(14)

Aq
2 0.580(14) 0.510(11) 0.607(12) 0.532(10) 0.634(13) 0.545(10)

As
2 0.0378(94) 0.0585(79) 0.053(13) 0.072(11) 0.050(16) 0.071(13)

Ag
2 0.401(35) 0.454(21) 0.367(23) 0.425(16) 0.341(23) 0.411(16)

Au
3 0.2171(54) 0.1633(39) 0.2178(48) 0.1640(35) 0.2278(51) 0.1663(36)

Ad
3 0.0812(61) 0.0611(44) 0.0782(52) 0.0589(37) 0.0836(56) 0.0610(38)

Aq
3 0.1492(41) 0.1122(29) 0.1480(36) 0.1114(25) 0.1557(38) 0.1136(26)

As
3 0.00110(92) 0.00082(81) 0.0016(18) 0.0012(14) 0.0017(23) 0.0012(17)

Ag
3 0 0 0 0 0 0

Au
4 0.0991(23) 0.0701(15) 0.0945(21) 0.0668(14) 0.0984(22) 0.0670(14)

Ad
4 0.0357(27) 0.0257(18) 0.0327(25) 0.0233(16) 0.0348(28) 0.0240(17)

Aq
4 0.0674(17) 0.0479(12) 0.0636(16) 0.0450(11) 0.0666(18) 0.0455(11)

As
4 0.00040(18) 0.00105(19) 0.00121(44) 0.00122(31) 0.00099(57) 0.00110(39)

Ag
4 0.0338(48) 0.0177(21) 0.0208(23) 0.0125(11) 0.0283(36) 0.0158(16)

Au
5 0.0494(12) 0.03265(75) 0.0449(11) 0.02990(70) 0.0464(11) 0.02960(69)

Ad
5 0.0141(14) 0.00934(89) 0.0123(15) 0.00818(92) 0.0139(17) 0.0089(10)

Aq
5 0.03179(90) 0.02100(58) 0.02860(92) 0.01904(58) 0.0301(10) 0.01923(61)

As
5 0.000066(46) 0.000043(61) 0.00016(14) 0.000105(91) 0.00020(19) 0.00012(12)

Ag
5 0 0 0 0 0 0

Au
6 0.02819(67) 0.01786(41) 0.02472(64) 0.01578(40) 0.02531(63) 0.01544(38)

Ad
6 0.00741(80) 0.00477(50) 0.0062(10) 0.00396(60) 0.0073(12) 0.00447(68)

Aq
6 0.01780(52) 0.01132(32) 0.01544(59) 0.00987(36) 0.01629(67) 0.00995(39)

As
6 0.000021(13) 0.000113(25) 0.000092(51) 0.000091(32) 0.000069(74) 0.000092(47)

Ag
6 0.0074(16) 0.00288(55) 0.00402(67) 0.00184(26) 0.0089(17) 0.00352(61)
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with

⟨N |q̄gσGq|N⟩ = m2
0⟨N |q̄q|N⟩

= m2
0

σπN
2mq

= 3.8± 1.7GeV2. (133)

Here, we have used Eq. (27), σπN = 45 ± 15 MeV, which encompasses most of the values in Table 4,
and mq = 4.7 ± 0.7 MeV [123], which is the averaged u and d quark mass in the MS scheme at a
renormalization scale of 1 GeV. The value given here is larger than that quoted in Ref. [42] because of
the smaller quark mass used here, but consistent within errors. Furthermore, the error is larger than in
Ref. [42] because we have assumed a larger uncertainty for σπN . It should in any case be kept in mind
that the above value is not more than a rough estimate, as the validity of the assumption of m2

0 not
to depend on ρ is not clear. Again, a direct lattice QCD calculation of ⟨N |q̄gσGq|N⟩ would be very
helpful.

The strange counterpart ⟨N |s̄gσGs|N⟩ can be estimated in a similar way. We get

⟨N |s̄gσGs|N⟩ = m2
1⟨N |s̄s|N⟩

= m2
1

σsN
ms

= 0.37± 0.28GeV2, (134)

where we have used Eq. (31), σsN = 60 ± 40MeV, which approximately represents the values given in
Table 5 and ms = 130± 8MeV [123], which is again the most recent PDG value of the s quark mass in
the MS scheme at a renormalization scale 1 GeV. The large error of this estimate obviously originates
from the large uncertainty of σsN . It moreover relies on the somewhat arbitrary assumption that m2

1

does not depend on the density.
We next consider the non-scalar condensate ⟨N |q̄γµgσGq|N⟩, which can be treated as in Eq. (110,

⟨N |q̄γµgσGq|N⟩ = ⟨N |q̄ ̸ugσGq|N⟩uµ (135)

and, going to the nuclear rest frame,

⟨N |q̄γµgσGq|N⟩ = ⟨N |q†gσGq|N⟩δµ0. (136)

About ⟨N |q†gσGq|N⟩ some older works are available, providing an idea about its order of magnitude.
In Refs. [188, 189, 190] the operator

OS
µ = ūgλaG̃a

µαγ
αγ5u+ d̄gλaG̃a

µαγ
αγ5d (137)

was studied. Here, G̃a
µν = 1

2
ϵµναβG

aαβ. Its nucleon expectation value can be related to the above
condensate as

⟨N |OS
µ|N⟩ = 2⟨N |q̄γµgσGq|N⟩ (138)

using the convention ϵ0123 = 1 employed in these works (also note that in Refs. [188, 189] ta stands
for λa in our notation). Furthermore, adjusting their normalization convention to ours, the results of
Refs. [188, 189], using the Gross-Llewellyn Smith sum rule and experimental data, become

⟨N |q†gσGq|N⟩ = −0.5GeV2. (139)
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Table 7: Values of ⟨N |q†gσGq|N⟩ obtained from different approaches. For details, see the text and the
references cited here.

⟨N |q†gσGq|N⟩ [GeV2] method reference

−0.5 Gross-Llewellyn Smith SR [188, 189]
0.33 QCD sum rule [190]
0.22 vector dominance [190]
0.2 non-rel. quark model [190]
1.2 m2

0 this work

The sign of this value is different from that quoted in Ref. [42]. On the other hand, Ref. [190] gets

⟨N |q†gσGq|N⟩ = 0.33GeV2 (140)

from a QCD sum rule analysis, while also obtaining

⟨N |q†gσGq|N⟩ = 0.22GeV2 (141)

from vector dominance and

⟨N |q†gσGq|N⟩ = 0.2GeV2 (142)

from a non-relativistic quark model. We here give a new estimate [191], that so far has not been
discussed in published works. The idea is to simply assume that a relation analogous to Eq. (133) holds
with m2

0 of equal order of magnitude. We hence have

⟨N |q†gσGq|N⟩ ≃ m2
0⟨N |q†q|N⟩

=
3

2
m2

0

≃ 1.2GeV2. (143)

All the above results are summarized in Table 7. We see that the results largely differ depending on the
employed method, even its sign is uncertain. It can, however, be conjectured that its absolute value is
of the order of ∼ 1GeV2 or smaller.

As for the strange condensate ⟨N |s†gσGs|N⟩, to our knowledge no estimate is currently available.
The simplest way of estimating this matrix element is to use the same strategy as in Eq. (143). We then
have

⟨N |s†gσGs|N⟩ ≃ m2
1⟨N |s†s|N⟩

= 0. (144)

We hence see that this condensate will likely be small. Another way of estimating ⟨N |s†gσGs|N⟩ is to
assume

⟨N |s†gσGs|N⟩
⟨N |q†gσGq|N⟩ ≃ ⟨N |s̄gσGs|N⟩

⟨N |q̄gσGq|N⟩
≃ 0.1. (145)

Therefore,

|⟨N |s†gσGs|N⟩| ≃ 0.1× |⟨N |q†gσGq|N⟩|
≲ 0.1GeV2. (146)
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Another non-scalar condensate appearing at dimension 5 is ⟨ST q̄iDµiDνq⟩ρ, which is presently
constrained only up to leading order in density,

⟨ST q̄iDµiDνq⟩ρ ≃ ρ⟨N |ST q̄iDµiDνq|N⟩. (147)

When discussing ⟨N |ST q̄iDµiDνq|N⟩, it is again useful to define a more general matrix element with
an arbitrary number of covariant derivatives, which can be related to specific moments of the twist-3
distribution function e(x, µ2) [42, 192],

⟨N |ST q̄iDµ1iDµ2 · · · iDµnq|N⟩ ≡ en(µ
2)ST (pµ1 · · · pµn), (148)

with

en(µ
2) =

∫ 1

0

dxxnen(x, µ
2). (149)

As usual, we consider the matrix element of Eq. (148) as the average over u and d quarks. In that case
e(x, µ2) can be decomposed as

en(x, µ
2) =

1

2

[
eu(x, µ2) + ed(x, µ2) + (−1)neū(x, µ2) + (−1)ned̄(x, µ2)

]
, (150)

where the contributions from the individual quarks are given as [192]

eq(x, µ2) =
1

2MN

∫
dλ

2π
eiλx⟨N |q̄(0)[0, λn]q(λn)|N⟩, (151)

where [0, λn] is the gauge link to make the above quantity gauge invariant. The symbol n here stands
for a null vector with mass dimension −1. It should hence not be confused with the n of Eqs. (148-150).
Eqs. (149), (150) and (151) have for a long time not been of much practical use, as en(x, µ

2) and/or
eq(x, µ2) was essentially unknown, and had only been obtained from models, such as the bag model
[192], the chiral quark soliton model [193] and the spectator model [194]. For illustration, we show
in Fig. 12 the function en(x, µ

2) computed in these models. In this figure n is taken to be an even
number, en(x, µ

2) is simply denoted as e(x) and the renormalization scale
√
µ2 can be assumed to be

close to a typical hadronic scale of
√
µ2 ≃ 0.5 ∼ 1.0 GeV. At this preliminary stage of the analysis, the

renormalization scale is usually not seriously considered. We will therefore ignore it in the following
discussion.

In past works, only rather crude estimates for e2 have been provided, such as e2 = 0.36 [146] or
e2 = 1.95 [42] (see also Ref. [145]). Recently, the situation has however improved, as some experimental
information about eq(x) has become available. To be precise, a few data points of the function

eV(x) =
4

9

[
eu(x)− eū(x)

]
− 1

9

[
ed(x)− ed̄(x)

]
(152)

were measured by analyzing experimental data on the beam-spin asymmetry of di-hadron semi-inclusive
DIS obtained by the CLAS experiment at Jefferson Lab [196]. In Ref. [196] two schemes were used to
extract eV(x), giving results that even have different signs. The obtained data points are shown in
Fig. 13. It is thus clear that at present no precise estimate on any en value can be given. It is, however,
possible to get order of magnitude estimates by making reasonable assumptions about the relative
strengths of the u, d, ū and d̄ contributions. We refer the interested reader to Ref. [145] and here just
quote the final results,

e2 = (1.7± 4.7)× 10−2, (153)

e3 = (1.4± 7.5)× 10−3. (154)
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Figure 12: The function en(x, µ
2) as a function of Bjorken x, computed in the bag model (red

curve), the chiral quark soliton model (green curve) and the spectator model (blue curve)
with n = odd and µ2 taken at a typical hadronic scale (see text). The numerical data needed
for this plot have been extracted from Fig. 9 of Ref. [195]. Taken from Fig. 2 Ref. [145].

The extraction of Eq. (153) is explained in detail in Ref. [145], while Eq. (154) was obtained using the
same method. We refrain from giving en values vor higher n because we have no direct information about
the behavior of e(x) at large x, which leads to even larger uncertainties. More detailed experimental
information about eV(x) will become available soon [197] through the analysis of the CLAS12 data,
which hopefully will make it possible to get more precise en values and to go to higher n.

About the strange condensate ⟨ST s̄iDµiDνs⟩ρ (as well as ⟨N |ST s̄iDµiDνs|N⟩, its linear order
density coefficient) no direct information is presently available. It is, however, possible to get an
estimate by considering strange - non-strange ratios of the similar and better known condensates of
Eq. (125) [145]. For es2 [defined as in Eq. (148), but with strange quarks], we have

es2 ≃ e2 ×
As

2

Aq
2

= (1.5± 4.1)× 10−3, (155)

and for es3

es3 ≃ e3 ×
As

3

Aq
3

= (1.5± 8.1)× 10−5, (156)

where we have used the NLO values of Table 6 at a renormalization scale of 1 GeV and have ignored
their respective uncertainties.

Finally, the linear density terms of the condensates ⟨ST q̄γαiDµiDνq⟩ρ and ⟨ST s̄γαiDµiDνs⟩ρ were
already discussed around and after Eqs. (125) and (126).
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Condensates of dimension 6
Raising the mass dimension to 6, the number of independent condensates suddenly increases to a fairly
large number. Therefore, a consistent and systematic discussion of the density dependences of all
these condensates has never been attempted, even though some specific classes of condensates have
been studied, as will be seen below. One can reasonably argue that a general discussion of density
dependences of such condensates is somewhat premature at the current stage at which their values are
not well known even in vacuum. We will hence not attempt such a discussion here, but only mention
some general features and refer the reader to the works, in which some of these condensates have been
studied. To study the dimension 6 condensates, it would as a first step be useful to determine the
respective independent operators. For instance, four-quark operators can be related to each other by
applying Fierz-transformations, as it was discussed in detail in Ref. [41]. Furthermore, equations of
motion and Bianchi identities can be used to relate different operators, as shown in Refs. [45, 147] for
scalar and non-scalar purely gluonic dimension 6 operators.

Let us review some basic strategies used to study these condensates. For the four quark condensates,
the usual method is to employ a generalized vacuum saturation approximation similar to Eq. (35) (see
Appendix A of Ref. [42] for a detailed discsussion)

⟨qiαqkβqlγqmδ ⟩ρ ≃ ⟨qiαqmδ ⟩ρ⟨qkβqlγ⟩ρ − ⟨qiαqlγ⟩ρ⟨qkβqmδ ⟩ρ, (157)

⟨qiαq′kβ q′lγqmδ ⟩ρ ≃ ⟨qiαqmδ ⟩ρ⟨q′kβ q′lγ ⟩ρ, (158)

where in the first line, all four quark operators have the same flavor, while in the second line the
operators q and q′ represent different flavors. The various two-quark expectation values are further
expanded into color singlet and Lorentz scalar and vector pieces. One then substitutes for instance
Eqs. (100) or (101) and expands the result to linear order in ρ. This gives a crude order of magnitude
estimate, but as it was the case for the same vacuum saturation approximation, it is not clear to what
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degree this approximation is realized in nature. Indeed, a study of the nucleon QCD sum rules at
finite density suggests that the density dependence of the scalar-scalar four-quark condensate should
be considerably weaker than the estimate obtained from Eq. (158) [198]. A first principle lattice QCD
calculation will therefore be needed in the future to have better control over the systematic uncertainties.
Besides the method explained above, certain operators that appear in the OPE of the electromagnetic
current correlator jemµ =

∑
q eqqγµq can be constrained from lepton-hadron deep inelastic scattering

data [199].
As a reference for the interested reader, we in the following give a brief guide to the literature dealing

with the density dependence of dimension 6 condensates. Note however that the list of works mentioned
here is not necessarily complete. The factorization hypothesis of the four-quark condensates applied to
finite density, was discussed in Ref. [42], while Ref. [41] studied the algebraic relations between different
four-quark condensates and their evaluation using factorization and the perturbative chiral quark model
[200]. Further discussions on the role of four-quark condensates and their values are given in Ref. [201].
Experimental constraints of dimension 6 condensates appearing the vector channel OPE are studied in
Ref. [199], while the same condensates containing strange quarks were considered in Ref. [145]. Estimates
of the nucleon expectation values of gluonic dimension 6 operators are provided in Ref. [147].

3.2.3 Condensates in a homogenous and constant magnetic field

In recent years, the effects of a strong magnetic field have attracted the interest of the hadron physics
community because of the potential existence of such strong fields in heavy-ion collisions and magnetars
[202, 203]. In this context, interesting phenomena such as the chiral magnetic effect [204, 205] or the
magnetic catalysis [206] have been widely discussed (see for instance Refs. [207, 208] for recent reviews
and further references). This has motivated practitioners of both lattice QCD and QCD sum rules
to study the behavior of hadrons under a strong (of the order of a typical QCD scale) and constant
magnetic field. For QCD sum rule studies, this means that condensates must be determined as a
function of the magnetic field to be used as input. The present status of what is known about the
magnetic behavior of the condensates is briefly reviewed here. In what follows, we use the notation
B ≡ |B| and will, if not stated otherwise assume the magnetic field to point into the direction of the
z-axis: B = (0, 0, B).

Besides the scalar condensates given in Eq. (10), which will get modified as the magnetic field is
increased, there are also novel condensates that appear once the magnetic field is switched on. These
condensates are different from those in Eq. (11), which emerge at finite temperature or density. This can
be understood as follows. Non-scalar condensates in hot or dense matter are constructed by considering
all positive parity, gauge invariant and independent combinations of quark fields, gluon field strengths
and covariant derivatives that do not vanish when contracted with uµ, the four-velocity of the heat
bath or the dense medium. In the magnetic field case, uµ is replaced by Fµν the electromagnetic field
strength tensor (or combinations thereof). The non-scalar condensates obtained in this way are

dimension 3 : ⟨q̄σµνq⟩B,
dimension 4 : ⟨ST q̄γµiDνq⟩B, ⟨ST Gaµ

α G
aνα⟩B, (159)

dimension 5 : ⟨q̄taGa
µνq⟩B, ⟨q̄γ5taG̃a

µνq⟩B, . . .
. . .

Here, ⟨O⟩B stands for the expectation value of the operatorO with respect to the QCD ground state with
zero temperature and zero baryon density, but with a constant and homogenous magnetic background
field. These condensates can be further categorized according to their C-parity. Those with negative
C-parity will be proportional to odd numbers of Fµν . For small magnetic fields they will generally be
proportional to B. Those with positive C-parity have to be proportional to even numbers of Fµν and
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Figure 14: Left plot: The change of the renormalized chiral condensate in a magnetic field
at T = 0. For the precise definition, see Eqs. (162) and (163). The various data points show
results for different lattice spacings a, while the red band corresponds to the continuum limit.
Right plot: The same as for the left plot, but showing only the continuum extrapolated results
at finite temperature. Taken from Figs. 1 and 2 of Ref. [212].

at small magnetic field will be proportional to B2. In the list shown above, the dimension 3 and 5
condensates have negative C-parity, while the dimension 4 ones have positive C-parity. It is possible to
construct positive C-parity operators at dimension 5, which are not shown here. For a more extended
discussion of operators with higher dimension and negative C-parity (whose properties are, however, at
present practically unknown), see Ref. [209].

Condensates of dimension 3
We start with the magnetic behavior of the chiral condensate ⟨q̄q⟩B, about which we currently have the
most detailed information. This is mainly thanks to chiral perturbation theory and recent lattice QCD
calculations, where it is relatively straightforward to introduce constant magnetic fields. First, let us
give the chiral perturbation theory result based on Refs. [210, 211], which can be cast in a simple and
analytic form,

⟨q̄q⟩B
⟨0|q̄q|0⟩ = 1 +

log(2)eB

16π2f 2
π

IH

(
m2

π

eB

)
, (160)

with

IH(y) = − 1

log(2)

∫ ∞

0

dz

z2
e−yz

[
z

sinh(z)
− 1

]
. (161)

According to the lattice QCD calculations to be shown below, this expression is accurate up to magnetic
field values of about eB ≃ 0.1GeV2.

A relatively recent high precision lattice QCD calculation of ⟨q̄q⟩B can be found in Ref. [212], where
staggered fermions were used to simulate 1+ 1+ 1 dynamical quarks at the physical point. The results
were furthermore extrapolated to the continuum limit. For an earlier result based on the quenched
approximation, see Ref. [213]. The behavior of the chiral condensate as a function of eB is shown on
the left plot of Fig. 14. The definition of ∆Σq ≡ ∆(Σu + Σd)/2 depicted in this figure is
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Σu(B, T ) =
2mud

m2
πf

2
π

(
⟨B, T |ūu|B, T ⟩ − ⟨0, 0|ūu|0, 0⟩

)
+ 1, (162)

∆Σu(B, T ) = Σu(B, T )− Σu(0, T ), (163)

and analogously for the d quark. mud is the mass of the degenerate u and d quarks, mud = mu = md.
We here have kept the notation and convention of Ref. [212], where ⟨0, 0|ūu|0, 0⟩ is a positive number.
The above definitions are used to eliminate additive and multiplicative divergences that appear in the
lattice computations of the condensates. With the help of the Gell-Mann-Oakes-Renner relation of
Eq. (19) and keeping in mind the changed sign convention, Eq. (162) can be rewritten as

Σu(B, T ) =
⟨B, T |ūu|B, T ⟩
⟨0, 0|ūu|0, 0⟩ . (164)

The left plot of Fig. 14 shows that the average u and d condensate increases with and increasing magnetic
field. This phenomenon is commonly referred to as “magnetic catalysis”. On the lattice, it is possible
to study how the magnetic field dependence changes with increasing temperature. The corresponding
results are shown in the right plot of Fig. 14. It is interesting to see that the magnetic field dependence
almost completely vanishes at temperatures around Tc. The presence of a magnetic field breaks isospin
symmetry, hence causing the u and d quarks to behave differently. Therefore, it is not sufficient to only
consider the average ∆Σq, but also the difference between ∆Σu and ∆Σd which grows with increasing
B. For more details about the quark flavor dependence and a comparison of the lattice results with
chiral perturbation theory and models, see Ref. [212]. The behavior of the strange quark condensate
has so far not been studied in lattice QCD.

Next, we discuss the non-scalar condensate given in the first line of Eq. (159). This quantity is not
only important as an input in QCD sum rule studies, but also for determining the response of the QCD
free energy density to magnetic fields. As it is common, we assume the magnetic field to be parallel to
the z-axis, which means that only the component ⟨q̄σ12q⟩B will be of relevance here. This condensate
was studied on the lattice for the first time in Ref. [213] in the quenched approximation and later in
Ref. [214] in full QCD, by the same group and under the same conditions as the chiral condensate
discussed above and in Ref. [212]. At relatively small magnetic fields, two parametrizations have been
used to quantify ⟨q̄σ12q⟩B:

⟨q̄σ12q⟩B = qfB⟨0|q̄q|0⟩χf , (165)

⟨q̄σ12q⟩B = qfBτf . (166)

Here, the quark field q represents any of the quark flavors u, d and s, while qf is the respective electric
charge. χf is commonly referred to as the “magnetic susceptibility of the condensate”, while τf is called
“tensor coefficient” in Ref. [214]. The full QCD lattice results obtained in this reference are

χu = −(2.08± 0.08)GeV−2,

χd = −(2.02± 0.09)GeV−2, (167)

χs = −(3.4± 1.4)GeV−2,

and

τu = 40.7± 1.3MeV,

τd = 39.4± 1.4MeV, (168)

τs = 53.0± 7.2MeV,
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at a renormalization scale of 2 GeV in the MS scheme6. It was furthermore shown that the linear
behavior of Eqs. (165) and (166) is valid up to magnetic fields of about eB = 0.3GeV2, above which
the effects of higher order terms [O(B3)] become visible. For practical applications, the τf values
are the preferred choice as their evaluaion does not depend on a separate calculation of ⟨0|q̄q|0⟩ and
furthermore have only a mild renormalization scale dependence [214]. Indeed, the anomalous dimension
of the operator q̄σµνq is only − 4

27
for three active flavors [209, 215].

Condensates of dimension 4
At this dimension, we start with the sclalar gluon condensate ⟨αs

π
G2⟩B, which was recently studied

using lattice QCD in Ref. [216]. This was done via measuring the interaction measure (in other words,
the trace of the energy momentum tensor), of which the gluonic part is proportional to the scalar
gluon condensate. In this calculation it was found that, analogously to the quark condensate, the
gluon condensate is enhanced with an increasing magnetic field (see the left plot of Fig. 1 in Ref. [216]).
Quantitatively, the gluon condensate value is roughly increased by about 30% at eB = 0.8GeV2

compared to the vacuum, assuming the vacuum value of Eq. (23). This behavior does not agree with
the earlier study of Ref. [217] (which got a decreasing gluon condensate value with increasing B), but
agrees with the more recent works of Refs. [218, 219]. The change of the magnetic field behavior of
the gluon condensate with increasing temperature was also studied in Ref. [216] and again a behavior
similar to the one found for the quark condensate was obtained: the dependence on the magnetic field
weakens as the temperature approaches Tc and switches its sign for even larger temperatures, giving
rise to a decreasing gluon condensate with an increasing magnetic field.

We next discuss ⟨ST q̄γµiDνq⟩B, which has positive C-parity and hence is expected to behave as
O(B2) for small B. Unfortunately, there are presently no lattice QCD calculations available for this
condensate. Moreover, to our knowledge only one simple quark model estimate has been reported so
far. This estimate is given in Appendix E of Ref. [220], which should be consulted for more details.
Schematically, the method employed in Ref. [220] can be summarized as

⟨O⟩B − ⟨0|O|0⟩ = −
∫ Λ d4p

(2π)4
TrC,D[OS(p)B], (169)

where O represents a general operator, that can contain gamma matrices or covariant derivatives, S(p)B
stands for the quark propagator with one or more magnetic field insertions and TrC,D for the color and
Dirac trace. In this model it is possible to reproduce the magnetic field dependence with rather good
accuracy when setting the (constituent) quark mass to mq = 300 MeV and the (Euclidean) cutoff to
Λ = 1 GeV. For O = γµiDν , the final result reads

⟨ST q̄γµiDνq⟩B =
1

8π2
q2fB

2(gµν∥ − gµν⊥ )A, (170)

with

A = log

(
Λ2

m2
q

)
− 4

3
+ log

(
1 +

m2
q

Λ2

)
+

3

2

m2
q

Λ2(1 +m2
q/Λ

2)
− 1

6

m6
q

Λ6(1 +m2
q/Λ

2)3
. (171)

The tensors gµν∥ and gµν⊥ appearing in Eq. (170) are defined as gµν∥ = diag(1, 0, 0,−1) and gµν⊥ =

diag(0,−1,−1, 0). The form gµν∥ − gµν⊥ can be understood as part of the electromagnetic counterpart of
the gluonic operator ST Gaµ

α G
aνα. Indeed,

F µαF ν
α − 1

4
gµνFαβFαβ = −1

2
B2(gµν∥ − gµν⊥ ) (172)

6In Ref. [214], the conventions of positive ⟨0|q̄q|0⟩ and σµν = 1
2i [γµ, γν ] were used. To adjust to our conventions with

negative ⟨0|q̄q|0⟩ and σµν = i
2 [γµ, γν ], we changed the sign of the τf values given in Ref. [214].
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can be derived for F µν containing only a magnetic field pointing in the direction of the z-axis. Naturally,
the above result is only valid for B values, for which higher order O(B4) terms can be neglected.

For the second condensate at dimension 4, ⟨ST Gaµ
α G

aνα⟩B which can also be expected to behave as
O(B2) for small B, we presently do not have much information. As gluons do not couple directly to
the magnetic field, this condensate vanishes exactly in the quenched approximation. In full QCD with
dynamical quarks, it does not necessarily vanish, but can be expected to be strongly suppressed. To
obtain a quantitative estimate, a lattice QCD or model calculation will be needed in the future.

Condensates of dimension 5
At dimension 5, we will discuss only the two condensates given in the third line of Eq. (159), as the
behavior of possible other scalar and non-scalar operator expectation values are presently not known.
These two have been considered already a long time ago in Ref. [209] (and also partly in Ref. [221]), based
on a QCD sum rule calculation of the nucleon magnetic moments. They are traditionally parametrized
as

⟨q̄taGa
µνq⟩B = qfκFµν⟨0|q̄q|0⟩, (173)

⟨q̄γ5taG̃a
µνq⟩B =

i

2
qfξFµν⟨0|q̄q|0⟩. (174)

This parametrization is only valid for small electromagnetic field values. Higher order terms in Fµν

have so far not been studied. The two operators q̄taGa
µνq and q̄γ5t

aG̃a
µνq generally mix when changing

the renormalization scale. Respective eigenvalues and eigenvectors of the corresponding anomalous
dimension matrix are given in Refs.[222, 223]. The parameters κ and ξ have been discussed in many
QCD sum rule studies over the years. In particular Chiu, Pasupathy and Wilson have studied them
in series of papers in the eighties [224, 225, 226, 227], where they have used QCD sum rules of various
channels to determine κ and ξ. In Ref. [224], the vector channel sum rules in combination with the
vector-dominance model was used in a one pole and two pole approximation, respectively. The obtained
results were

κ = 0.22, ξ = −0.44 (one pole), (175)

κ = 0.4, ξ = −0.8 (two poles). (176)

In the same paper, they further carried out two different fits of baryonic magnetic moment sum rules to
experimental data to obtain κ− 2ξ = 5.73 and κ− 2ξ = 8.93. In subsequent papers (Refs. [226, 227]),
they took further baryons into account for their fit, which led to

κ = 0.75, (177)

ξ = −1.5. (178)

These values remain rather popular and are widely used even today. In the same work, a simple
parametrization was also given for the strange counterparts of κ and ξ [and of χq defined in Eq. (165)]:

ϕ =
κs
κ

=
ξs
ξ

=
χs

χq

, (179)

= 0.6. (180)

It however has to be noted here that the newest lattice QCD results for χs and χq [see Eq. (167)] give
χs/χq ≃ 1.66 and do not agree with the above value, which therefore needs to be taken with a grain of
salt. Moreover, besides the most often used values of Eqs. (177) and (178),

κ = 0.2, (181)

ξ = −0.4, (182)
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given in Ref. [223] and partly based on Ref.[222], are also sometimes quoted in the literature (see, for
instance, Ref. [228]). In all, it can be said that κ and ξ likely have orders of magnitude as given in
Eqs. (177) and (178) or Eqs. (181) and (182). Their precise values remain, however, presently unknown.

4 Analysis strategies

Once the condensates that appear in the OPE of a specific channel are identified, the calculation of the
corresponding Wilson coefficients is completed and the condensate values are determined with sufficient
precision, the remaining task is to extract information about the spectral function from the sum rules
given for instance in Eqs. (4) and (5). Obviously, this is not a simple task as Π(q2) or Π̃(q2) are not
known exactly, but only as an expansion in 1/q2, with coefficients that by themselves have uncertainties
due to incomplete knowledge about the condensates and higher order perturbative αs corrections in the
Wilson coefficients. At most, what one can hope for is to extract some basic features of the spectral
function, but not its detailed form. How to extract these features will be discussed in this section.

4.1 Derivation of sum rules for practical numerical analysis

In most present day QCDSR studies, the sum rules of Eqs. (4) and (5) are usually not analyzed in the
form shown in these equations, but are further modified, partly to improve the OPE convergence and/or
to enhance the contribution of the low energy region of the spectral function to the sum rules. There
are multiple ways of doing this, the most popular one being the use of the Borel transform, which was
already introduced in the very first QCD sum rules papers by Shifman et al. [1, 2]. We will discuss
here this Borel transform method in some detail, but will later also introduce alternatives, which for
certain purposes can be more effective in practice.

The Borel transform is defined as

Π(M2) ≡ L̂MΠ(q2) ≡ lim
−q2,n→∞,

−q2/n=M2

(−q2)n
(n− 1)!

(
d

dq2

)n

Π(q2), (183)

where the newly introduced parameter M is referred to as the “Borel mass” because it has units of
mass. Note, however, that M is just an artificial parameter, which has nothing to do with the mass of
any physical object. Some typical and often used examples of the Borel transform are shown below,

L̂M(q2)k = 0, (184)

L̂M(q2)k ln(−q2) = −k!(M2)k, (185)

L̂M

( 1

q2

)k
=

(−1)k

(k − 1)!

( 1

M2

)k
, (186)

L̂M

( 1

s− q2

)k
=

1

(k − 1)!

( 1

M2

)k
e−s/M2

. (187)

Here, k is a positive integer. For more related formulas, see Refs. [18, 229]. After applying Eq. (187) to
the dispersion relation of Eq. (4) [or Eq. (5)], one obtains

ΠOPE(M
2) =

1

πM2

∫ ∞

0

dse−s/M2

ρ(s). (188)

As seen in Eq.(183), the Borel transform contains an infinite number of derivatives. All subtraction
terms thus automatically vanish. Moreover, it causes the high energy part of the dispersion integral
to be exponentially suppressed, meaning that the integral converges to a finite value, as long as the
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spectral function itself does not grow exponentially, which does not happen for QCD. It is furthermore
observed in Eq. (186) that higher dimensional terms of the OPE, which are proportional to (1/q2)k, are
suppressed by a factor of 1/(k−1)!, hence improving the convergence of the OPE. The Borel transformed
sum rules of Eq. (188) are presently most commonly employed in practical QCDSR analyses.

Eq. (188), however, is not the unique QCDSR form. Indeed, sum rules with a Gaussian kernel were
derived in Ref. [230], commonly referred to as “Gaussian sum rules”. We will not repeat the somewhat
lengthy derivation here, but just give the final form, which reads

Π(t, τ) =
1√
4πτ

∫ ∞

0

dse−
(s−t)2

4τ ρ(s). (189)

Here, t and τ are free parameters that roughly correspond to the Borel mass M in Eq. (188). The
advantage of the Gaussian kernel is that two parameters can be varied, which makes it possible to
extract more detailed information about the spectral function from the sum rules. Furthermore, the
Gaussian kernel has a distinct peak at t = s, which means that any structure that might be present in
the spectral function is more likely to be preserved in Π(s, τ), rather than smeared out as it is usually the
case for the Borel sum rule. This situation is similar to what has occurred in nuclear structure studies,
where the Lorentz kernel has proven to be useful [231, 232]. The Gaussian sum rule was successfully
applied in Refs. [233, 234] to the nucleon and D meson sum rules, in combination with a numerical
maximum entropy method (MEM) analysis to be discussed below.

Another way to increase the amount of information that can be extracted from the sum rules is
to promote the parameters appearing in the kernels (such as M or t), which are usually treated as
real valued, to complex numbers. This causes the kernels to become oscillating functions with varying
frequencies, which can be useful for constraining spectral fits or for MEM analyses. This idea has
in recent years been applied to multiple MEM analyses of sum rules in various channels: the parity
projected Gaussian sum rules for the nucleon [235], the Borel sum rules of the ϕ meson [236] and the
finite temperature Borel sum rules of S-wave charmonia [237].

The analyticity of the correlator can also be used to derive sum rules with an analytic, however not
explicitly specified kernel. In the past, this has been done mainly to derive sum rules in a hot or dense
medium, see for instance Refs. [198, 235, 238, 239]. The in-medium sum rules are usually formulated
using the energy variable ω instead of s. Using for instance the retarded correlator ΠR(ω,p) at finite
temperature, which is analytic in the upper half of the complex ω plane in combination with a function
W (ω), which is analytic in the same region, one can derive

∫ ∞

−∞
dωW (ω)ρ(ω,p) =

1

π

∫ ∞

−∞
dωW (ω)ImΠR

OPE(ω,p), (190)

where ΠR
OPE(ω,p) is the retarded correlator calculated from the operator product expansion. For more

details, see Ref. [238], for a similar derivation for the finite density case, see Refs. [198, 235, 239] and
for an application in the context of the unitary fermi gas, see Ref. [240]. The most important feature
of Eq. (190) is that W (ω) is arbitrary as long as it is analytic and can hence be chosen depending on
what region of the spectral function one wants to study. Some care, however is needed when making
this choice as the convergence of the OPE will depend on W (ω). For instance if one chooses a kernel
analogous to the one used in Eq. (189), it at first sight would seem advantageous to choose a small value
for τ , such that the spectral function can be extracted with a good resolution. It however turns out
that higher order OPE terms are proportional to increasingly high powers of 1/

√
τ , therefore destroying

the OPE convergence for too small τ values. The choice of W (ω) thus always has to be a compromise
between the resolution of the extracted spectral function and the OPE convergence.

51



4.2 Conventional analysis strategy

The method employed most often in QCD sum rule studies will be described here. As this method has
already been discussed many times in previous reviews, we keep this part brief and refer the interested
reader to older works (see e.g. Ref. [17]) for more details.

We first consider the right hand side of the dispersion relation of Eq. (4). Using the optical theorem
and inserting a complete set of intermediate hadronic states, one gets

ρ(q2) =
1

2

∑

n

⟨0|J |n(pn)⟩⟨n(pn)|J |0⟩dτn(2π)4δ(4)(q − pn), (191)

where n is summed over all hadronic states which couple to the interpolating field J , including sums
over polarizations and dτn symbolically denotes the phase space integration of the states |n⟩. The sum
rules discussed in the previous section generally only provide information on an integral of the spectral
function ρ(s). One hence can only hope to extract some bulk properties of the spectrum, but not all
its detailed features. It therefore has traditionally been the custom in practical sum rule analyses to
make a deliberated guess about the form of the spectral function, parametrize it with a small number
of parameters and then fit these parameters with the help of the sum rules. The most frequently used
ansatz in present-day QCDSR studies is referred to as the “pole + continuum” ansatz and reads

ρ(s) = π|λ|2δ(s−m2) + θ(s− sth)ImΠOPE(s). (192)

Here, m is the mass of the ground state, which is assumed to be manifested as a narrow peak, and
|λ|2 is the coupling strength of this ground state to the operator J . The variable sth is referred to
as the threshold parameter. While usually not much attention is payed to its physical meaning, its
modification at finite temperature or density has been discussed in the context of the finite energy
sum rules as a probe of deconfinement [241] or chiral symmetry restoration [242, 243]. Note that the
above ansatz completely ignores the width of the ground state and potential excited states (including
a continuum) below sth. ΠOPE(s) stands for the correlator calculated at high energy using the OPE.
Due to asymptotic freedom, it is known that the spectral function will approach this limit at s → ∞.
Based on the quark-hadron duality [31, 33] (see also Section 2.1.2), the second term approximately
parametrizes all excited states that couple to J .

In the “pole + continuum” ansatz, the parameters |λ|2, m and sth need to be determined from the
sum rules. Usually, one is most interested in m, which can be obtained as follows. First, one substitutes
Eq. (192) into Eq. (188), which leads to

|λ|2e−m2/M2

=M2ΠOPE(M
2)− 1

π

∫ ∞

sth

dse−s/M2

ImΠOPE(s)

≡ f(M2, sth). (193)

From this equation, m2 can be derived as

m2 =
1

f(M2, sth)

∂f(M2, sth)

∂(−1/M2)
. (194)

After obtaining m2, |λ|2 can be easily extracted from Eq. (193). As a result, m2 and |λ|2 become
functions of M2 and sth, which are parameters that physical observables should not depend on. The
Borel mass M in particular is an artificially introduced unphysical parameter, which has nothing to
do with the ground state mass m. It is therefore customary to show in QCDSR papers the so-called
Borel mass curve, which is nothing but a plot of Eq. (194) with changing M values. The degree of the
(non-)dependence of m on the Borel mass M provides a criterion for determining the quality of the sum
rules.
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However, just checking the Borel mass dependence of m is not enough. There are at least two more
criteria that always need to be checked to ensure the reliability and validity of the sum rules. The first
one is the confirmation of an existent Borel window, which corresponds to a region of M where some of
the approximations used to derive Eq. (194) can be considered to be reliable. The lower bound of the
Borel window is determined by the convergence of the OPE. As the OPE is (likely) an asymptotic series,
which is hard to compute up to high orders due to our lack of knowledge about the high-dimensional
condensates, it is not possible to define a rigorous convergence criterion. Instead, an often advocated
choice (see, for instance, Ref. [17]) is to demand that the contribution of the highest dimensional term
is less than 10% of all the OPE terms,

Πterms of highest dim
OPE (M2)

Πall terms
OPE (M2)

< 0.1. (195)

As the OPE after the Borel transform becomes an expansion in 1/M2, this gives a lower bound for the
Borel mass M . The upper bound of the Borel window is determined from the relative contribution of
the ground state to the whole sum rules. As can be understood from Eq. (188), a larger Borel mass
M means a smaller suppression of high energy contributions to the sum rule. The most frequently
employed condition is ∫ sth

0
dse−s/M2

ρ(s)∫∞
0
dse−s/M2ρ(s)

> 0.5, (196)

which can be rewritten using Eqs. (188) and (193) as

|λ|2e−m2/M2

M2ΠOPE(M2)
> 0.5. (197)

This gives an upper bound forM . If there is a region inM , which satisfies both Eq. (195) and Eq. (197),
this is referred to as “Borel window”. The numbers on the right hand sides of Eqs. (195) and (197)
are somewhat arbitrary, indeed other values (or even other kinds of conditions) sometimes are used in
the literature. To allow the reader to make a reasonable judgement about the accuracy of the QCDSR
approach in each studied case, it is important that the used conditions and the resulting Borel window
are explicitly stated. A simple Borel curve plot [showing the left hand side of Eq. (194) as a function of
the Borel mass M ] in this sense contains not sufficient information.

Besides the above conditions related to the Borel window, which have been considered as standard
for QCDSR studies, we will advocate here one more criterion that should be checked to ensure the
reliability of the method. This is related to the sth dependence of m2 in Eq. (194). If the “pole +
continuum” ansatz of Eq. (192) is a reasonably good approximation of the real spectral function, this
dependence should be small. If, however, the spectrum for s < sth is dominated by a continuum or
several broad peaks instead of a single sharp peak, an increase in sth should lead to an increasing m2

value. Especially for exotic channels with more than three quarks, the contribution of the continuum
is potentially large because leading order perturbation theory and dimensional analysis dictate it to
increase with a larger paower of s compared three-quark baryon or two quark meson channels. Indeed,
this issue was pointed out some time ago in the context of pentaquark sum rules in Refs. [244, 245, 246].

4.3 Alternative analysis strategies

The method discussed in the previous section is the most popular approach used in current QCDSR
studies. Nevertheless, this does not mean that it is unconditionally the ideal choice. First of all, the
“pole + continuum” ansatz is certainly not for all channels an appropriate assumption. The most
straightforward and natural way of improvement is to introduce a non-zero width to the ground state
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in Eq. (192) by replacing the delta-function with a Gaussion or a Breit-Wigner peak and to treat the
peak width as a free parameter that should, ideally, be determined by the sum rules. Such a strategy
was followed for instance in Ref. [247] to study the ρ meson at finite density or in Refs. [136, 137] to
study charmonia at finite temperature. It is usually found in such fits that it is not possible to uniquely
determine both the peak mass and its width. Instead, one obtains multiple combinations of mass shifts
and widths, which all reproduce the sum rule well within its uncertainties.

Another method to analyze QCD sum rules was introduced in Ref. [15]. The essential idea of this
approach is to carry out a proper Monte-Carlo error analysis by generating Gaussian distributions for
the different condensate input values and fitting the sum rules to each generated condensate value
configuration. This then gives distributions for |λ|2, m2 and sth, which allows one to perform an uncer-
tainty analysis for these parameters. Furthermore, this also makes it possible to investigate correlations
between, say, m2 and the chiral condensate, which can be useful when considering the relation between
hadron masses and the spontaneous breaking of chiral symmetry. After this method was proposed, it has
been applied by several groups. See for instance Refs. [248, 249, 250, 251, 252] for a few representative
papers.

A few years ago, still another alternative analysis strategy was proposed in Refs. [253, 254, 255, 256]
and subsequently further developed and applied by the same group to various channels [257, 258, 259,
260, 261, 262]. The essential idea of this approach is to promote the threshold parameter sth, which
conventionally is considered as a constant, to become a function which depends on the Borel mass
M . As an ansatz, sth was proposed to be a power series of τ = 1/M2. The respective coefficients
are obtained by demaning that the computed hadron mass value [Eq. (194)] is as close as possible to
the experimental value over the whole range of the Borel window. In this approach, the hadron mass
therefore is regraded as an input. Instead, it is possible to compute the residue |λ|2 (often referred to
as “decay constant”) with improved precision compared to the conventional approach.

4.3.1 The maximum entropy method

Recently, a novel prescription to analyze QCDSRs, based on Bayesian inference theory, was proposed
in Ref. [263]. The advantage of this approach, which is commonly referred to as the maximum entropy
method (MEM), is that it does not require any explicit assumption about the form of the spectral
function such as the “pole + continuum” ansatz of Eq. (192). As this approach is still relatively new
and differs from the previously mentioned methods in many respects, we will briefly recapitulate it here.
For more details, see Refs. [21, 263] and the references cited therein.

The basic problem to be solved by MEM can be written down as

G(x) =

∫ ∞

0

dωK(x, ω)ρ(ω), (198)

where G(x) is given for a limited range of x (for Borel-type QCDSRs, x =M) or for a finite number of
data points (this happens in the imaginary time formalism of Monte-Carlo approaches, such as lattice
QCD, where x stands for imaginary time), with an attached error. K(x, ω) is the kernel, which for
the sum rules of Eq. (188) becomes 2ωe−ω2/M2

/M2 with s = ω2. Solving Eq. (198) for ρ(ω) is generally
an ill-posed problem. The strategy often adopted is hence to make an educated guess about the form
of ρ(ω), parametrize it with a small number of parameters and then to fit these parameters such that
Eq. (198) is satisfied as accurately as possible. This is what is done in the conventional QCDSR analysis
described in Section,4.2. In cases where the “pole + continuum” description is qualitatively accurate, it
will likely be useful and produce approximately correct findings. However, if, say, the spectral function
at low energy is dominated by a flat continuum instead of a narrow peak, the “pole + continuum” can
potentially lead to misleading results.

In contrast, MEM does not need any strong assumption about ρ(ω), but instead aims at providing
its most probable form, given all the available information, such as asymptotic values of ρ(ω) and the
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positive definiteness of this function. For this purpose, one makes use of Bayes’ theorem, which in the
present context reads

P [ρ|GI] = P [G|ρI]P [ρ|I]
P [G|I] . (199)

Here, P [A|B] is a conditional probability, for the event A to be realized under the condition of event
B. In Eq. (199), “ρ” is a specific form of the spectral function, “G” the information from the OPE
[the left hand side of Eq. (188)] and “I” prior information about the spectral function such as positive
definiteness and asymptotic values. Finding the maximum of P [ρ|GI] will give the most probable form
of ρ(x). P [G|ρI] is usually referred to as “likelihood function” and P [ρ|I] as the “prior probability”.
Ignoring the prior probability and maximizing only the likelihood function corresponds to ordinary
χ2-fitting.

Let us discuss the forms usually used for the likelihood function and the prior probability and
in particular how they can be formulated for QCDSRs. For simplicity, we will here only consider the
application to the Borel sum rules of Eq. (188). The MEM treatment for Gaussian sum rules is discussed
in Ref. [233]. To determine the likelihood function, we assume that the values of the function G(x) are
distributed according to uncorrelated Gaussian distributions. For the QCDSR analysis discussed here,
we will numerically generate uncorrelated values for each used data point of G(x) that follow a Gaussian
distribution and hence satisfy this assumption. One then has

P [G|ρI] = e−L[ρ],

L[ρ] =
1

2(xmax − xmin)

∫ xmax

xmin

dx

[
G(x)−Gρ(x)

]2

σ2(x)
.

(200)

If G(x) is obtained using Monte-Carlo methods such as in lattice QCD, the correlation between the
values of G(x) at different x have to be taken into account by the use of the covariance matrix [264, 265].
σ(x) stands for the uncertainty of G(x) at x and Gρ(x) is defined as the integral on the left hand side
of Eq. (198).

The prior probability should quantify the prior knowledge of ρ(ω) such as positivity and asymptotic
values. While several parametrizations have been proposed in the literature (see for instance Ref. [266]),
the one used most frequently makes use of the Shannon-Jaynes entropy S[ρ], giving

P [ρ|I] = eαS[ρ],

S[ρ] =

∫ ∞

0

dω
[
ρ(ω)−m(ω)− ρ(ω) log

( ρ(ω)
m(ω)

)]
.

(201)

Here, the function m(ω), which an input in the MEM analysis, is referred to as “default model”. In the
case of no available data G(x), MEM just gives m(ω) for ρ(ω) because this function maximizes P [ρ|I].
The default model is often used to fix asymptotic values of the spectral function to analytically known
results. In MEM studies of both QCD sum rules and lattice QCD, the default model is often set to the
asymptotic high energy limit of the spectral function, which is known from perturbation theory. The
scaling factor α, introduced in Eq. (201), will be integrated out in a later step of the MEM procedure.
The Shannon-Jaynes entropy of Eq. (201) can be derived from the law of large numbers or axiomatically
constructed from requirements such as locality, coordinate invariance, system independence and scaling
[21, 265]. For the actual calculations, the integrals of Eqs. (198), (200) and (201) will be approximated
as sums over discrete points using the trapezoidal rule.

From the above results, the needed probability P [ρ|GI] can be obtained as

P [ρ|GI] ∝ P [G|ρI]P [ρ|I] = eQ[ρ], (202)

Q[ρ] ≡ αS[ρ]− L[ρ]. (203)
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Determining the form of ρ(ω) which maximizes Q[ρ] and, therefore, is the most probable ρ(ω) given
G(x) and I, is now merely a numerical problem, for which the so-called Bryan algorithm is frequently
used [267]. This algorithm, which uses the singular-value decomposition to reduce the dimension of the
configuration space of ρ(ω) and therefore largely reduces the calculation time, has indeed been employed
in all studies applying MEM to QCDSRs so far. It can moreover be proven that the maximum of Q[ρ] is
unique if it exists and, therefore, the problem of local minima does not occur [265]. Once ρα(x), which
maximizes Q[ρ] at a specific α value is found, this parameter is eliminated by averaging ρ(ω) over a
range of α and assuming that P [ρ|GI] is sharply peaked around its maximum P [ρα|GI]. The details of
this step, which we will not discuss here, are for instance explained in Ref. [21].

One important and useful feature of MEM is its ability to provide error estimates for averages of
the spectral function over some range of ω. Defining the variance of ρ(ω) from its most probable form
for fixed α as δρ(ω), its squared average over the interval (ω1, ω2) can be given as

⟨(δρ)2⟩ω1, ω2 ≡
1

(ω2 − ω1)2

∫
[dρ]

∫ ω2

ω1

dωdω′δρ(ω)δρ(ω′)P [ρ|GI]

= − 1

(ω2 − ω1)2

∫ ω2

ω1

dωdω′
(

δ2Q

δρ(ω)δρ(ω′)

)−1∣∣∣∣
ρ=ρα

, (204)

where the definition

[dρ] ≡
∏

i

dρi√
ρi
, (205)

was used. The ρi here stands for the value of ρ(ωi) at the discretized position ωi. In going from the first
to the second line in Eq. (204), the Gaussian approximation for the probability P [ρ|GI] was employed.
The final error ⟨δρ⟩ω1, ω2 can then be obtained by taking the average of

√
⟨(δρ)2⟩ω1, ω2 over α. Usually,

the interval (ω1, ω2) is taken to cover a peak or some other structure of interest, as illustrated in Fig. 15.
Information about the error of the spectral function is valuable, for instance, to make an informed
judgement about the statistical significance of an extracted peak.

Finally, we review some representative findings of QCDSR MEM analyses. The first one was carried
out for the ρ meson channel in Ref. [263]. It was found in this work that it is indeed possible to apply
MEM to QCDSRs, but only with a default model that has the correct behavior in the low and high
energy limits. In the ρ meson channel, the spectral function is known to vanish in the low energy limit
(ω → 0), as there are no massless states with ρ meson quantum numbers. At high energy (ω → ∞)
the spectral function has to approach the perturbative QCD limit. This finding is illustrated in Figs. 16
and 17, where results of test MEM analyses of mock data are shown. A Borel kernel was used with
a range of the Borel mass equivalent to the actual Borel window in the ρ meson sum rule to obtain
these results. Furthermore, the error used in this analysis was generated from the uncertainties of the
condensates via the OPE expression of the ρ channel. The correct spectral function, denoted as ρin(ω)
(which should be reproduced if MEM works perfectly) is depicted as a short-dashed line. In Fig. 16,
an analysis with a constant default model (long-dashed line) matched to the perturbative high energy
limit is shown. As this model has the wrong low energy limit, the MEM analysis does not work well
and does not reproduce any significant ρ meson peak. In Fig. 17, default models with correct low and
high energy limits are used, leading to approximate reproductions of the ρ meson peak. Specifically,

m(ω) =
1

4π2

(
1 +

αs

π

) 1

1 + e(ω0−ω)/δ
(206)

was employed as the default model with various values for ω0 and δ. These are shown in Fig. 17 as
long-dashed lines. As can be seen in Fig. 17, the details of the spectral functions extracted by MEM
(solid lines) clearly depend on the chosen default model. The position of the lowest peak, however,
approximately stays at the same position. Furthermore, MEM is not able to reproduce the ρ meson
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Figure 15: Illustration of a typical error bar adapted in MEM studies. The solid line
depicting a peak stands for the spectral function ρ(ω). The three horizontal bars indicate
the height of the mean value of the spectral function over the interval (ω1, ω2), ⟨ρ⟩ω1,ω2 , and
of the corresponding errors added to and subtracted from it. Taken from Fig. 4.2 of Ref. [21].

width correctly, but instead produces a somewhat broader peak. This is a general feature of MEM.
If the input data are precise enough, the position of the lowest peak can usually be reproduced quite
well. The spectral function is however often smeared out, such that narrow peak widths are difficult to
extract. This in some sense corresponds to the use of the pole term in the “pole + continuum” ansatz
of Eq. (192), where the ground state is approximated by a delta function and one does not attempt to
extract the peak width from the sum rules.

Let us review one concrete example of an application of MEM to QCDSRs. The main advantage of
the MEM approach compared to conventional methods is that one does not have to assume any specific
functional form for the spectral function. MEM is therefore especially useful when one does not have
any prior knowledge about the spectral function or when one wants to study the (unknown) modification
of some spectral function in an extreme environment such as a hot or dense medium. As an example,
we here summarize a study of charmonium at finite temperature [268]. The melting of charmonium
has long been considered to be a signal of the quark gluon plasma formation in heavy-ion collisions
[269, 270] and has thus attracted much interest from both theoreticians and experimentalists. However,
directly computing the charmonium spectral function at finite temperature from first principles of QCD
is challenging even today. This is partly due to the fact that even though lattice QCD is by now able
to perform precise calculations at finite temperature, it is only directly applicable to static quantities
and not dynamical ones such as spectral functions. Lattice QCD can so far only compute correlators
at imaginary time, which are related to certain integrals of the respective spectral function.

The OPE side of QCD sum rules for charmonium (and similarly, bottomonium) of any channel J
can, after applying the Borel transform, be cast in the following form:

MJ(ν) = e−νAJ(ν)[1 + αs(ν)a
J(ν) + bJ(ν)ϕb(T ) + cJ(ν)ϕc(T ) + dJ(ν)ϕd(T )]. (207)

Here, ν ≡ 4m2
c/M

2, with the charm quark mass mc and the Borel mass M . Because the heavy quark
condensates can all be expressed as gluonic condensates with the help of the heavy quark expansion,
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Figure 16: Result of an MEM analysis using a constant default model with its value fixed to
the perturbative QCD limit. ρin(ω) is the function that was used to produce the mock data,
and ρout(ω) shows the spectral function extracted by MEM. Taken from Fig. 3 of Ref. [263].

the OPE only contains gluonic condensates as non-perturbative contributions. Light quark condensates
can in principle appear at higher orders in αs, but are expected to be strongly suppressed. The first
two terms in Eq. (207) are the leading order perturbative term and its first order αs correction. The
third and fourth terms contain the scalar and spin-2 gluon condensates of mass dimension 4:

ϕb(T ) =
4π2

9(4m2
c)

2
G0, (208)

ϕc(T ) =
4π2

3(4m2
c)

2
G2, (209)

where
G0 = ⟨αs

π
Ga

µνG
aµν⟩T , (210)

which includes both vacuum and temperature dependent parts discussed around Eqs. (23) and (49),
respectively. G2 is defined similarly to Eq. (71), but with an additional factor of αs(T )/π. The detailed
expressions of the Wilson coefficients of the first four terms are given in Ref. [271]. In Ref. [268], only
one dimension 6 term was taken into account, namely,

ϕd(T ) =
1

(4m2
c)

3
⟨g3fabcGaν

µ G
bλ
ν G

cµ
λ ⟩T . (211)

The more complete list of dimension 6 terms together with the corresponding OPE expressions is
given in Ref. [147]. Their influence on the sum rule results is discussed in Ref. [148]. The temperature
dependences of the dimension 4 gluonic condensates can be obtained as explained in Sec. 3.2.1. In
Ref. [268] quenched lattice QCD data were used for this purpose. The dimension 6 term was estimated
using the dilute instanton gas model. For more details, see Refs. [21, 268].

In the notation of Eq. (207), the sum rule can be expressed as

MJ(ν) =

∫ ∞

0

dx2e−x2νρJ(2mhx). (212)
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Figure 17: Results of the MEM analyses of mock data with various default models. As in
Fig. 16, the solid lines stand for the output of the analysis ρout(ω), the long-dashed lines
for the default model with the parameters shown in the figure, and the short-dashed lines
for the input spectral function, ρin(ω). The horizontal bars show the values of the spectral
function, averaged over the peaks and the corresponding ranges as illustrated in Fig. 15. For
figures c), d) and e), the lower error bars of the second peak are not shown because they lie
below the ω axis. Taken from Fig. 4 of Ref. [263].

With Eq. (207) at hand and gluon condensates determined, the remaining task is to use MEM to extract
the spectral function from Eq. (212). The results of such an analysis are shown in Fig. 18. Let us make
a few comments about the obtained spectral functions, focusing especially on the vector channel (lower
plots in Fig. 18), which is most relevant for experiment. For the vacuum spectrum shown on the left side,
a clear peak is observed slightly above 3 GeV. This peak in essence corresponds to the J/Ψ state, but also
contains some contributions from its first and second excited states, Ψ′ and Ψ(3770). This is related to
the large and artificial width that is generated by MEM due to its limited resolution. For a more detailed
discussion about this point, including MEM analyses of mock data, see Ref. [21]. The finite temperature
results shown on the right plot of Fig. 18 show a sudden disappearance (melting) of the lowest peak
right above Tc. This sudden change of the spectrum is caused by the strong temperature dependence
of the gluon condensates around Tc. For a similar calculation for bottomonium, see Ref. [272]. For
more recent work with an improved kernel and hence an MEM analysis with better resolution, consult
Ref. [237].
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Figure 18: Left plot: spectral functions in the pseudoscalar (upper plot) and vector (lower
plot) channel at T = 0, with corresponding errors, as illustrated in Fig. 15. The dashed lines
show the default model used in the MEM analysis. Right plot: the same spectral functions
at temperatures around Tc. Taken from Fig. 1 of Ref. [268].

5 Hadrons at finite density

5.1 Physics motivation

Understanding the behavior of hadrons in a dense environment such as nuclear matter has been the mo-
tivation not only for theoretical studies, but also for dedicated experimental projects for several decades
(see Refs. [273, 274, 275] for recent reviews). Worldwide, there are at present multiple experimental
facilities that plan to investigate the properties of dense matter and its influence on hadrons. These
include the J-PARC [276] facility in Japan, CBM [277, 278] and PANDA [279] experiments at FAIR in
Germany, HIAF [280] in China as well as NICA [281] in Russia.

One of the goals of these experimental efforts is to detect signatures of the (partial) restoration of
chiral symmetry at finite density. Defining such signals that are sufficiently simple and experimentally
measurable in practice is, however, not a trivial task. One proposal to relate the restoration of chiral
symmetry with physical observables was made in the early nineties by Brown and Rho in Ref. [282],
where hadron masses were conjectured to scale according to the behavior of the chiral condensate at
finite density (the so-called Brown-Rho scaling). Not much later, more evidence for this scaling behavior
was found in Ref. [11] for the ρ meson and other vector mesons, based on a QCDSR calculation at finite
density. Later, QCDSR studies however found that they do not necessarily imply a decreasing ρ meson
mass with finite density, but are also consistent with a scenario in which it is primarily broadened
[247, 283].

The above history illustrates the basic motivation for studying the behavior of hadrons at finite
density within QCDSRs, but also shows the limitations of the method. As QCDSRs provide a relation
between integrals of the spectral function and various QCD condensates, it also relates the modification
of the spectral function with the behavior of the condensates as a function of density. Therefore,
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the effects of the reduction of the chiral condensate in dense matter (and hence of the restoration
of chiral symmetry) on the hadronic spectrum can in principle be studied. However, sum rules only
provide information about certain integrals of the spectral function, not about detailed features of the
structures that appear in them. Conclusions about the behavior of specific particles at finite density are
thus not necessarily unique, as it was found in studies of the ρ meson mentioned above. Furthermore,
QCDSRs do not only involve the chiral condensate, but also other condensates such as the gluon
condensate, four-quark condensates, the mixed condensate (involving both quark and gluon fields) and
more condensates with higher mass dimensions, which might or might not be directly related to chiral
symmetry and its restoration and hence can obscure the relation between the modification of spectral
function and the restoration of chiral symmetry. In this context, especially the four-quark condensates
have been considered frequently in recent studies [41, 201, 284, 285, 286, 287].

Keeping the above issues in mind, we will in the following discuss the behavior of various hadrons
at finite density from a QCDSR perspective and review the progress that has been made during recent
years. Wherever possible, we will furthermore try to assess what information about the QCD vacuum
structure and its modification at finite density can be extracted from such QCDSR analyses for each
specific channel.

5.2 Light hadrons

We define light hadrons as hadrons containing u, d or s quarks or anti-quarks as valence quarks. The
behavior of these hadrons at finite density has been studied intensively during the years, as they are
relatively easy to produce in comparison with hadrons containing one or more heavy quarks. Among
them, the vector mesons have attracted the most attention because they decay into di-leptons which
do not feel the strong interaction and hence are not strongly distorted due to the surrounding nuclear
medium. Therefore, their properties in a dense environment are one of the most suitable targets for
experimental study. We will in this section thus focus on the light vector mesons, but also discuss other
light hadron species in later Sections.

5.2.1 The ρ meson

Among the various light mesons, the modification of the ρ meson spectral function has been investigated
most extensively both in theory and experiment because its mass shift at finite density was originally
regarded as the most promising candidate to detect the partial restoration of chiral symmetry in nuclear
matter [11]. Studies based on hadronic effective theory later however indicated that the ρ meson (which
is already rather broad in vacuum with a width of about Γρ ≃ 148MeV [123]), is more likely to
be modified in a more complicated manner, that cannot be described by a simple mass shift and/or
broadening. Typically, these calculations find an enhancement of the spectral strength in the low energy
region below the original ρ meson peak [283, 288, 289, 290, 291]. The detailed form of the spectrum
depends however quite strongly on the channel (longitudinal or transverse), the value of the spatial
momentum and, most importantly, on the details of the employed model. Furthermore, as already
mentioned earlier, it was demonstrated that QCDSRs are consistent not only with a negative mass shift
of the ρ meson at finite density, but also with a scenario in which the ρ is primarily broadened and
receives only a very small mass shift [247, 283].

We will here not go into the details of these past calculations, but mention some more recent studies
that have been conducted based on the QCDSR approach. In Ref. [243], the usefulness and potential
importance of spectral moments was emphasized in a study that made use of finite energy sum rules
(see also the earlier work of Ref. [242]). It was moreover checked in the same work to what degree the
sum rules are satisfied by phenomenologically obtained spectral functions. More about the spectral
moments will be discussed later in Section 5.2.3 about the ϕ meson. It will for the moment suffice
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to mention that moments are directly related to QCD condensates of a specific dimension. This is
different form the more widely used Borel sum rules, which involve expansions in inverse powers of the
Borel mass and contain an infinite series of condensates with arbitrary dimension. Computing moments
of experimentally measurable spectra therefore in principle allows one to “measure” condensates of
a specific dimension. For this to become a realistic possibility, a precise measurement of the spectral
function in a wide energy range is however necessary, which is not an easy task. The authors of Ref. [286]
focused on the role of the four-quark condensates in the ρ meson sum rules when the chiral symmetry
gets restored. Specifically, they distinguished between chiral even (invariant) and odd (variant) four-
quark condensates and studied the scenario in which only the chiral odd condensates vanish as chiral
symmetry gets restored while the chiral even ones remain at their vacuum values. In Ref. [292] the
behavior of the ρ (together with the ω and the ϕ) was studied not in normal nuclear matter, but in
hadronic matter containing strangeness, using a chiral SU(3) model to describe the behavior of the
condensates for this case.

5.2.2 The ω meson

Not much theoretical work based QCDSRs has been devoted to the ω meson in recent years. Even
though its width of Γω ≃ 8.5MeV [123] is more than an order of magnitude smaller than that of the ρ,
the corresponding OPE expression is in fact almost the same as that of the ρ, the only difference coming
from four-quark condensate terms, vanishing completely once factorization is assumed. This exemplifies
the fact that QCDSRs generally only have a limited sensitivity to the decay widths of resonances. It
also means that many conclusions obtained for the ρ from QCDSR studies also apply for the ω.

On the experimental side, however, valuable new information about the behavior of the ω in nuclear
matter has been obtained during the last few years. Namely, the mass shift and width of the ω at
normal nuclear matter density ρ0 have been measured with high precision [293, 294, 295, 296, 297].
Recently, even results about the momentum dependence of its width at ρ0 have become available [298].
It would therefore be meaningful to revisit the earlier sum rule calculations and to study how the new
experimental findings could constrain the behavior of the condensates at finite density.

Another interesting topic related to the ω is the study of its chiral partner (or partners) and how their
spectra will eventually approach each other as chiral symmetry gets restored. Generally, it is known
that the chiral partner of the ω will be an axial vector meson containing both u, d and s components,
that is presumably a mixed state of the f1(1285) and the f1(1420). The f1(1285) [f1(1420)] is widely
believed to be dominated by u and d (s) quark components. In the recent work of Ref. [299], it was
argued that if disconnected diagrams can be neglected, the chiral partner of the ω is the f1(1285) and
that they therefore should approach each other with increasing density (see Section 5.2.4).

5.2.3 The ϕ meson

The behavior of the ϕ meson in nuclear matter has recently attracted renewed theoretical interest, in
part because of the various experimental studies that have been performed in the past few years [300,
301, 302, 303, 304, 305] or that are planed for the future [306]. Recent theoretical studies include works
based on QCDSRs [307], various effective field theories [112, 113, 308, 309, 310] and a work examining
the possibility of ϕ-nucleus bound states [311]. Here, we will focus on theoretical investigations related
to QCD sum rules and review them in some detail.

We start from the correlator

Πµν(q) = i

∫
d4x eiqx⟨T[jµ(x)jν(0)]⟩ρ (213)

for the operator jµ(x) = s(x)γµs(x), which predominantly couples to the ϕ meson in the vicinity of its
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pole. We consider the correlator in contracted form,

Π(q2) =
1

3q2
Πµ

µ(q), (214)

which is sufficient when studying the ϕ meson at rest with respect to the nuclear medium. After
computing the OPE, Π(q2) can generally be expressed as

Π(q2 = −Q2) = −c0 log
(Q2

µ2

)
+
c2
Q2

+
c4
Q4

+
c6
Q6

+ . . . . (215)

We first consider the ϕ meson in vacuum (ρ = 0), where the first few coefficients cn are obtained as

c0 =
1

4π2

(
1 +

αs

π

)
, c2 = −3m2

s

2π2
, (216)

c4 =
1

12
⟨0|αs

π
G2|0⟩+ 2ms⟨0|ss|0⟩, (217)

c6 = −2παs

[
⟨0|(s γµγ5 λa s)2|0⟩+

2

9
⟨0|(s γµ λa s)

∑

q=u,d,s

(q γµ λ
a q)|0⟩

]
. (218)

Here, we have kept only the most important terms. Higher order corrections due to the strange quark
mass ms or the strong coupling constant αs have been considered for instance in Ref. [307] and shown
not to change the qualitative behavior of the result. Also, numerical analyses show that the above
expression is consistent with the ϕ meson dominating the spectral function at low energy and with a
vacuum mass close to its experimental value. Especially the m2

s term is crucial in generating a ϕ mass
that is heavier compared to the ρ or ω.

Next, we turn to the finite density case, where the condensates already present in the vacuum get
modified. Furthermore, new condensates appear due to the breaking of Lorentz symmetry related to
the presence of nuclear matter. The details of these condensate modifications (within the linear density
approximation) are discussed in Section 3.2.2. As a result, the above coefficients cn are modified as
follows at linear order in density,

δc0 = 0, δc2 = 0, (219)

δc4 =
(
− 2

27
MN +

56

27
σsN +

2

27
σπN + As

2MN

)
ρ, (220)

δc6 = −παs
448

81
κN(ρ)

σsN
ms

⟨0|ss|0⟩ ρ, (221)

where again only the most essential terms have been taken into account. A more complete compilation
can be found in Refs. [44, 307]. Especially, Ref. [44] compiles the complete list of all possible operators
and their Wilson coefficients at leading order in αs up to dimension 6. The above Eqs. (219-221) are
true only at leading order in ρ and should hence not be trusted for densities much larger than normal
nuclear matter density.

With the above input and the numerical values of the parameters discussed in Section 3.2.2, one
can now study the sum rules of the ϕ meson channel both in vacuum and nuclear matter. The most
important quantity to be studied in such an analysis will be the mass shift of the ϕ peak. Such work
was carried out in Ref. [307], where MEM was used for the analysis of the sum rules. The central result
is reproduced in Fig. 19, which shows the ϕ meson mass (normalized by its vacuum value) at normal
nuclear matter density as a function of the strange quark sigma term σsN . It is observed in this figure
that the ϕ meson mass shift is rather sensitive to the value of σsN , which we have discussed in Section
3.2.2. Even the sign of the mass shift depends crucially on σsN . This means that a measurement of the
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Figure 19: The ϕ meson mass at normal nuclear matter density, normalized by its vacuum
value, as a function of the strange quark sigma term σsN . Taken from the lower plot in Fig. 4
of Ref. [307].

ϕ meson mass shift could help constraining the value of σsN , which still has large uncertainties even in
state-of-the-art lattice QCD calculations, as can be seen in Table 5.

An alternative point of view, which was already emphasized in Ref. [243] for the ρ meson, was
discussed for the ϕ meson spectral function in Refs. [112, 113]. In these works, the importance and
usefulness of spectral moments was stressed, which have been discussed in the QCDSR literature under
the name of finite energy sum rules. For the ϕ meson spectral function discussed above, they can be
written down as ∫ s0

0

dsρ(s) = c0s0 + c2, (222)

∫ s0

0

dssρ(s) =
c0
2
s20 − c4, (223)

∫ s0

0

dss2ρ(s) =
c0
3
s30 + c6. (224)

Here, s0 represents a scale that divides the low- and high-energy part of the spectrum. It needs to be
determined from the (finite energy) sum rules themselves. The advantage of Eqs. (222-224) is that they
relate spectral moments only to condensates of specific dimensions. Terms with condensates of higher
dimension such as in the Borel transformed sum rules do not appear. Hence, in cases where the spectral
function is a priori known, Eqs. (222-224) can in principle be used to determine certain combinations of
condensates of some specific dimension. Conversely, they can also be used to check whether a spectral
function computed by some phenomenological model is consistent with basic requirements of QCD.
How this can be done, was demonstrated in detail in Refs. [112, 113].

5.2.4 The f1(1285)

The behavior of the axial vector, isospin zero meson f1(1285) in nuclear matter has so far not been
much studied in QCDSRs or any other method. Motivated by a measurement of this particle in
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nuclear matter density. The red shaded area is obtained from the uncertainty of the πN
sigma term, σπN = 45± 15 MeV. Taken from Fig. 3 of Ref. [299].

photoproduction from a proton target, which resulted in a relatively small width of 18.4± 1.4 MeV by
the CLAS collaboration [312], its modification in a nuclear medium was recently studied in Ref. [299] in
a QCDSR approach. The main focus of this work was to regard the ω and f1(1285) as chiral partners,
to determine how the partial restoration of chiral symmetry manifests itself for these particles and to
what degree they can play the role as experimental probes for this restoration. This is an especially
pressing issue now, as the behavior of ω in nuclear matter has been studied in detail in experiments
[294, 295, 297, 298] and analogous studies on the f1(1285) might become possible by replacing a proton
with a nucleon target at the CLAS experiment.

To be precise, ω and f1(1285) can only be regarded as chiral partners when chiral symmetry is
extended to three flavors. In such a scenario ϕ and f1(1420) [the latter being the (mostly) strange coun-
terpart of the f1(1285)] have to be included in the chiral partner structure. In Ref. [299], it was however
argued that even if taking into account only flavor SU(2), ω and f1(1285) can be regarded as chiral
partners in the limit where disconnected diagrams are neglected. In this limit, the difference between
the ω and f1(1285) current correlators indeed vanishes when chiral symmetry is completely restored.
Based on this approximation, one can expect that the ω and f1(1285) spectra should approximately
approach each other in nuclear matter where chiral symmetry is at least partially restored.

The mass of the f1(1285) as function of density was then studied in Ref. [299] using a conventional
QCDSR analysis relying on the “pole + continuum” assumption of Eq. (192). The corresponding result
is shown in Fig. 20, where it is observed that the f1(1285) potentially receives a negative mass shift of
about 100 MeV at normal nuclear matter density. It however has to be kept in mind that this result is
obtained by assuming a delta function in the “pole + continuum” ansatz even in nuclear medium. As it
was shown in Ref. [247] for the ρ meson, changes of the OPE at finite density can also be satisfied with
a smaller change in the mass and a simultaneous increase of the width. A similar effect likely applies
to the f1(1285). The above result should hence be understood as the maximum mass shift that can
expected in nuclear matter.
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5.2.5 The nucleon

The study of nucleon properties at finite density in a QCDSR approach already has quite a long history.
See, for instance, the early nineties works of Refs. [14, 42, 198, 313, 314, 315]. We will not review these
older studies here, but focus on recent progress made during about the last ten years.

In the first QCDSR studies of baryons [58, 114, 316], a proper parity projection was not included in
the formalism, but thanks to Ref. [239], it is now possible to construct parity projected baryonic sum
rules, and hence to study not only the positive parity ground state, but also its lowest negative parity
excited state (see also Refs. [235, 317] for related discussions). Generalizing this technique to finite
density, one can study the behavior of the lowest positive and negative parity nuclear excitations and
can especially examine to what degree the positive and negative parity spectra approach each other as
chiral symmetry gets partially restored. Similar questions were recently studied in lattice QCD in the
finite temperature regime [318]. A related QCDSR study at finite density was carried out in Ref. [319].
In this work, parity-projected in-medium nucleon QCD sum rules were constructed and subsequently
analyzed with MEM. The positions of the lowest peaks in the obtained vacuum spectral functions are
consistent with the ground state N(939) and its lowest negative parity excitation N(1535). See Fig. 21.
Increasing the density, these peaks exhibit a somewhat surprising behavior. Their positions namely
turn out to be almost density independent, meaning that the total energies of both the positive and
negative-parity states are not much modified by nuclear matter effects up to normal nuclear matter
density. The residue of the positive parity nucleon ground state on the other hand decreases while that
of the negative parity first excited state remains almost unchanged with increasing density. It is shown
in detail in Ref. [319] that this behavior is closely related to the modifications of the condensates ⟨q̄q⟩ρ
and ⟨q†q⟩ρ at finite density, which demonstrates that these condensates are important for the description
of the in-medium properties of the nucleon and its negative parity excited state. An intuitive picture for
the behavior shown in Fig. 21, however, has so far not been found and requires further investigations.
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Besides the abovementioned work, recent studies of the nucleon at finite density based on QCDSRs
include the ongoing series of papers by Drukarev and collaborators [320, 321, 322, 323, 324, 325] and
other groups [326, 327], including generalizations to decuplet baryons and hyperons [328, 329, 330, 331].
The nuclear symmetry energy is another interesting quantity that was studied using QCDSRs during
the last few years. Details can be found in Refs. [332, 333, 334].

5.3 Heavy hadrons

Heavy hadrons are defined in this work as hadrons with at least one c or b valence quark or anti-quark.
The finite density behavior of such hadrons will be discussed in this section, starting first with mesons
and finishing with baryons.

5.3.1 Charmonium

With the exception of Refs. [335, 336], the behavior of charmonium states in nuclear matter has not
been much studied within QCDSRs in recent years. The earlier works of Refs. [147, 337] therefore still
remain the state-of-the-art today. Generally, charmonium states are not expected to be much affected
by nuclear matter as they are tightly bound systems with no u or d valence quarks which are expected
to be most strongly perturbed by surrounding nuclei. In QCDSRs, finite density effects enter the
calculation through the density dependence of gluonic condensates. Light quark condensates appear in
charmonium (and bottomonium) sum rules only at second order in αs and are therefore suppressed. In
Ref. [147], where gluonic condensates up to dimension 6 were taken into account, the J/Ψ was found to
receive a negative mass shift of

∆mJ/Ψ = −4MeV (225)

at normal nuclear matter density. It remains to be seen whether such a small mass shift can be observed
in future experiments. With such a measurement, it would be possible to constrain the finite density
dependence of a certain combination of gluonic condensates.

In this context, we mention the subject of charmonium in a magnetic field, which has recently
attracted much attention, especially because of the large magnetic field which is generated at the
initial stage of non-central heavy-ion collisions [202]. In QCDSRs, this was studied for the first time in
Refs. [338, 339]. In these works, a special emphasis was laid on the mixing effects between ηc and J/Ψ,
which occur because of the existence of a homogenous and constant magnetic field. According to the
findings of Refs. [338, 339], the modifications of the correlators due to the magnetic field are saturated
to a large degree by these mixing effects. Another related direction of work is to study the combined
effect of a magnetic field and finite density which was partly done in Ref. [340].

5.3.2 D and B mesons

During the last decade, the finite density behavior of D (and B) mesons have been studied quite
intensively and controversially in QCDSRs and various other approaches. The reason for this interest
lies in the possibility of probing the modification of such mesons produced in nuclei or high density
matter at FAIR, J-PARC or other similar facilities. For such an experimental study to be meaningful,
it is important to produce D mesons in nuclei with sufficiently small momentum such that they remain
in the region of high density long enough. Only then can potential spectral modifications have a
large enough effect to be experimentally measurable. This currently still appears to be a challenge for
experiments and new ideas might be needed [341].

We will here concentrate on theoretical works based on QCDSRs. The discussion given in this
section should hence not be understood as a complete summary of all works about the D and B mesons
at finite density. For more general discussions and more references, see Refs. [275, 342]. We furthermore
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focus on D mesons, which are presently far more relevant for experiments than B mesons, because they
are lighter and therefore easier to produce with high statistics. While this might not be an essential
issue for high-energy heavy ion experiments at the LHC, where a large amount of bottom quarks can be
created and where the behavior of matter at high temperature can be studied, lower energy collisions
with much fewer bottom quarks are needed to create matter at high densities [343, 344]. We will
therefore mention B mesons only briefly at the end of this section.

The study of D mesons in nuclear matter with QCDSRs started with the paper of Hayashigaki
[345], which found a (negative) mass shift of −48 MeV for the D at normal nuclear matter density. In
this work, OPE terms up to dimension 4 were taken into account. Later, dimension 5 OPE terms and
further terms that break charge symmetry were included in the analysis of Ref. [346], which however led
to the opposite conclusion of +45 MeV, albeit with large uncertainties related to the determination of
the threshold parameter in the “pole + continuum” ansatz. The more recent works of Refs. [55, 347] are
qualitatively consistent with the earlier results of Ref. [345], obtaining negative mass shifts of −46 MeV
and −72 MeV, respectively. Furthermore, Refs. [348, 349] employ a chiral SU(3) model to compute the
dimension 3 quark condensate and the dimension 4 gluon condensate at finite density, which are then
used as input in the QCD sum rule analysis. As a result, they obtain negative mass shifts for both D
and Ds mesons (as well as B and Bs) of the same order as Ref. [345].

Finally, we will here summarize the findings of Ref. [234], in which MEM was used to study charge-
conjugate-projected Gaussian sum rules [see Eq. (189) for the specific form of the Gaussian kernel]. The
charge conjugate projection, proposed in Ref. [234] for the first time, makes it possible to disentangle the
D+ and D− spectra and hence to study the respective states independently. To discuss this method,
let us consider the correlator of Eq. (1) with the current J(x) coupling to the D meson of interest,
for instance JD+

(x) = id̄(x)γ5c(x) or J
D−

(x) = ic̄(x)γ5d(x). In vacuum, the correlators of JD+
(x) and

JD−
(x) are, of course, identical and will depend only on q2 because of Lorentz invariance. Replacing the

vacuum |0⟩ expectation value of Eq. (1) with that of finite baryon density matter ⟩ρ, the two correlators
will be different and furthermore depend on ω [we here us the notation q = (ω,p) and set the momentum
p to zero for simplicity],

ΠJ(ω) = Πeven(ω2) + ωΠodd(ω2). (226)

Here, Πodd(ω2) contains only non-scalar condensates, which vanish in the zero density limit, such as
⟨q̄γµq⟩ρ, ⟨ST q̄γαiDµiDνq⟩ρ or ⟨q̄γµσαβGaαβtaq⟩ρ. Note that in Ref. [234] the variable q0 was used instead
of ω here. Πeven(ω2) and Πodd(ω2) for ΠD+

(ω) can be related to D+ and D− as follows,

Πeven(ω2) =
1

2

[
Π+(ω) + Π−(ω)

]
, (227)

ωΠodd(ω2) =
1

2

[
Π+(ω)− Π−(ω)

]
, (228)

where Π+(ω) carries the D+ spectrum at positive ω and the D− spectrum at negative ω and vice
versa for Π−(ω). See Fig. 22 for a schematic illustration. For the D− correlator ΠD−

(ω), D+ and D−

contributions are simply interchanged.
To disentangle the D+ and D− spectra, the charge-conjugate-projected sum rule is constructed by

a method analogous to parity-projection for baryonic sum rules [235, 239]. The idea is to introduce the
so-called old-fashioned correlator, which for zero-momentum is defined as

Πold(ω) = i

∫
d4xeiωxθ(x0)⟨T [J(x)J†(0)]⟩ρ. (229)

Here, θ(x0) represents the Heaviside step function, which is introduced to remove the negative energy
contribution from the correlator. Using Πold(ω), the correlators that have only D+ or D− contributions
can be constructed as

ΠD±
(ω) = Πeven, old(ω2) + ωΠodd, old(ω2). (230)
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Figure 22: Schematic illustration of spectral contributions to Πeven(ω2) and Πodd(ω2) for
the D+ correlator. D+ and D− contributions are simply interchanged for the D− correlator.
Spectral functions of the old-fashioned correlator of Eq. (229) include only spectra at positive
ω. Taken from Fig. 1 of Ref. [234], where q0 was used instead of ω in this review.

Making use of the analyticity of this function, one can formulate sum rules for the D+ and D− spectra,
as explained in Ref. [234] for the Gaussian sum rule case. The resulting sum rules were analyzed using
MEM, as discussed in Section 4.3.1. We refer the interested reader to Ref. [234] for detailed discussions
about adopted input condensate parameters and error analyses and here only show the most important
result about the D meson masses at normal nuclear matter density as a function of the πN sigma term
σπN in Fig. 23. As can be seen in this figure, both D+ and D− mesons receive a positive mass shift. Its
magnitude ranges from 10 MeV to almost 100 MeV, depending on the σπN value. This shows that rate
of restoration of chiral symmetry, which is governed by σπN [see Eq. (100)], determines the size of the
D meson mass shift. A simple quark model picture, that explains this initially surprising finding, was
given in Ref. [350]. Irrespective of the σπN value, the D− mass shift is always larger than that of the
D+. In the sum rules, this difference is generated due to the chiral odd terms in the OPE, particularly
⟨q̄γµq⟩ρ, which is proportional to baryon density. It is rather straightforward to think of an intuitive
quark based picture to understand why the D− receives more repulsion than the D+ at finite density.
The D− meson has a d valence quark, which can be expected to interact repulsively with the same d
quark existing in nuclear matter, due to Pauli blocking. For D+, with a d̄ valence quark, such a Pauli
blocking effect is absent and the repulsion hence becomes weaker.

In summary QCDSR results so far do not appear to be conclusive. While Refs. [55, 345, 347] obtain a
negative mass shift, it is positive for Refs. [234, 346]. It is however not difficult to identify the reason for
this discrepancy. Namely, Refs. [55, 345, 347] employ a QCDSR approach proposed in Refs. [351, 352],
which extracts the D-N scattering amplitude in the zero-momentum limit. Refs. [234, 346] on the other
hand use the more conventional method, partly explained above, which directly analyses the spectral
function and the modification of the D meson peak at finite density. The application of the former
method to light vector mesons was criticized in Ref. [353] and also later in Ref. [234] for issues related
to the Borel window and specifically for the apparent lack of the pole (or ground state) contribution in
this approach. This criticism has so far not been refuted.

Let us briefly discuss the B meson, which was studied in Refs. [55, 234, 346, 347, 348]. The general
trends are the same as for the D meson, namely Refs. [55, 347, 348] obtain a negative mass shift for
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Figure 23: The πN sigma term dependence of D+ and D− meson mass shifts at normal
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the averaged B+ and B− masses, while Refs. [234, 346] get a positive one. Numerically, the negative
mass shifts of Refs. [55, 347, 348] are of the order of several hundreds of MeV, while the positive ones in
Refs. [234, 346] are below 100 MeV. An interesting finding about the masses of the individual B+ and
B− states was furthermore reported in Refs. [234, 346]. In both works, the mass splitting between the
two states rapidly increases with increasing heavy quark mass, leading to a larger positive mass shift
for B− and a small negative mass shift for B+. This effect is related to the ω-odd terms, which for
B− have the same sign as the density dependent ω-even terms. For B+, the two contributions almost
completely cancel, leaving only a small negative mass shift.

For further results about other D and B meson channels, such as Ds, D
∗, D0, D1, Bs, B

∗, B0 and
B1, which we will not discuss here, see Refs. [55, 346, 349].

As a last point, it is worth mentioning related works studying D mesons in a constant magnetic
field. Such a study was first performed in Ref. [354] for the B meson and later in Ref. [220] for the D
meson where more condensates were taken into account and some trivial mistakes in the calculation of
Ref. [354] were pointed out. As a result, it was shown that, similar to the charmonium case discussed
at the end of the previous subsection, mixing effects between pseudoscalar and vector channels are
important to obtain spectral functions that are consistent with the sum rules. For charged D mesons,
Landau level effects furthermore need to be taken into account. It was found in Ref. [220], that the
above two effects saturate the sum rules for the charged D mesons, while for neutral ones a further
positive mass shift is needed to be consistent with the OPE.

5.3.3 Heavy baryons

Studies about the finite density behavior of heavy hadrons, that is, hadrons with at least one c or
b valence quark, have only begun recently. The Λc and Λb state properties in nuclear matter were
studied first in Ref. [355] and subsequently in Refs. [356, 357]. The first two works, Refs. [355, 356]
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obtained an increasing Λc (Λb) mass at finite density, leading to 85 MeV (92 MeV) repulsion (sum of
scalar and vector self-energies) in Ref. [355] and a considerably larger 432 MeV (1089 MeV) repulsion
in Ref. [356] at normal nuclear matter density. In Ref. [357] the sum rules were improved by taking into
account αs corrections to the Wilson coefficients and employing the parity projected sum rules with a
Gaussian kernel. In the same work, the treatment of the density dependence of four-quark condensates
was studied in detail. Specifically, two treatments of the four-quark condensates were considered: the
traditional factorization ansatz of Eqs. (157) and (158) and a parametrization based on the perturbative
chiral quark model (PCQM) [41, 200]. Applying these two four-quark condensate specifications first to
the finite density QCDSRs for the Λ (with an s quark instead of a c quark), it was found that only
the latter PCQM prescription gives a small and negative mass shift for the Λ at normal nuclear matter
density that is consistent with our knowledge from Λ hypernucleon spectroscopy [358]. It was therefore
concluded in Ref. [357] that only the PCQM prescription is suitable for this specific sum rule and hence
also for the one of the Λc. This then leads to an about 20 MeV attraction of the Λc at normal nuclear
matter density. For Λb the attraction turns out to be practically zero. The studies performed up to
now are far from being consistent and more work will be needed to clarify the origin of the various
discrepancies.

Similarly, the finite density behavior of Σc and Σb has been studied in Refs. [356, 359]. For Σc (Σb),
a strong repulsion of 323 MeV (401 MeV) was found in Ref. [359], while an equally strong attraction of
-450 MeV (-232 MeV) was obtained in Ref. [356] for the sum of scalar and vector self energies at normal
nuclear matter density. Again, the results are in complete disagreement. Further studies are warranted
for reaching a final conclusion on this issue.

As for the behavior of Ξc and Ξb in nuclear matter, only the results of Ref. [356] are presently
available. In this work, only a very weak attraction of -4 MeV (-2 MeV) was obtained for Ξc (Ξb) at
normal nuclear matter density. Furthermore, spin-3

2
Σ∗

Q, Ξ
∗
Q and Ω∗

Q (Q here stands for a c or b quark)
baryons in nuclear matter were studied in Ref. [360]. While for the scalar self-energies of Σ∗

c , Σ
∗
b and

Ξ∗
b some attraction was obtained, the total of scalar and vector self-energies turned out to be repulsive

for all studied states. Independent calculations will be needed in the future to check and confirm these
findings.

Finally, doubly heavy spin-1
2
baryons, specifically ΞQQ and ΩQQ (where again Q = c or b), in

nuclear matter were studied in Ref. [361]. In this paper, the scalar self-energies had the tendency to be
much larger than their vector counterparts. The sum of scalar and vector self-energy turned out to be
attractive for all investigated channels. At normal nuclear matter density, the obtained values for this
sum are −0.97 GeV for Ξcc, −0.34 GeV for Ωcc, −2.86 GeV for Ξbb and −1.04 GeV for Ωbb. Here, it is
especially worth noting the remarkably large attraction in the Ξbb channel. It will be interesting to see
if it can be reproduced in future works based on the same or other methods and if such a large mass
shift could perhaps be measured in a future experiment. Very recently, the finite denity behavior of
doubly heavy spin-3

2
baryons, Ξ∗

QQ, Ω
∗
QQ, Ξ

∗
QQ′ and Ω∗

QQ′ (for the last two, Q ̸= Q′) were investigated

in Ref. [362]. The reported results are qualitatively different from the spin-1
2
case of Ref. [361]. For all

channels, the absolute values of the scalar and vector self-energies are of the same order of magnitude.
For the Ω∗

QQ and Ω∗
QQ′ channels, both scalar and vector parts have the size of at most a few percent

of the respective vacuum masses, leading for their sum to a weak repulsion in nuclear matter. For the
Ξ∗
QQ and Ξ∗

QQ′ states, the self energies are larger, namely around 20% of the vacuum masses at normal
nuclear matter density ρ0. Their sum however largely cancel, giving only a very small effect of at most
2% at ρ0.
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6 Exact sum rules at finite temperature

In addition to the conventional sum rules reviewed in the previous sections, it was recently attempted to
derive and make use of exact sum rules. The novel feature of these sum rules is to use the infrared (IR)
behavior of the Green function, which is correctly described by hydrodynamics if we consider channels
with conserved currents at finite temperature/density, as well as the ultraviolet (UV) behavior described
by the OPE. Originally, such sum rules were derived for the energy-momentum tensor channel [29], and
recently also for the vector current channel [363, 364]. In both cases, the sum rules were used to improve
related lattice QCD analyses. We will review these works in the next two subsections, focusing on the
finite temperature and zero chemical potential case unless otherwise specified. As will be discussed
below, the shape of the spectral function at finite temperature becomes rather complicated compared
with that at T = 0. Constraints obtained from exact sum rules can therefore be very helpful.

The physical motivation to investigate the finite temperature and zero chemical potential case is
related to the research of quark-gluon plasma, which was realized in the early universe and is now being
created terrestrially in heavy ion collision experiments. Even though much was learned over the years,
there still remain some unsolved problems in this field. For example, at what temperature ground state
and excited state charmonia melt, is still a controversial topic. Also, hydrodynamics has proven to be
useful for describing heavy ion collision experiments. The determination of its parameters, transport
coefficients, is a theoretically interesting and phenomenologically necessary task. Especially, the bulk
viscosity is believed to behave in a way that is closely related to the QCD phase transition. The sum
rules introduced in this section have the potential to contribute to the current research of these topics.

6.1 Energy-momentum tensor channel

In this subsection, we review the derivation of sum rules and their application in the channel of the
energy-momentum tensor, which is a conserved current. Two sum rules in the shear sector and one in
the bulk sector will be discussed.

6.1.1 Derivation

As the derivation of the exact sum rules has so far only been outlined a few times in the literature,
we recapitulate it here [29]. The starting point is to consider the integral on the contour C drawn in
Fig. 24. As the integrand, we consider the quantity [δGR

µν,αβ(ω,p) − δGR
µν,αβ(ω → ∞,p)]/(ω − iω′),

where the δ stands for the subtraction of the T = 0 part, δGR ≡ GR − GR
T=0. The retarded Green

function in the energy-momentum tensor sector7 is defined as

GR
µν,αβ(p) ≡ i

∫
d4xeip·xθ(x0)⟨[Tµν(x), Tαβ(0)]⟩T . (231)

As the retarded function is analytic in the upper half of the complex energy plane, the residue theorem
gives

δGR
µν,αβ(iω,p)− δGR

µν,αβ(ω
′′ → ∞,p) =

1

2πi

∮

C

dω′ δG
R
µν,αβ(ω

′,p)− δGR
µν,αβ(ω

′′ → ∞,p)

ω′ − iω
, (232)

The subtractions of the T = 0 part and the ω′′ → ∞ limit remove any potential UV divergence, such
that the contribution from the half circle on the contour C can be neglected when we take its radius to

7In this channel, the Green function can alternatively be defined in curved space-time [29] instead of the flat one. The
two definitions differ by a contact term, which is proportional to δ(4)(x− y) in coordinate space. This contact term does
not affect the final form of the sum rule, because, as we will see, it is canceled by a similar term coming from the Green
function in the IR limit.
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iω

C
ω’

Figure 24: The contour C in the complex ω′ energy plane, used to derive the exact sum
rules. The contour runs infinitesimally above the real axis, so that it does not overlap with
the singularities on the real axis. Taken from Fig. 1 of Ref. [364].

infinity. The above equation thus reduces to

δGR
µν,αβ(0,p)− δGR

µν,αβ(∞,p) =
1

πi
P

∫ ∞

−∞

dω

ω
δGR

µν,αβ(ω,p), (233)

where we have used 1/(ω′ − iω) → P(1/ω′) + iπδ(ω′). In the following, we will only consider the Green
function of two identical operators, (µ, ν) = (α, β). In this case, the real part of GR(p) is even in ω
while the imaginary part is odd. We thus have

δGR
µν,αβ(0,p)− δGR

µν,αβ(∞,p) =
2

π

∫ ∞

0

dω

ω
δρµν,αβ(ω,p), (234)

where we have introduced the spectral function as ρµν,αβ(p) = ImGR
µν,αβ(p). It is seen in Eq. (234) that,

the integral of the spectral function is constrained by the asymptotic behavior of the Green function in
the UV and IR limits. These are correctly described by the OPE and hydrodynamics, respectively, as
long as |p| is small enough. We note that the OPE expression obtained has an ambiguity in form of a
contact term [30]. However, such an ambiguity does not appear in the final sum rule, as it vanishes on
the left-hand side of Eq. (234).

We next proceed to a more concrete discussion in the shear and bulk sectors. We set the direction
of p to the z-axis, in which the corresponding components reduce to the simple forms, Gη ≡ GR

12,12

and Gζ ≡ gµνgαβGR
µν,αβ, with g

µν =diag(1,−1,−1,−1). We consider only these two components, where
the above assumption [(µ, ν) = (α, β)] is valid. For the general tensor decomposition of GR

µν,αβ, see
Ref. [365]. We will derive the sum rule in the shear sector8 first, and move to the bulk sector thereafter.

Shear sector
In this sector, we confine our discussion to pure Yang-Mills theory, as the sum rule in full QCD has not
been obtained yet. The OPE at leading order reads [366]

Gη(p) = −3p+ A⟨αsG
2⟩T , (235)

8This channel is sometimes referred to as the tensor channel.

73



where A is an undetermined constant, which can in principle be obtained from a higher-order calculation.
p stands for the pressure. The relation between p, the energy density ϵ and the traceless component of
energy-momentum tensor can be given as ⟨T 00⟩T = 3(ϵ+ p)/4. The gluon condensate is also related to
these thermodynamic quantities as ϵ − 3p = −b0⟨αsG

2⟩T/(8π) for weak coupling, where b0 ≡ 11Nc/3.
Note the difference to Eqs. (49) and (50), where we use Nf = 3 instead of Nf = 0 here.

On the other hand, second order hydrodynamics provides the following expression about the IR
behavior of the retarded correlator [367],

Gη(p) = −p+ iηω +

(
ητπ −

1

2
κ

)
ω2 − 1

2
κp2. (236)

Here, η is a first order transport coefficient (shear viscosity), while τπ and κ are of second order. The
terms proportional to ω2 and p2 are valid only in the conformal limit, and are expected to be modified
in the non-conformal case. If the long time tail caused by the interaction among the hydro modes is
taken into account, second order hydrodynamics is modified so that a non-analytic term (∼ ω3/2) enters
the expression above. Such an effect is suppressed in the large Nc limit, both in the weak and strong
coupling limits [368].

Combining these two expressions with Eq. (234), we get the first sum rule (sum rule 1) in the shear
sector, which reads [29]

ϵ+ p

2
+B(ϵ− 3p) =

2

π

∫ ∞

0

dω

ω
δρη(ω,0), (237)

where B is an undetermined constant, which we introduced because the OPE expression has an un-
determined coefficient for the gluon condensate term. In this derivation, we used only the asymptotic
behavior of the Green function in the UV and IR energy regions. The former is given by the OPE, in
which the Wilson coefficients are evaluated exactly at infinitely large energy, while the latter is given
by hydrodynamics, which is a reliable low energy effective theory for channels of conserved quantities.
Thus, this sum rule is exact, once the undetermined constant is fixed by a higher order OPE calculation.
This sum rule was generalized to the case with a lattice discretization later in Refs. [369, 370].

Compared to the more conventional QCDSRs discussed in detail in previous sections, the exact
sum rules do not introduce an UV cutoff, so that the leading order OPE result becomes exact due to
asymptotic freedom. The UV divergence is removed by subtracting the spectral function at T = 0,
instead of a cutoff. Furthermore, hydrodynamics is used to describe the IR behavior, unlike in the
conventional sum rules, for which IR quantities do not appear. It is worth mentioning here a similar
approach, which was used in Ref. [371] to construct a sum rule from the difference between the vector
and the axial vector spectral functions, in order to discuss the effect of chiral symmetry, its breaking
and restoration. Taking this difference, the UV divergence is removed as it happens for the sum rules
in this paper. These so-called Weinberg sum rules (proposed first in Ref. [372] for the vacuum case) are
frequently discussed in the context of chiral symmetry breaking and its restoration at finite temperature
or density as the vector and axial vector spectral functions should become identical in a situation of
completely restored chiral symmetry. Recent studies related to this topic can be found for instance in
Refs.[122, 373, 374, 375].

The derivation of the second sum rule is somewhat non-trivial. Equation (232) for the shear channel
is first rewritten as

δGη(iω,p)− δGη(∞,p) =
1

π

∫ ∞

0

dω′ω
′δρη(ω′,p) + ω[ReδGη(ω

′,p)− δGη(∞,p)]

ω′2 + ω2

=
2

π

∫ ∞

0

dω′ω
′δρη(ω′,p)

ω′2 + ω2
, (238)
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where we have used the relation

0 =

∫ ∞

−∞
dω′ω

′δρη(ω′,p)− ω[ReδGη(ω
′,p)− δGη(∞,p)]

ω′2 + ω2
, (239)

in the last line, which is obtained by using the residual theorem for the integral
∮
C
dω′[δGη(ω

′,p) −
δGη(∞,p)]/(ω′ + iω). Subtracting iωδGη

′ = 2iω2δGη
′ ∫∞

0
dω′/[π(ω2 + ω′2)] from Eq. (238), which is

necessary to regularize the IR singularity in the integral, we get

δGη(iω,p)− δGη(0,p)− iωδGη
′(0,p) =

2

π
ω2

∫ ∞

0

dω′ 1

ω2 + ω′2

[
δρη(ω

′,p)
−1

ω′ + δρ′η(0,p)

]
, (240)

where ′ stands for the derivative in terms of energy (ω, ω′). Taking the ω → 0 limit, this reduces to

1

2
δGη

′′(0,p) =
2

π

∫ ∞

0

dω
1

ω3

[
δρη(ω,p)− ωδρ′η(0,p)

]
. (241)

Here, we have changed the integration variable from ω′ to ω for simplicity. We hence obtain the following
second sum rule (sum rule 2) [29] by using the expressions of the Green function in the IR limit [see
Eq. (236)],

1

2
δGη

′′(0,p) =
2

π

∫ ∞

0

dω
1

ω3

[
δρη(ω,p)− ωδρ′η(0,p)

]
. (242)

Taking furthermore the |p| = 0 limit, we have

ητπ −
1

2
κ =

2

π

∫ ∞

0

dω
1

ω3
[δρη(ω,0)− ηω] . (243)

In this sum rule, the ω2 term obtained from hydrodynamics in Eq. (236) was used. Eq. (243) is thus
expected to be modified for finite Nc.

Bulk sector
The OPE as before provides the UV behavior in the bulk sector [30], predicting that Gζ(p) vanishes in
the ω → ∞ limit. On the other hand, the IR behavior is obtained from hydrodynamics [376, 377] as

Gζ(ω = 0,p → 0) = −
(
T
∂

∂T
− 4

)
(ϵ− 3p)−

(
T
∂

∂T
− 2

)∑

f

mfδ⟨ψfψf⟩T , (244)

where O(m2) terms are neglected.
Making use of these asymptotic expressions, Eq. (234) yields the following sum rule for the bulk

sector,

−
(
T
∂

∂T
− 4

)
(ϵ− 3p)−

(
T
∂

∂T
− 2

)∑

f

mfδ⟨ψfψf⟩T =
2

π

∫ ∞

0

dω

ω
δρζ(ω,0). (245)

Because we have omitted O(m2) terms, this sum rule is only valid for light quarks, and becomes exact
for the massless or pure glue case. This sum rule was derived for the first time in Refs. [376, 377]
for infinitesimal |p|, and was generalized to the case of finite density in Ref. [378] and to a non-zero
magnetic field in Ref. [379]. Later, the sum rule for the case where the p = 0 limit is taken first so that
the sound peak does not appear in δρζ(ω,p), was obtained in Ref. [29].

Let us furthermore mention that in addition to the sum rules in the shear and bulk components, sim-
ilar sum rules were derived for other components in the energy-momentum tensor channel in Ref. [380].
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6.1.2 Applications

We here review a few possible applications of the above sum rules, starting with the shear sector.

Shear sector

1. In both strong coupling N = 4 super Yang-Mills theory [29] and the weakly coupled QCD [29,
381, 382], the inequality ητπ > κ/2 holds. Through sum rule 2, this property constrains the
shear spectral function δρη(p) to be larger than ηω at least in some ω region [29]. Especially, the
simplest ansatz, for which the spectral function is saturated by a Lorentzian peak [δρη(ω,p =
0) = Γ2ηω/(ω2 + Γ2)]9 at zero momentum, was shown to be inconsistent with sum rule 2: the
integrand in this sum rule becomes δρη − ηω = −ηω3/(ω2 + Γ2), which is negative while the
left-hand side of the sum rule is positive.

2. In pure Yang-Mills theory, it was confirmed that the shear spectral function calculated at NLO
accuracy satisfies sum rule 1 of Eq. (237) [383]. This is one example, in which an exact sum rule
is used as a consistency check of an explicit spectral function calculation.

Finally, we make a few remarks on possible future applications. First, the left-hand side of sum rule 1
can be calculated with lattice QCD without having to deal with the problem of analytic continuation.
Once the constant B is fixed, it will constrain the spectral function and may be used to improve spectral
fits to lattice QCD data. Next, sum rule 2 can potentially be of help in determining κ, making use of
the spectral function obtained from lattice QCD. Actually, some attempts in this direction have already
been tried in the vector channel, as will be seen in the next subsection.

Bulk sector
To obtain dynamical or real time quantities from a lattice QCD calculation, one has to overcome the
well known problem of analytical continuation, as already mentioned earlier. Namely, lattice QCD
cannot evaluate quantities defined in real time such as spectral functions directly, but can only compute
imaginary time objects. The Green function GE in Euclidian time for instance can be obtained on the
lattice and is related to the spectral function as

GE(τ) =

∫ ∞

0

dω

2π
ρ(ω)

cosh[ω(τ − 1/2T )]

sinh(ω/2T )
(246)

with Euclidian time τ . Thus, assuming an ansatz about the form of the spectral function, or attempting
to get a model-independent result from numerical methods such as MEM [263, 264, 265, 384] becomes
necessary.

1. There are already several studies attempting to use exact sum rules to evaluate the bulk viscosity
from lattice QCD. Substituting the simplest ansatz for the spectral function10, δρζ(ω,p = 0) =
9ζΓ2ω/[π(ω2+Γ2)], to a preliminary version of the sum rule and matching it with thermodynamic
quantities and the chiral condensate evaluated by lattice QCD, the bulk viscosity ζ was evaluated
in Refs. [376, 377]. Later, the sum rule was corrected in Ref. [29], and the abovementioned simple
ansatz was criticized because at least in pure Yang-Mills theory, the left-hand side of the sum rule
was shown to be negative in lattice QCD [139], which is inconsistent with the simple Lorentzian

9The overall coefficient is determined so that it matches with the definition of η, ρη(ω,0) ≃ ηω, which can be read off
from Eq. (236).

10Γ(T ) was set to the scale at which the values for the running coupling evaluated by lattice QCD [385] and perturbation
theory coincide.
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ansatz, which always yields a positive contribution to the sum rule. Subsequently, a similar
method was attempted by using the correct version of the sum rule and a more sophisticated
ansatz for δρζ [386].

2. It was shown that the spectral function calculated at LO [30], and later at NLO [387] satisfies the
sum rule. This provides a cross-check for the perturbative result, as it was the case in the shear
sector.

6.2 Vector current channel

In this subsection, we review the exact sum rules and their applications for the correlator of the conserved
vector current.

6.2.1 Derivation

The derivation of the sum rules given in Refs. [363, 364] is similar to that in the previous energy-
momentum tensor case. The basic equation is still Eq. (234), where GR

µν,αβ should be replaced with GR
µν ,

which is the Green function of the vector current. This function has two independent channels, called
transverse and longitudinal. Namely

GR
µν(p) = P T

µν(p)GT (p) + PL
µν(p)GL(p), (247)

where P T
µν(p) ≡ gµigνj

(
δij − pipj

p2

)
and PL

µν(p) ≡ P µν
0 (p) − P µν

T (p) with P µν
0 (p) ≡ −

(
gµν − pµpν

p2

)
, are

the projection tensors for transverse and longitudinal channels. The OPE of both components can be
found in Appendix A. We first derive the sum rules in the transverse sector, and then continue with
the longitudinal sector.

Transverse sector
The UV behavior is given by the OPE result of Eq. (274) in the Appendix. The IR asymptotic behavior
is described by hydrodynamics as [388]

GT (p) = iσω − στJω
2 + κBp

2 +O(ω3, ωp2,p4). (248)

Here, σ is the electrical conductivity, τJ a second order transport coefficient corresponding to the ∂0E
term in the current, and κB the transport coefficient corresponding to the ∇ × B term, respectively.
Combining these expressions, we get the first sum rule (sum rule 1) in the transverse sector from
Eq. (234),

κBp
2 +O(p4) =

2

π

∫ ∞

0

dω
δρT (ω,p)

ω
. (249)

This sum rule at |p| = 0 was first obtained from the current conservation law in Ref. [389].
Using ω2GT (p) instead of GT (p) in Eq. (234), we obtain the second sum rule (sum rule 2) in the

transverse channel as [363, 364],

−e2
∑

q2f

[{
2mfδ

⟨
ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3

1

4CF +Nf

δ
⟨
T 00
⟩
T

]
=

2

π

∫ ∞

0

dωωδρT (ω,p). (250)

A preliminary version of this sum rule at |p| = 0 was in fact derived long time ago in Refs. [390, 391],
however with incorrect coefficients. We note that T 00, appearing in the above sum rule is not the
energy-momentum tensor itself, but its trace subtracted version.
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Finally, making use of the same method as in the derivation of sum rule 2 in the shear channel
[Eq. (243)], we can obtain another sum rule (sum rule 3) in the transverse channel [363, 364],

1

2
δGT

′′(0,p) =
2

π

∫ ∞

0

dω
1

ω3
[δρT (ω,p)− ωδρ′T (0,p)] . (251)

Taking again the |p| = 0 limit, we derive

−στJ =
2

π

∫ ∞

0

dω
1

ω3
[δρT (ω,0)− σω] . (252)

As in the shear channel, this sum rule holds only in the large Nc limit.
It was shown and discussed in detail in Refs. [363, 364] that the spectral function calculated at

leading order in the weak coupling expansion satisfies the above three sum rules.

Longitudinal sector
Hydrodynamics gives the following IR behavior [388],

GR
00(p) = iσp2 1 +O(ω,p2)

ω + iDp2 +O(ωp2,p4)
, (253)

where D is the diffusion constant. Before discussing the sum rules, let us remember that the retarded
Green function in the longitudinal channel is exactly known at zero momentum [392] from the charge
conservation law,

ρ00(ω,0) = πχqωδ(ω), (254)

where χq ≡
∫
d3x⟨j0(x)j0(0)⟩/T is the charge susceptibility. Therefore, sum rules in the longitudinal

channel provide nontrivial information only when p is finite. We hence consider only the finite momen-
tum case in this subsection. Furthermore, matching Eq. (254) with the hydro result of Eq. (253), we
obtain σ/D = χq.

From Eq. (253), the OPE result of Eq. (275), and Eq. (234), we derive the first sum rule (sum rule
1) in the longitudinal channel,

σ

D
+O(p2) =

2

π

∫ ∞

0

dω
δρ00(ω,p)

ω
. (255)

Next, considering the integral in Eq. (234) with two more powers of ω, we are led to

0 =
2

π

∫ ∞

0

dωωδρ00(ω,p), (256)

which is the second sum rule (sum rule 2) in the longitudinal channel. Sum rule 2 was first derived
using the current conservation in Ref. [389] (note that ρ00 = ρ33p

2/ω2). This implies that the sum rule
is in fact exact for any momentum value, and one does not need to assume that it is small here.

Finally, increasing the powers of ω by two in the integral of Eq. (234), we obtain the third sum rule
(sum rule 3) in the longitudinal channel as

−e2
∑

q2fp
2
[{

2mfδ
⟨
ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3

1

4CF +Nf

δ
⟨
T 00
⟩
T

]

=
2

π

∫ ∞

0

dωω3δρ00(ω,p). (257)
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6.2.2 Applications

Let us briefly review possible applications of the exact sum rules derived in this subsection. Applications
currently exist only for the zero momentum case, for which the transverse and longitudinal sum rules
are degenerate. Therefore, we will not distinguish the two channels below, and refer only to the sum
rules in the former channel.

1. The earliest vector channel sum rules application is to our knowledge the study of spectral prop-
erties at the chiral phase transition in Refs. [390, 391]. The authors of these works discussed the
structure of the spectral function at the transition temperature/density in the context of soft
modes related to the phase transition [393].

2. Using perturbative QCD, it was shown in Refs. [363, 364] that the spectral function calculated at
LO satisfies all three sum rules, therefore demonstrating again that these sum rules can be used
as a consistency check for perturbative calculations.

3. The sum rules can be applied to the analysis of the spectral function and transport coefficients in
lattice QCD. As mentioned in Section 6.1, because of the issue of analytic continuation an ansatz
for the form of the spectral function often needs to be assumed in lattice QCD analyses of the
spectral function. Earlier works such as Ref. [392] have proposed an ansatz motivated by weak
coupling results, namely11

ρ(ω)

Cem

= ATρpeak(ω) + κρcont(ω), (258)

where ρ(ω) ≡ ρT (ω,p = 0). The two parts,

ρpeak(ω) ≡ 1

3

ωΓ/2

ω2 + (Γ/2)2
, (259)

ρcont(ω) ≡ ω2

4π

(
1− 2nF

(ω
2

))
, (260)

correspond to the transport peak and the continuum, which can be derived in the weak coupling
limit. The former is a Lorentzian peak appearing at an energy scale governed by transport
processes [given approximately as (mean free path)−1 ≪ T ], while the latter appears at a scale of
the order of T and is caused by the process γ → qq̄. However, Eq. (258) generally does not satisfy
sum rule 1 of Eq. (249). To satisfy it, the simple relation AT = κT 2 needs to hold. Furthermore,
it cannot satisfy sum rules 2 [Eq. (250)] and 3 [Eq. (252)], because it would generate UV and
IR divergences in the respective integrals. This happens because the transport peak and the
continuum are simply summed in Eq. (258), while in principle there should be a smooth crossover
between the two at least in the weak coupling case.

In a later analysis, a more sophisticated form for the spectral function was suggested in Refs. [394,
395]. Here, we mention only the one given in Ref. [394], which reads

ρT≃0(ω)

Cem

=
π

3
aV δ(ω −mV ) + κ0ρcont(ω)θ(ω − Ω0), (261)

ρ(ω)

Cem

= ATρpeak(ω) +
π

3
aT δ(ω −mT ) + θ(ω − ΩT )κ̃0ρcont(ω)

+θ(ω − ΩO)κOρ
′
tail(ω). (262)

11Note that their conventions differ from ours by a factor of 1/6.
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Here, ρ′tail(ω) ≡ 1/(4πω2), while the coefficient of the continuum term is modified to

κ̃0 ≡ κ0 + κ1

[
1− tanh

(
ω

Ω0η

)2
]
, (263)

to obtain a better fit. The former expression of Eq. (261) is the ansatz for zero temperature (or a
temperature sufficiently below Tc), while the latter is an ansatz suitable for high temperature. The
former in essence corresponds to the “pole + continuum” ansatz of conventional QCDSR studies,
while the latter is motivated by the transport peak and the UV tail at weak coupling, briefly
mentioned in Section 2.2. δρ is obtained by subtracting the former from the latter. Requiring
that it satisfies sum rule 1, the authors of Ref. [394] derived a constraint on the parameters
appearing in Eqs. (261) and (262). Moreover, the spectral function can be adjusted consistently
with sum rule 3, as the potential IR divergence is regularized by the cutoff parameters (Ω0, ΩT ,
ΩO). However, it still violates sum rule 2 because the transport peak and the UV tail cause a UV
divergence.

Recently, it was attempted in Ref. [364] to improve this ansatz such that it can satisfy both sum
rules 2 and 3. Specifically, the proposed ansatz reads

ρ(ω)

Cem

= ATρpeak(ω)[1− A(ω)] +
π

3
aT δ(ω −mT ) + κ̃0ρcont(ω)A(ω) + θ(ω − ΩO)κOρtail(ω).(264)

Compared with the previous version of Eq. (262), two features are modified. First, the transport
peak and the continuum are smoothly connected by the function A(ω) ≡ tanh (ω2/∆2), instead
of the jump at ω = ΩT . Second, the UV tail term is modified to

ρtail(ω) ≡ 1

4π

1

ω2[ln(ω/ΛQCD)]1+ã
, (265)

which more closely resembles the OPE expression given in Eq. (281), that includes a logarithmic
dependence. These two improvements help to regularize the UV divergence, such that, as a
whole, the spectral function can be consistent with sum rule 2. The spectrum at T = 0 remains
the same as in Eq. (261). In Ref. [364], sum rules 1 and 2 were furthermore employed to reduce the
number of independent fitting parameters in Eq. (264). Specifically, thermodynamic quantities of
Ref. [120] were used to express the condensates and T 00 on the left hand side of Eq. (250). For
illustration, we show the resulting fitted spectral functions at various temperatures in Fig. 25.
With the spectral function fixed, sum rule 3 [Eq. (252)] was subsequently used to evaluate the
second-order transport coefficient τJ . These results demonstrate that the sum rules are helpful
for spectral fits to lattice QCD data. As shown in Ref. [364], more precise and a larger number
of data points will however be needed for a conclusive determination of the spectral function at
finite temperature.

Let us conclude this section with a few remarks about possible future directions. First, the spectral
function at T = 0 can in principle be extracted from the experimental cross section for e+e− → hadron
processes [396]. Therefore, once physical point lattice data become available, such experimental data
can be used instead of the simple ansatz of Eq. (261). Also, as mentioned above, more data points
should be studied in future lattice QCD analyses, such that more accurate spectral functions can be
obtained with the help of the sum rules. Finally, we mention potential applications at finite momentum.
The transport coefficient κB can be determined with lattice QCD nonperturbatively without suffering
from the problem of analytic continuation (see Ref. [397]). Therefore, once the lattice QCD data for
the vector current propagator at finite momentum become available, we expect that sum rule 1 in
the transverse channel [Eq. (249)] will become useful to constrain the shape of the spectral function at
non-zero momentum.
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obtained by fitting Eq. (264) to the lattice QCD data of Ref. [394]. Here a is the lattice
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f . Taken from Fig. 5 of Ref. [364].

7 Summary and Outlook

In this review article, we have given an overview of recent developments in QCDSR studies. Particular
focus has been laid on reviewing determinations of QCD condensates based on methods such as lattice
QCD or chiral perturbation theory and, where possible, on experimental data. In doing this, we have
attempted to provide a comprehensive survey of the most recent and relevant literature.

We have furthermore not only critically examined the traditional QCDSR analysis method which
makes use of the Borel transform and subsequently of the so-called Borel-curves for hadron masses and
residues, but have also looked at alternatives that are presently being used in the QCDSR community.
These include, for instance, the use of alternative kernels different from the Laplace-type obtained using
the Borel transform, or the application of the maximum entropy method for extracting the spectral
function from the sum rules.

As areas of QCDSR applications have grown and multiplied over the years, we necessarily had to
limit ourselves to a limited range of QCDSR applications to be discussed in this review, in order not to
let the article become inhumanly lengthy. We have hence focused on applications, for which QCDSRs
can produce relevant results for experiments and theoretical practitioners of related methods. With
this guiding principle in mind, we have summarized recent works employing QCDSRs to investigate
properties of hadrons at finite density, particularly in nuclear matter. Even though such calculations
have their limitations in terms of precision and lack of ability to obtain detailed features of the in-
medium spectral functions, they are nevertheless useful as they can provide interpretations of observed
hadron spectra in dense matter in terms of QCD condensates. In channels containing light (valence)
quarks, this often leads to direct connections between modifications of the spectral function and the
(partial) restoration of chiral symmetry in dense matter. Such calculations are moreover relevant in
view of the fact that lattice QCD studies at finite density are still challenging due to the existence of the
sign problem. Besides the above topic, we have furthermore given a brief overview on the derivation and
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applications of exact sum rules, a topic that that has been studied already long ago, but has attracted
renewed interest in recent years. Some of these exact sum rules are presently being used in spectral fits
to lattice QCD data and can in the future potentially be used to determine certain combinations of QCD
condensates or hydrodynamic transport coefficients. Another area, where QCDSRs continue to be used
frequently, but which we have not covered in this review, is the study of exotics, i.e. channels with four,
five or even more valence quarks or hadronic molecules. We refer interested readers to Ref. [12] for an
earlier review. Another interesting and important topic is the behavior of hadrons at finite temperature
[19], especially for understanding experimental measurements from heavy-ion collisions. Here, QCDSRs
however have to compete with lattice QCD and new ideas such as those proposed in Refs. [236, 263] are
needed in order to be competitive.

Finally, let us give an outlook about how QCDSR studies might develop in the future. Certainly,
the fields described in the previous paragraph will remain the ones where QCDSR can provide the most
meaningful contributions to the field of hadron physics and QCD. Furthermore, as we have emphasized
in this article, the determination of QCD condensates has advanced considerably during the last decade.
It is especially worth mentioning the very precise information now available about the dimension 3 quark
(or chiral) condensate, in vacuum, at finite temperature and in a constant and homogenous magnetic
field12. Such results, as well as similar ones for other condensates, can and are often being taken
into account in modern QCDSR analyses. Together with the novel analysis methods that have been
developed over the years, this shows that the field of QCDSRs is continuously evolving and will hopefully
continue to do so in the future.

In all, we hope that this article will be useful for QCD practitioners as a reference for the most
up-to-date QCD condensate values, for researchers of adjacent fields to get an idea about the present
status of QCDSR studies and for interested beginners as a starting point in their study of this subject.
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A Operator product expansion of correlator and UV tail in

the vector channel

In this Appendix, we provide OPE and UV tail expressions for various vector correlators. The OPE is
obtained as

δGT (ω,p) = e2
∑

q2f
1

p2

[{
2mfδ

⟨
ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3

ω2 + p2

p2
δ
⟨
T 00
f

⟩
T

]
+O(ω−4), (266)

δGR
00(ω,p) = e2

∑
q2f

1

p2
p2

p2

[{
2mfδ

⟨
ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3
δ
⟨
T 00
f

⟩
T

]
+O(ω−6). (267)

12There is however still rather large uncertainty about its behavior at finite density. Even the value of its linear order
density coefficient, the πN sigma term, is still controversially discussed.
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We decompose the quark component of the traceless energy-momentum tensor as

T 00
f = T ′00

f +
1

4CF +Nf

(
T 00 +

2

Nf

T̃ 00

)
, (268)

where

T ′00
f ≡ T 00

f − 1

Nf

∑

f ′

T 00
f ′ , (269)

T 00 ≡
∑

f ′

T 00
f ′ + T 00

g , (270)

T̃ 00 ≡ 2CF

∑

f ′

T 00
f ′ − Nf

2
T 00
g . (271)

Here, T µν
g ≡ −Gµα

a Gν
αa+g

µνG2/4 is the gluon component of the traceless part of the energy-momentum
tensor. A standard renormalization group (RG) analysis yields the following scaling properties [398]:

T ′00
f (κ) =

[
ln
(
κ20/Λ

2
QCD

)

ln
(
κ2/Λ2

QCD

)
]a′

T ′00
f (κ0),

T̃ 00(κ) =

[
ln
(
κ20/Λ

2
QCD

)

ln
(
κ2/Λ2

QCD

)
]ã
T̃ 00(κ0),

(272)

where κ and κ0 are renormalization scales, ΛQCD is the QCD scale parameter, a′ ≡ 8CF/(3b0), and
ã ≡ 2(4CF +Nf )/(3b0), where b0 ≡ (11Nc − 2Nf )/3, which appears in the expression

αs(κ) =
4π

b0 ln(κ2/Λ2
QCD)

. (273)

Note that T 00 is independent of κ. In the ω → ∞ limit, it is natural to choose the RG scale as κ2 = ω2.
We see that, except for the T 00 term, all terms in Eq. (268) are suppressed logarithmically at large ω.
Thus, Eqs. (266) and (267) become

δGT (ω,p) = e2
∑

q2f
1

p2

[{
2mfδ

⟨
ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3

1

4CF +Nf

ω2 + p2

p2
δ
⟨
T 00
⟩
T

]

+O(ω−4), (274)

δGR
00(ω,p) = e2

∑
q2f
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p2
p2

p2

[{
2mfδ
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ψfψf

⟩
T
+

1

12
δ
⟨αs

π
G2
⟩
T

}
+

8

3

1

4CF +Nf

δ
⟨
T 00
⟩
T

]
+O(ω−6).

(275)

Next, we briefly explain basic idea of the derivation of the spectral UV tail at high energy. The UV
behavior of the retarded vector current correlator is described by the OPE expressions of Eqs. (266) and
(267). Among the three terms, only ⟨T 00

f ⟩T is not RG invariant. This operator yields imaginary parts
of the retarded correlator, as can be understood as follows. The scaling relations of Eq. (272) can be
rewritten as

T ′00
f (κ) ≃ T ′00

f (κ0) + a′ ln

(
κ20
κ2

)
b0
4π
αsT

′00
f ,

T̃ 00(κ) ≃ T̃ 00(κ0) + ã ln

(
κ20
κ2

)
b0
4π
αsT̃

00
f ,

(276)
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when κ is close to κ0. It was shown in Ref. [30] that the factor ln(κ20/κ
2) generates an imaginary

contribution iπ, due to the analytic continuation to real time. Following this prescription, the imaginary
parts of the retarded correlators of Eqs. (266) and (267) read

δρT (p) = e2
∑

q2f
8

9

ω2 + p2

(p2)2
αs(ω)

(
2CF δ

⟨
T ′00

f (ω)
⟩
T
+

1

Nf

δ
⟨
T̃ 00(ω)

⟩
T

)
, (277)

δρ00(p) = e2
∑

q2f
8

9

p2

(p2)2
αs(ω)

(
2CF δ

⟨
T ′00

f (ω)
⟩
T
+

1

Nf

δ
⟨
T̃ 00(ω)

⟩
T

)
. (278)

This expression is valid when the OPE is reliable, that is, for ω ≫ T,ΛQCD.
Especially, in the chiral and weak coupling limits, the operator expectation values at the renormal-

ization scale κ0 ∼ T read

⟨T 00
f ⟩T = Nc

7π2T 4

60
, (279)

⟨T 00
g ⟩T = 2CFNc

π2T 4

15
, (280)

which, by using the scaling relation of Eq. (272), leads to

δρT (p) = Cem
1

ω2

(
1 + 3

p2

ω2

)
αs(κ0)NcCF

4π2T 4

27

[
ln (κ0/ΛQCD)

ln (ω/ΛQCD)

]ã+1

, (281)

δρ00(p) = Cem
p2

ω4

(
1 + 2

p2

ω2

)
αs(κ0)NcCF

4π2T 4

27

[
ln (κ0/ΛQCD)

ln (ω/ΛQCD)

]ã+1

. (282)

Here, we have retained terms up to next-to-leading order in the small |p| expansion.
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[163] S. Dürr et al. Lattice computation of the nucleon scalar quark contents at the physical point.
Phys. Rev. Lett., 116(17):172001, 2016.

[164] Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu. πN and strangeness sigma terms
at the physical point with chiral fermions. Phys. Rev., D94(5):054503, 2016.

[165] A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis,
G. Koutsou, and A. Vaquero Aviles-Casco. Direct Evaluation of the Quark Content of Nucleons
from Lattice QCD at the Physical Point. Phys. Rev. Lett., 116(25):252001, 2016.

[166] G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck. Direct determina-
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