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Abstract

In this work we present a direct comparison of three different numerical ana-
lytic continuation methods: the Maximum Entropy Method, the Backus-Gilbert
method and the Schlessinger point or Resonances Via Padé method. First, we
perform a benchmark test based on a model spectral function and study the
regime of applicability of these methods depending on the number of input
points and their statistical error. We then apply these methods to more realis-
tic examples, namely to numerical data on Euclidean propagators obtained from
a Functional Renormalization Group calculation, to data from a lattice Quan-
tum Chromodynamics simulation and to data obtained from a tight-binding
model for graphene in order to extract the electrical conductivity.

Keywords: analytic continuation, spectral function, lattice QCD

1. Introduction

The necessity to perform an analytic continuation of numerical data is a
common but also ill-posed and therefore difficult problem in physics. The ana-
lytic continuation problem in general refers to the task of extending the domain
of a function beyond the regime where it is known or where there are data
points available. It is encountered for example in Euclidean Quantum Field
Theory (QFT) when one aims at reconstructing real-time correlations or spec-
tral functions based on some discrete and finite set of data points along the
Euclidean (imaginary) time axis. Euclidean correlation functions in principle
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contain the complete information of a field theory in thermal equilibrium. The
inverse problem of extracting this information from these correlations is often
NP-hard, however. While their analytic continuation is unique in principle,
with suitable boundary conditions [1, 2], it requires infinitely many data points
of infinite precision. The spectral representation of a Euclidean time correlation
function at zero temperature, for example, is given as a Laplace transform of
the corresponding spectral function. Knowing the correct analytic continuation
of this correlation function is equivalent to knowing its spectral function. When
dealing with a finite set of data points of finite accuracy, however, the inverse
Laplace transform becomes an ill-posed numerical problem.

There are several numerical continuation methods available in the literature
that aim at obtaining the best possible reconstruction of spectral functions. For
example, the Maximum Entropy Method (MEM) [3, 4, 5], the Backus-Gilbert
(BG) method [6, 7, 5], the Schlessinger Point (SP) or Resonances Via Padé
(RVP) method [8, 9], or a Tikhonov regularization [10], which allows to probe
unphysical (non positive-definite) spectral densities, see also [11], have been
proposed. They all have different strengths and different regimes of applicabil-
ity. The question as to which of the methods will give the best reconstruction
therefore depends on the particular problem to which they are applied.

In this work we present a direct comparison, both in QCD and in con-
densed matter systems, of three of those numerical analytic continuation meth-
ods: MEM, the BG method and the SP (or RVP) method. While all three
methods have been used and tested in the literature before, see e.g. [12] for
MEM and the SPM in the context of estimating the optical conductivity in a
condensed matter system, [13, 14, 15, 16, 17, 18, 19] for the SPM as a numerical
analytic continuation technique in various situations, [20, 21] for the MEM, and
[22] for the BG method, the SP method has only rarely been used in a QCD
setting and is applied for example to lattice QCD data for the first time in this
work to our knowledge.

We will focus on reconstructing the spectral function ρ(ω) based on a finite
set of data points for a correlation function GE(τ) in Euclidean (imaginary)
time τ . At finite temperature, T = 1/β, the Euclidean correlation function is
related to the spectral function by the periodic extension of

GE(τ) =

∫ ∞
0

dωρ(ω)
cosh(ω(τ − β/2))

sinh(βω/2)
, for τ ∈ [0, β] . (1)

MEM and the BG method aim at inverting this integral using input points for
GE(τ), while we will use the SP method to perform an analytic continuation
of the Euclidean propagator DE(p0), where p0 is the Euclidean (Matsubara)
frequency. After the analytic continuation, the retarded propagator DR(ω) is
defined at real frequencies ω = −ip0, which yields the spectral function from

ρ(ω) = − 1

π
ImDR(ω). (2)

The discrete data points for DE(p0) are obtained from those of GE(τ) via
a discrete Fourier transform in Secs. 3, 5 and 6 where we study data for the
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periodic Euclidean correlation function GE(τ) with period β = 1/T as in Eq. (1)
at the N discrete times τm = βm/N . In order to reconstruct the corresponding
spectral function ρ(ω) with the SP method, we will first use the discrete Fourier
transform,

DE
N (p0n) =

β

N

N−1∑
m=0

GE (τm) exp (i2πnm/N) , (3)

to obtain DE
N (p0n) as an approximation to the Euclidean propagator DE(p0n)

obtained in the limit N →∞ as the Fourier series coefficients of the continuous
periodic GE(τ). The error induced by using a finite number of points in the
Fourier transform will make it more difficult to obtain a reliable reconstruction
with the SP method if the number of input points is too small, see Sec. 3.

In Sec. 4, the inverse Fourier transform will be used in order to obtain GE(τ),
as needed by MEM and the BG method, from the Euclidean propagator DE(p0)
as given by the FRG calculation at a finite set of discrete Matsubara frequencies
p0n = 2πTn. This transform is given by

GEN (τm) = T

N/2∑
n=−N/2+1

DE (2πTn) exp (−i2πnm/N) , (4)

where GEN (τm) is an approximation to the full Euclidean correlation function
GE(τ) at the discrete Euclidean times τm = βm/N that is exact only in the
limit N →∞. We checked that the error introduced by the discrete Fourier
transform is small in Sec. 4 where we use N = 2048 and that it does not affect
the quality of the reconstruction.

In Sec. 2 we will discuss the three different analytic continuation methods
used in this work. They are then applied to study a simple model for a spectral
function in Sec. 3 where we will also study their different regimes of applicabil-
ity depending on the number of input points for GE(τ) and the statistical error
of those points. We then apply the three methods to three different situations
that are typically encountered in field-theory applications: first, in Sec. 4, to
data obtained from a numerical calculation employing the Functional Renor-
malization Group (FRG) [23], then, in Sec. 5, to the lattice QCD data for the
vector-meson correlation function from Ref. [24], and finally, in Sec. 6, to data
for the electromagnetic current correlator obtained from a tight-binding model
for graphene in order to extract the electrical conductivity [25].

2. Analytic continuation methods

2.1. Maximum Entropy Method

The basic idea of the Maximum Entropy Method is to make use of all the
available information about the spectral function (including properties such as
positive definiteness and asymptotic values) and to choose it to have a large
entropy (for a precise definition, see below) while at the same time satisfying
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the conditions given for instance by Euclidean time data. More specifically, the
method relies on Bayes’ theorem of probability theory,

P [ρ|GI] =
P [G|ρI]P [ρ|I]

P [G|I]
, (5)

where P [ρ|GI] stands for the conditional probability of the spectral function
ρ to have a certain form, given the information on the Euclidean time data G
and other prior information I about the spectral function. The goal is then to
find the specific form of ρ that maximizes P [ρ|GI]. On the right hand side of
Eq. (5), there are two factors that depend on ρ, which both should be taken into
account. The first one, P [G|ρI], is the so-called likelihood function and can be
given as

P [G|ρI] = e−L[ρ],

L[ρ] =
1

2

∑
i,j

[
GE(τi)−Gρ(τi)

]
C−1ij

[
GE(τj)−Gρ(τj)

]
=

1

2

∑
i

[
GE(τi)−Gρ(τi)

]2
η2(τi)

,

(6)

where Cij is the covariance matrix and η(τi) stands for the error of the discrete
Euclidean time data GE(τi) at τi. In going from the second to the third line in
Eq. (6) we have ignored correlations between different τ values, which generally
is not possible for real lattice QCD data. The dependence on ρ comes from
Gρ(τ), which is the integral on the right hand side of Eq. (1). As it is clear
from the above definition, maximizing P [G|ρI] is equivalent to ordinary χ2-
fitting. If however the number of input data points on the Euclidean time
axis is not large enough (which is usually the case), maximizing P [G|ρI] will
not lead to a unique solution for ρ. The second term in Eq. (5), P [ρ|I], the
“prior probability” therefore plays an important role in this respect by selecting
among the infinite number of possible solutions the one most closely resembling
the prior information. It is given as

P [ρ|I] = eαS[ρ],

S[ρ] =

∫ ∞
0

dω
[
ρ(ω)−m(ω)− ρ(ω) log

( ρ(ω)

m(ω)

)]
,

(7)

where S[ρ] is known as the Shannon-Jaynes entropy and the function m(ω) is
called the “default model”. One can show that P [ρ|I] becomes largest when
ρ(ω) = m(ω). In this work we will always use a constant as the default model.

Assembling the above terms, we get the probability P [ρ|GI] as

P [ρ|GI] ∝ P [G|ρI]P [ρ|I]

= eQ[ρ],

Q[ρ] ≡ αS[ρ]− L[ρ].

(8)
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To find a ρ(ω) for which P [ρ|GI] is largest, one hence has to maximize Q[ρ]. One
can in fact show that the maximum of P [ρ|GI] is unique if it exists [26]. The real
and positive parameter α appearing in Eq. (8) is however not yet determined.
The most common way to handle it (which we will follow in this work), is to
define a conditional probability of α to take a certain value and to then average
ρα(ω), which gives a maximum Q[ρ] for a fixed α, over this probability. For
the details of this procedure, we refer the reader to [26] and the references cited
therein. Furthermore, for the numerical task of maximizing Q[ρ], we use Bryan’s
algorithm [27], which is described in some detail in [20, 26].

Looking at Eqs. (6)–(8), one can consider two limiting cases. For η(τ)→ 0,
which means very precise data, increasingly accurate numerical implementations
are needed to search for the spectral function maximizing Q[ρ]. As it is not
possible to achieve infinite numerical precision, the numerical computation will
eventually become unstable below some value of η. On the other hand, for
η(τ)→∞, the prior probability dominates Q[ρ] and one will simply get ρ(ω) =
m(ω) as a result of the analysis. It is hence understood that the error η(τ)
should neither be too large nor too small for the numerical implementation of
MEM to work properly. When dealing with very precise or even exact data,
one therefore has to artificially increase the value for the error η(τ) in order to
avoid numerical problems, see also Sec. 3.

Let us mention here that the procedure described above is not the only pos-
sible Bayesian method used to reconstruct the spectral function. In particular
one can find alternative formulations of the prior probability, as it was recently
proposed in [28]. Also, for an alternative application of MEM not to Euclidean
time data, but to QCD sum rules, see [29].

2.2. Backus-Gilbert method

The Backus-Gilbert (BG) method [22] starts by defining an estimator of the
spectral function,

ρ̄(ω0) =

∫ ∞
0

dω δ(ω0, ω)ρ(ω). (9)

The estimator ρ̄(ω0) is the convolution of the exact spectral function ρ(ω) with
a normalized resolution function δ(ω0, ω),∫ ∞

0

dω δ(ω0, ω) = 1. (10)

The BG method is set up as a linear problem which simplifies the interpretation
of results and error estimates. To achieve this, the resolution function is first
expressed as a linear combination of the kernel profiles taken at different discrete
values τi of the Euclidean time,

δ(ω0, ω) =
∑
i

qi(ω0)K(τi, ω), (11)

with coefficients qi(ω0) as determined below, and with K(τi, ω) either being the
kernel in the spectral representation (1) or that in a Green-Kubo (GK) relation
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as the one used for the electrical conductivity in Sec. 6. In either case it is
defined by a general relation of the form

GE(τ) =

∫ ∞
0

dωK(τ, ω)ρ(ω). (12)

Due to the linearity of this relation, one obtains

ρ̄(ω0) =
∑
i

qi(ω0)GE(τi). (13)

The coefficients qi(ω0) in Eq. (13) are then determined by minimizing the fre-
quency resolution D(ω0) around ω0, here defined as the second moment of the
square of the resolution function,

D(ω0) ≡
∫ ∞
0

dω (ω − ω0)2δ2(ω0, ω) (14)

while maintaining its normalization condition in Eq. (10) as a constraint. The
result of this minimization yields [22]

qi(ω0) =
W (ω0)−1ij Rj

RmW (ω0)−1mnRn
, (15)

where

W (ω0)ij =

∫ ∞
0

dω (ω − ω0)2K(τi, ω)K(τj , ω), (16)

and

Ri =

∫ ∞
0

dωK(τi, ω). (17)

If the behavior of the kernel at large or small frequencies leads to divergences in
the integrals in Eqs. (16) or (17), simple reweighting can help: one rescales both,
the spectral function and the kernel in Eq. (1) by reciprocal factors in a way
suitable to improve the convergence of the integrals in Eq. (16). The matrix W is
usually extremely ill-conditioned, with a condition number C(W ) ≡ λmax/λmin,
the maximal ratio of eigenvalues of the matrix W , of the order of 1020 or so.
Therefore, some regularization is necessary to obtain sensible results for a given
set of data GE(τi).

Previous studies employing the BG method have used the so-called “covari-
ance” regularization [22]. In this approach, the following modification is made
in Eq. (16)

W (ω0)ij → (1− λ)W (ω0)ij + λCij , (18)

where λ here is a small regularization parameter and Cij is the covariance ma-
trix of the Euclidean correlator GE as before. This replacement improves the
condition number of the matrix W while the width of the resolution functions in
frequency space can still stay relatively small. Increasing λ generally improves
the stability of the inversion at the expense of resolution.
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Although covariance regularization typically performs quite well, one might
wonder about the merits of other commonly used regularization methods for ill-
posed problems. Furthermore, in numerical studies where a covariance matrix
cannot be constructed (i.e. when the Euclidean correlator data are obtained
using a non-stochastic procedure), covariance regularization cannot be applied.
Here, we employ an alternative method known as the Tikhonov regularization
technique [30] which is widely used for ill-posed problems of the form Ax = b.
In this method, one seeks a solution to the modified least-squares function

min
(
‖Ax− b‖22 + ‖Γx‖22

)
, (19)

where Γ is an appropriately chosen matrix. The effect of various types of
Tikhonov regularizations on the matrix W can be most easily seen by employing
the singular value decomposition (SVD). In this procedure

W = UΣV >, UU> = V V > = 1, (20)

where Σ = diag(σ1, σ2, . . . , σN ), σ1 ≥ σ2 ≥ · · · ≥ σN . The inverse is thus easily
expressed as

W−1 = V DU>, D = diag(σ−11 , σ−12 , . . . , σ−1N ). (21)

In the standard Tikhonov regularization, one modifies the matrix D in the
following way

Dij =
δij
σi
→ D̃ij = δij

σi
σ2
i + λ2

, (22)

where λ is again the regularization parameter. One can see that the singular
values which satisfy σi � λ are smoothly cut off. This procedure corresponds to
Γ = λ1 in Eq. (19). One thus pays a price for solutions that are not “smooth”.
In general, for small λ, the solutions fit the data well but are oscillatory, while
at large λ, the solutions are smooth but do not fit the data as well. The error
estimation can be done using data binning (the procedure is described in [31]) or
directly using Eq. (13) together with the covariance matrix Cij for the Euclidean
correlator data GE(τi).

The algorithm for choosing the optimal value of λ is based on the “global
relative error” for the spectral function

G ≡ 1

N0

∑
ω0

σ (ρ̄(ω0))

ρ̄avg(ω0)
, (23)

where the sum in the above expression runs over the centers of the resolution
functions and N0 is the number of resolution functions with different centers ω0.
Our basic criteria for the choice of λ is that the “global relative error” should be
within the interval 5 − 10%. We thus sufficiently suppress the statistical error
while still maintaining good resolution in frequency space.

Using the quantity defined in Eq. (23) as a measure, we start from small λ
and increase it until we have obtained the desired statistical error. Typically,
we have taken λ = 10−9 − 10−8 in obtaining the results in this paper.
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2.3. Schlessinger point method

The Schlessinger point (SP) or Resonances Via Padé (RVP) method [8, 9]
is based on a rational-fraction representation similar to Padé approximation
methods.

Given a set of N input points (xi, yi) one first constructs a continued fraction
of the form,

CN (x) =
y1

1 +
a1(x− x1)

1 +
a2(x− x2)

... . . . aN−1(x− xN−1)

, (24)

where the coefficients ai are chosen such that the function CN (x) acts as an
interpolation through all the points, i.e.

CN (xi) = yi, i = 1, 2, . . . , N. (25)

The coefficients ai can easily be determined recursively, see [8] for details. Errors
of the input data can be taken into account by repeating this procedure many
times for different sets of input points, (xi, yi ± εi), where εi can be chosen
randomly within the given statistical error. The results obtained in this way
can be used to define an error for the final result, see also [9].

The function CN (x) can also be expressed as a rational fraction

CN (x) = P (x)/Q(x), (26)

where P and Q are polynomials of order (N − 1)/2 (P and Q) for an odd
number of input points and of order N/2 − 1 (P ) and N/2 (Q) for an even
number of input points. Once the function CN (x) is determined, its analytic
continuation is defined as the meromorphic CN (z) obtained by replacing the
originally real x by the complex variable z. We note that the number of input
points will always be chosen around N ≈ 50 in this work. For fewer input points
the reconstruction may depend strongly on the number of points while a larger
number may give rise to numerical problems due to a loss of accuracy when
calculating the coefficients of the continued fraction.

The SP method is applied to DE
N (p0n) in order to obtain its continuous inter-

polation by a rational fraction which is then analytically continued to approx-
imate, e.g. the retarded propagator DR(ω) = −DE(p0 → iω − ε) for ε → 0+,
whose imaginary part yields the spectral function,

ρ(ω) = − 1

π
ImDR(ω). (27)

In Sec. 4 we will directly use input data on DE(p0), so the intermediate step of
applying the Fourier transform is not necessary in this case.

Apart from reconstructing the spectral function, the SP method can also be
used to locate resonance poles of propagators in the complex energy plane [9].
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3. Model study

In this section we study the following Breit-Wigner type model for a spectral
function,

ρ(ω) =
1

π

2ωγ

(ω2 − γ2 −M2)2 + 4ω2γ2
, (28)

where we choose M = 300 MeV, γ = 100 MeV and T = 2 MeV, see Fig. 1. It
fulfills the normalization condition

1 =

∫ ∞
0

dω 2ωρ(ω) (29)

and is positive definite for ω > 0.
In the following we will first study exact input data for GE(τ) which we

generate by using Eq. (1) and compare the reconstructed spectral functions
obtained from the different methods. Then we will add random noise to GE(τ)
and vary the number of input points to determine the range of applicability of
the different reconstruction methods.

3.1. Results using exact input data

As a first benchmark test of the three methods we provide them here with
up to N = 2048 data points on the Euclidean correlation function GE(τ) as
obtained by Eq. (1) with negligible error. As our numerical implementation of
MEM becomes unstable for very small errors, we use here an artificial internal
error of η(τ) = 10−5×GE(τ). As already mentioned earlier, we employ Bryan’s
algorithm in our code. Furthermore, we use double numerical precision and
follow the prescription of [26] for the integration routines and other intermediate
steps of the calculation. A more precise numerical implementation would allow
MEM to go to smaller errors. The results are shown in Fig. 2 together with the
exact spectral function. While all methods are in principle able to reconstruct

0 200 400 600 800 1000
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

6.×10-6

ω [MeV]

ρ
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eV

-2
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-0.2 -0.1 0.0 0.1 0.2
10-7

10-6

10-5

10-4

0.001

0.010

τ [MeV-1]

G
E
[M
eV

-1
]

Figure 1: Left: Spectral function given by the Breit-Wigner model, Eq. (28). Right: Euclidean
correlation function GE(τ) as obtained from the Lehmann representation, Eq. (1).
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5.×10-6

6.×10-6

ω [MeV]

ρ
[M
eV

-2
]

exact
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Figure 2: Comparison of the exact model spectral function with the reconstructed spec-
tral function using the Maximum Entropy Method, the Backus-Gilbert method and the Sch-
lessinger point method.

the model spectral function very well, there are some small differences. The
BG method seems to overestimate the spectral function for all energies, while
the peak height from MEM is a bit too low. The SP method gives the best
reconstruction for this simple example and reproduces the spectral function
almost exactly.

3.2. Dependence on number of input points and error

We will now study how many input points for the Euclidean correlation
function are needed and how large their statistical error can be in order for the
different methods to produce a good reconstruction of the spectral function.
Therefore we add Gaussian noise of the form

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

to the data, with µ = yi and different values for the relative error σ which is
connected to the absolute error η used in MEM by σ(τ) = η(τ)/GE(τ).

In Fig. 3 we compare the reconstructed spectral functions obtained from
MEM for different numbers of input points and different errors. For a fixed
number of Nτ = 64 input points the peak position as well as its width is re-
produced correctly for σ ≤ 10−2 while the peak is at too small energies for
σ = 10−1. When using a fixed error of σ = 10−3, the peak position and width
are recovered very well for Nτ ≥ 64 while the peak is shifted to smaller energies
for Nτ = 32. We also note that MEM always produces a “ringing”, i.e. artificial
oscillations in the spectral function, at small energies. This is a known MEM
artifact and makes it difficult to distinguish physical peaks from these unphys-
ical ones in a setting where the exact answer is not known. The ringing of the
extracted spectra at small ω is partly caused by the behavior of the original
spectral function approaching zero in the ω → 0 limit. This can cause trouble
for MEM, which assumes ρ(ω) > 0. It is possible to avoid this issue in the
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present case by defining the kernel of Eq.(1) as

K(τ, ω) = ω × cosh(ω(τ − β/2))

sinh(βω/2)
, (30)

and thus extracting ρ(ω)/ω instead of ρ(ω). Carrying out such an analysis, we
have found that for errors larger than σ = 10−4 it is indeed possible to reduce
the ringing at small ω, however at the price of distorting the main peak away
from the exact solution. For σ = 10−4, the ringing is not reduced for small ω,
but even enhanced for ω > 50 MeV. We will hence in all the MEM analyses
shown in this paper use the standard kernel

K(τ, ω) =
cosh(ω(τ − β/2))

sinh(βω/2)
, (31)

which performs better for the purpose of extracting the properties of the main
peak.

The extracted spectrum of any MEM analysis generally depends on the
choice of the default model (see, for instance, [32, 33, 34]). Let us illustrate this
dependence here with a few examples. To keep the discussion simple, we here
consider only constant default models with varying absolute values. On the left
plot of Fig. 4, we show results of analyses carried out under the same conditions
as the orange curve on the left plot of Fig. 3 (Nτ = 64 and σ = 10−4), but with
changing default models. It is observed that the qualitative features of the main
peak around ω = 300 MeV remain roughly the same, while the ringing at low ω
depends strongly on the choice of the default model. Clearly, both for very large
and small values of the default model, we observe strong ringing. For ω ≥ 600
MeV, the spectral function simply approaches the default model, which shows
that MEM is not able to make reliable statements about the spectral behavior
in that region. To examine how the dependence on the default model is affected

0 200 400 600 800 1000
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6
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σ=10-4

σ=10-3

σ=10-2

σ=10-1
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Nτ=256
Nτ=128
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Nτ=32

Figure 3: Left: Comparison of the exact model spectral function with the reconstruction
obtained from the Maximum Entropy Method for a fixed number of Nτ = 64 input points for
the Euclidean correlation function GE(τ) but different error. The employed default model is
denoted as a dashed line. Right: Same as left but for a fixed error of σ = 10−3 and different
numbers of input points.
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Figure 4: Left: Comparison of the exact model spectral function with the reconstruction
obtained from the Maximum Entropy Method for a fixed number of Nτ = 64 input points for
the Euclidean correlation function GE(τ) and fixed error of σ = 10−4 but different default
models. The employed default models are denoted as dashed lines. Right: Same as left but
for an error of σ = 10−3.

by the error, we show on the right plot of Fig. 4 the results of the same analysis,
but with the error increased to σ = 10−3. It is seen in this plot, that while the
gross features remain the same, the form of the reconstructed main peak starts
to depend strongly on the default model, such that for some cases it even gets
difficult to distinguish between the physical peak and non-physical ringing.

The above discussion shows that it is important to choose a suitable default
model, which leads to minimal ringing and a satisfactory extraction of the spec-
tral structures of interest. In some cases, such as QCD, the asymptotic behavior
of the spectral function at large ω is in fact known and provides a natural choice
for the default model. We will make such a choice in the analysis of lattice QCD
data in Section 5.

In Fig. 5 we compare the reconstructed spectral functions obtained from the
BG method. For a fixed number of Nτ = 64 input points only the peak position
is reproduced well for σ ≤ 10−2 while the width is too large and also the shape
of the peak is distorted. When using a fixed error of σ = 10−3, the peak position
is recovered for Nτ ≥ 64 and also the width and the shape of the peak can be
obtained better when increasing the number of input points. The effects of the
finite resolution are clearly visible, however, which makes the overall quality of
the reconstruction appear lower than for MEM.

In Fig. 6 we show the spectral functions obtained from the SP method. For
a fixed number of Nτ = 64 input points the spectral function is reconstructed
almost exactly for σ ≤ 10−3 while for σ ≥ 10−2 the reconstruction breaks down.
We note that it is also possible that the reconstructed spectral functions become
negative, as seen for σ ≥ 10−3 for large energies. When using a fixed error of
σ = 10−3, the spectral function is very well reconstructed for Nτ ≥ 64 while for
Nτ = 32 the quality of the reconstruction starts to decrease.

By repeating this analysis for all methods with different numbers of input
points and different errors we are able to construct a regime of applicability
which is shown on the left-hand side of Fig. 7. This plot shows for which com-
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Figure 5: Left: Comparison of the exact model spectral function with the reconstruction
obtained from the Backus-Gilbert method for a fixed number of Nτ = 64 input points for the
Euclidean correlation function GE(τ) but different error. Right: Same as left but for a fixed
error of σ = 10−3 and different numbers of input points.

binations of input points Nτ and errors σ the individual methods work well,
i.e. when the peak position is reconstructed correctly within a 10% error. We
note that this plot is only valid for the particular model studied here. How-
ever, we believe that some of the qualitative aspects also hold true for more
complicated situations. For example, the regime of applicability of MEM and
the BG method are very similar and larger than the one for the SP method. In
particular for larger errors, σ ≥ 10−2, the SP method breaks down. However,
in the regime where the SP method works, it can be expected to give better
reconstructions than MEM or the BG method. This is for example the case for
the FRG data studied in the next section, which is marked by a purple dot in
Fig. 7. On the other hand, for the lattice data studied in this work the errors
are too large for the SP method, but also MEM and the BG method reach their
limits of applicability by the 10% criterion applied here.

We also note that all methods fail to reconstruct the model spectral func-
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Figure 6: Left: Comparison of the exact model spectral function with the reconstruction
obtained from the Schlessinger point method for a fixed number of Nτ = 64 input points for
the Euclidean correlation function GE(τ) but different errors. Right: Same as left but for a
fixed error of σ = 10−3 and different numbers of input point.
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Figure 7: Regime of applicability for the Maximum Entropy Method, the Backus-Gilbert
method and the Schlessinger point method in dependence on the number of input points for
GE(τ) and the relative error of the data with parameter σ for a τ -independent error (left) and
an error that increases with τ (right), see text for details. The red dot represents the lattice
data analyzed in this work and the purple dot the FRG data.

tion when the number of input points becomes smaller than N ≈ 25 = 32,
independent of the error. The existence of such a natural limit can be easily
understood as follows: If the number of input points decreases, the Euclidean
time step between the data points, ∆τ = β/N , increases. Since the correlation
function rapidly decreases with τ , it will be of the same magnitude as the error
already after the first few time steps, unless one has data with exponentially
small errors. This makes the reconstruction of the peak in the spectral function
extremely difficult.

As already mentioned in Sec. 2.1, on the other hand, MEM runs into nu-
merical difficulties when the error of the input data points becomes too small.
When exactly this happens depends on the particular implementation of the
MEM code and the input data. In the present example this critical value is
around σ = 10−5. When analyzing more precise data we therefore have to ar-
tificially increase the absolute error η in the MEM code. In other words, the
reconstructed spectral function obtained from MEM will not become more pre-
cise when decreasing the error σ any further because we then have to increase
the error parameter η used in MEM in order to avoid numerical problems.

So far we have discussed a statistical error σ that does not depend on the
Euclidean time τ . While this is a realistic situation for numerical calculations as
discussed in Sec. 4, it is not the case for the lattice QCD data in Sec. 5 where the
error increases with τ . On the right-hand side of Fig. 7 we therefore show the
regime of applicability of the different reconstruction methods where we used
an error σ(τ) that increases linearly from σ(τ = 0) = σ0 to σ(τ = β/2) = 100σ0
where σ0 is simply denoted as σ in the plot. We observe that the regimes of
applicability become slightly smaller, as expected. The effect of the increasing
error σ(τ) is, however, not too strong since the data points at small τ , which
are the most important ones in the numerical reconstruction, are only mildly
affected by this linearly increasing error.
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4. FRG data

In this section we will apply the three analytic continuation methods to
numerical Euclidean data obtained from a Functional Renormalization Group
(FRG) calculation. The FRG is a non-perturbative continuum framework for-
mulated in Euclidean space-time and is used in particular in statistical physics
and QFT, see [35, 36, 37, 38, 39, 40, 41] for reviews. In [23, 42, 43] the quark-
meson model has been studied within this framework in order to calculate
mesonic spectral functions at finite temperature. The new development there
was that the so-called FRG flow equations for the corresponding correlation
functions, which are originally formulated in Euclidean spacetime, have been
analytically continued to real frequencies before they were solved. These ana-
lytically continued (aFRG) flow equations therefore provide a non-perturbative
functional framework for the direct computation of spectral functions, without
the need of any numerical reconstruction method. In the following we will use
this theoretical setup to calculate not only these aFRG spectral functions but
also the corresponding Euclidean propagators DE(p0) of the sigma meson and
the pion at the discrete Matsubara frequencies corresponding to the different
temperatures. We will then use the numerical data on the Euclidean propa-
gators as input for the three analytic continuation methods and compare the
reconstructed spectral functions with the ones from the aFRG flow equations.

In order to check that the aFRG spectral functions ρ(ω) are in fact consistent
with the Euclidean propagators DE(p0), we use the Lehmann representation,

DE(p0) =

∫ ∞
−∞

dω
ρ(ω)

ω + ip0
, (32)

and first compare the result with the numerically obtained Euclidean propaga-
tor, see for example Fig. 8. Since the aFRG spectral functions are only known
up to some maximum frequency Λ ≈ 1.5 GeV which is related to the employed
UV cutoff, an extrapolation is used to account for the contributions from higher
frequencies in Eq. (32). Although the integral converges, this can result in small
numerical differences between the propagator obtained from the Lehmann rep-
resentation, defined for continuous Euclidean p0, and that from the Euclidean
FRG calculation at the discrete Matsubara frequencies. In general, however,
the extrapolation can be chosen such that this difference becomes negligible.

In the following we will always use N = 2048 points for the Euclidean prop-
agator DE(p0) at Matsubara frequencies p0 = 2πnT with n ∈ [−1024, 1023].
Since MEM and the BG method use data on the Euclidean correlation func-
tion GE(τ) as input, we will perform a discrete Fourier transform of these data,
cf. Sec. 2. The large number of points for DE(p0) then ensures that the error
introduced by the discrete Fourier transform is small and does not affect the
reconstruction. For the Schlessinger point method on the other hand we can
directly use the data points on DE(p0) from which we select a subset of N ≈ 50
points to reconstruct the spectral function. We also note that for MEM we
always use an error parameter of η(τ) = 0.001GE(τ) and take 25 bases in the
Bryan’s algorithm search space. We have checked for the finite temperature
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cases shown in Figs. 13 and 15, that doubling the number of bases to 50 does
not change the result.

4.1. Pion at T = 2 MeV

We will first study the pion propagator and the corresponding spectral func-
tion at a low temperature of T = 2 MeV, see Fig. 8. It contains a delta peak
at ω ≈ 95 MeV and a continuum starting at ω ≈ 600 MeV. As shown, the
data points on DE(p0) agree very well with the propagator obtained from the
Lehmann representation, which means that the data points obtained from the
Euclidean FRG flow equations are consistent with the aFRG spectral function.
At low temperatures the spacing between successive Matsubara frequencies,
p0 = 2πnT , is smaller than at high temperatures. One therefore has more data
points in the interesting frequency range, here of ω ∈ [0, 1000] MeV, which
makes it easier to reconstruct the spectral function for all three analytic contin-
uation methods used here. The reconstructed spectral functions obtained from
MEM, the BG method and the SP method are compared in Fig. 9. The delta
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Figure 8: Left: The Euclidean FRG pion propagator DE(p0) at the discrete Matsubara
frequencies p0 = 2πnT for T = 2 MeV compared to that from the Lehmann representation in
Eq. (32). Right: The corresponding input spectral function from the aFRG calculation.
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Figure 9: Comparison of the aFRG spectral function for the pion at T = 2 MeV with the
reconstructed spectral functions obtained by using Euclidean data as input for the Maximum
Entropy Method, the Backus-Gilbert method and the Schlessinger point method.
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peak is well reproduced by the SP method and MEM while the BG method
produces a broader peak albeit at the correct location. The continuum part
is best reconstructed by the SP method while both MEM and the BG method
have more difficulties to capture the onset and the magnitude of the continuum.

4.2. Sigma at T = 2 MeV

We now turn to the sigma spectral function at a temperature of T = 2 MeV,
see Fig. 10, which has a pronounced peak at the onset of the continuum at
ω ≈ 280 MeV. Up to very small cutoff effects, the data points on DE(p0)
again agree well with the propagator obtained from the Lehmann representation.
The reconstructed spectral functions obtained from MEM, the BG method and
the SP method are shown in Fig. 11. The sharp near-threshold peak is best
reconstructed by the SP method, followed by the MEM and the BG method.
The continuum at higher energies is captured well by the SP method while the
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Figure 10: Left: The Euclidean sigma-meson propagator DE(p0) is shown at the Matsubara
energies p0 = 2πnT for T = 2 MeV in comparison to the propagator obtained from the
Lehmann representation, Eq. (32). Right: The corresponding input spectral function from
the aFRG calculation.
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Figure 11: Comparison of the aFRG spectral function for the sigma meson at T = 2 MeV
with the reconstructed spectral functions obtained by using Euclidean data as input for the
Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger point method.
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quality of the reconstruction is a bit worse for MEM while the BG method has
difficulties to reproduce the structure and the magnitude of the continuum.

4.3. Pion at T = 50 MeV

We will now study the pion spectral function at a temperature of T =
50 MeV, see Fig. 12, which has a sharp peak at ω ≈ 95 MeV embedded in a
continuum ranging up to ω ≈ 360 MeV and a second continuum starting at
ω ≈ 600 MeV. The physical origins of the various contributions to the spectral
function, i.e. the various decay and scattering processes in the heat bath, are
explained in detail in [23]. Also with these rather complicated structures, the
Euclidean propagator DE(p0) obtained from the standard FRG calculation in
thermal equilibrium and the propagator obtained from the Lehmann represen-
tation based on the aFRG solution agree very well as seen in Fig. 12. This is a
quite non-trivial consistency check of the underlying calculation schemes.

Due to the sizable temperature on the other hand, the separation between
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Figure 12: Left: The Euclidean pion propagator DE(p0) is shown at the Matsubara energies
p0 = 2πnT for T = 50 MeV in comparison to the propagator obtained from the Lehmann
representation, Eq. (32). Right: The corresponding input spectral function from the aFRG
calculation.
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Figure 13: Comparison of the aFRG spectral function for the pion at T = 50 MeV with the
reconstructed spectral functions obtained by using Euclidean data as input for the Maximum
Entropy Method, the Backus-Gilbert method and the Schlessinger point method.
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successive Matsubara modes, ∆p0 ≈ 314 MeV, is already quite large compared
to the relevant range of frequencies ω below 1 GeV as probed in the aFRG
calculation of the spectral function. The discrete Euclidean DE(p0) data ob-
tained for p0 � 1 GeV, far outside this range, merely acts as an interpolation
in the sampling of the Euclidean time propagator, GE(τ), and does not contain
any relevant information to constrain the contributions from frequencies below
1 GeV to its spectral representation in Eq. (1). The rapidly decreasing number
of significant input points at increasing temperatures therefore generally makes
reconstructions increasingly difficult. The reconstructed spectral functions ob-
tained from MEM, the BG method and the SP method are shown in Fig. 13.
We find that the sharp peak is best reconstructed by the SP method, followed
by MEM, while the BG method yields a very broad peak, yet at the correct
position also in this case. The continuum is again best captured by the SP
method while it can only be guessed from the BG method and is not seen by
MEM at all.

4.4. Sigma at T = 140 MeV

As a last example for FRG data we now turn to the sigma spectral func-
tion at a temperature of T = 140 MeV, see Fig. 14, which has a pronounced
cusp at the start of the continuum at ω ≈ 280 MeV. The agreement between the
Euclidean propagator DE(p0) obtained from the FRG calculation and the prop-
agator obtained from the Lehmann representation is again very good. However,
the separation of the Matsubara modes is already very large at T = 140 MeV
which makes the reconstruction of the spectral function very difficult for all
three methods, see Fig. 15. The delta function is reproduced as a broad peak
by the SP method and MEM while the BG method only shows an extremely
broad maximum at roughly the correct energies. The continuum part is again
best captured by the SP method while the other two methods do not give any
reliable result.
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Figure 14: Left: The Euclidean sigma propagator DE(p0) is shown at the Matsubara energies
p0 = 2πnT for T = 140 MeV in comparison to the propagator obtained from the Lehmann
representation, Eq. (32). Right: The corresponding input spectral function from the aFRG
calculation.
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Figure 15: Comparison of the aFRG spectral function for the sigma meson at T = 140 MeV
with the reconstructed spectral functions obtained by using Euclidean data as input for the
Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger point method.

5. Lattice QCD data

In order to compare the three methods on data with realistic sampling and
errors as obtained from present-day lattice Monte-Carlo simulations, we will
now apply them to the Euclidean-time correlator in the isovector vector-meson
channel from the lattice QCD simulations with two flavors of clover-improved
Wilson quarks of [24] as a physical example. In particular, we use the data
for the vacuum correlator in their Table VII from the 643 × 128 lattice with
a lattice spacing of a ' 0.0486 fm. From T = 1/(aNτ ) with Nτ = 128 this
corresponds to a temperature of T ' 32 MeV. The pion mass is stated to
be mπ ' 270 MeV and hence somewhat heavier than the physical one. The
spatial lattice size L = aNs with Ns = 64 is just above three Fermi and hence
sufficiently much larger than the Compton wavelength of the pion, mπL ' 4.2.
For further details we refer to the original paper, especially Tables III and VII
in [24]. One expects the vector-meson spectral function to contain a peak at
the mass mρ of the ρ-meson together with a continuum for ω ≥ Ω0 starting
at some threshold Ω0 > mρ. In [24], a fit model was therefore used of a form
approaching the perturbative expectation at large ω,

ρ(ω) = aV δ(ω −mρ) +
3κ0
4π2

θ(ω − Ω0)ω2 tanh
(
βω/4

)
. (33)

The relevant fit parameters, in lattice units, were reported as amρ = 0.205(5)
and aΩ0 = 0.319(16) [24], corresponding to a ρ-meson mass of mρ ≈ 830 MeV
and a threshold at Ω0 ≈ 1300 MeV.

The lattice data for the isovector current correlator in the Euclidean time (at
zero momentum), in lattice units a3G(τ), is shown in the left panel of Fig. 16,
cf. Fig. 1 in [24]. As it is symmetric around β/2, only the first 64 time slices
provide independent information. One observes that the relative error of the
data increases with increasing τ , reaching a maximum at around τ/a ' 50.
Moreover, in this large-time region there appears to be a positivity issue because
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Figure 16: Data from [24] on the isovector current correlator in two-flavor lattice QCD with
pion mass mπ ' 270 MeV at temperature T = 32 MeV (left) compared to the Lehmann
representations (1), as obtained from the three reconstructed spectral functions shown on the
right: via MEM, the BG method and the SP method (together with the model fit from [24]).
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Figure 17: Resolution functions δ(ω0, ω) for different ω0 for the reconstruction shown in
Fig. 16. Resolution functions are rescaled such that the one for the smallest ω0 has its peak
value at 1.

the central values of G(τ) are not convex to the above as they ought to be for
a positive spectral function, for which

d2

dτ2
lnG(τ) ≥ 〈ω2〉τ − 〈ω〉2τ ≥ 0 , (34)

because 〈ω〉τ and 〈ω2〉τ are the moments of the positive measure given by the
integrand in Eq. (1) at every time τ ∈ [0, β]. Of course within the errors this
violation might not be a very significant one, but it is an additional challenge for
the reconstruction methods. In the MEM reconstruction, which was used also
in [44], we therefore only use the first 48 time steps here and furthermore omit
the lowest four data points which are most affected by the lattice discretization.
In the SP method we first have to apply the discrete Fourier transform (3).
Without changing the temperature it is then not possible to omit data points
from the analysis without additional model bias. We have tested, however, that
setting the non-convex data points in G(τ) for τ/a ≥ 48 to zero did not lead
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to any significant changes. On one hand, these values are simply too small (by
several orders of magnitude) to have any substantial impact, and on the other,
the corresponding correlation function would of course not be convex to the
above either. We therefore decided not to introduce such an additional model
bias, neither in the SP nor the BG method.

The extracted spectral functions of the three methods are given on the right-
hand side of Fig. 16. MEM extracts a clear peak at around aω = 0.2 correspond-
ing to mρ ≈ 820 MeV, which is somewhat lower but still consistent with the
analysis of [24] within the errors, where the data was fitted to the form in
Eq. (33) describing the stable particle pole at mρ and the continuum starting
at Ω0. The BG method also finds a bump in the same energy region, while
for the SP method the peak is least visible, but a maximum is seen at about
aω = 0.3. All three methods are able to reconstruct the continuum at larger
energies, consistent with the expectations from perturbative QCD.

The left-hand side of Fig. 16 also shows the correlation functions as obtained
by inserting the reconstructed spectral functions back into the Lehmann rep-
resentation. MEM gives a convex correlator in good agreement with the input
data while the SPM correlator agrees well for τ/a < 40 but then becomes nega-
tive. The BG method also produces a convex correlator with a good agreement
with the lattice data up to τ/a ≈ 20.

We note that the BG method does not produce the spectral function itself
but only its convolution with the resolution function, i.e. a smeared-out ver-
sion, see also Sec. 2.2. Examples of the resolution function for this particular
reconstruction are plotted in Fig. 17. First of all, the resolution functions can
be non-symmetrical. This means that the position of the peak of the resolution
function generally does not coincide with its formal center ω0. Thus there is an
ambiguity as to which frequency should be formally used in the Lehmann repre-
sentation. We checked, however, that the error introduced by this ambiguity is
negligible. Another unfortunate feature of the resolution functions is that their
widths generally increase with increasing ω0. Thus the BG method is able to
reconstruct sharp features of spectral functions only at lower frequencies. At
large frequencies the spectral function becomes more and more smoothed out.

In all, there are quite large differences between the outcomes of the three
reconstruction methods at the present level of accuracy and sampling. In agree-
ment with the reliability estimates in Fig. 7 we observe that the lattice data here
is right at the boundary of the applicability regions for BG and MEM, while it
lies outside that for the SP method. Therefore, we conclude that even higher
accuracy and sampling rates will be necessary for more precise and unambiguous
determinations of spectral functions in the future.

6. Electrical Conductivity of Graphene

In this section we study an example from condensed matter physics, namely
the electrical conductivity of graphene. Quantum Monte Carlo (QMC) sim-
ulations based on a tight-binding model are a typical ab-initio tool used for
the calculation of the electrical conductivity of graphene [25, 45]. Since QMC
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provides only Euclidean-time data, the analytic continuation is an inevitable
step in these calculations. In the following we will study the simpler case of a
free tight-binding model for graphene, without the need for QMC simulations,
and test the applicability of the three analytic continuation methods discussed
in this work to extract the static conductivity of Dirac quasiparticles in 2+1
dimensions from the Euclidean time data.

The starting point is the tight-binding Hamiltonian on graphene’s hexagonal
lattice, which describes the hopping of electrons between the nearest-neighbor
lattice sites:

Ĥ = −κ
∑
<x,y>

(
â†y,↑âx,↑ + â†y,↓âx,↓ + h.c.

)
. (35)

Here κ = 2.7 eV denotes the hopping amplitude, â†x,↑, âx,↑ and â†x,↓, âx,↓ are
creation/annihilation operators for spin up and spin down electrons situated
at the current lattice site. The spatial index x = {s, ξ} consists of a sublat-
tice index s = 1, 2 and the two-dimensional coordinate ξ = {ξ1, ξ2} of the unit
cell in a rhombic lattice (the rhombic lattice with two atoms in each cell forms
a hexagonal lattice structure). The sum is performed over all pairs of near-
est neighbors. In real calculations we deal with a finite sample with periodic
boundary conditions in both spatial directions. This Hamiltonian hosts free
Dirac quasiparticles at sufficiently low energies close to the Fermi level at half
filling.

The frequency-dependent conductivity σ(ω) is calculated from the following
Green-Kubo relation:

GJJ(τ) =

∫ ∞
0

σ(ω)
ω cosh(ω(β/2− τ))

π sinh(ωβ/2)
dω, (36)

where GJJ(τ) is the current-current correlator

GJJ(τ) =
Tbc

3
√

3Ns

∑
ξ

Tr
(
e−βĤ Ĵb(ξ)e

−τĤ Ĵc(ξ)e
τĤ
)

Tr e−βĤ
(37)

calculated for the free fermions 35 on the lattice with Ns unit cells with inverse
temperature equal to β. We imply the summation over repeated indexes in the
last formula. Ĵb(ξ) is the operator of electromagnetic current flowing from the
site in the first sublattice with coordinate x = {1, ξ} towards one of its nearest
neighbors. There are three nearest neighbors and 3 possible directions of the
current: b = 1, 2, 3. The matrix Tbc is defined as follows:

Tbc = d2
{

1, b = c

−1/2, b 6= c
, (38)

where d = 0.124 nm is the distance between nearest neighbors in the graphene
lattice. The explicit form of the electromagnetic current operator can be written
as

Ĵb(ξ) =
∑
σ=↑,↓

Ĵσ,b(ξ) = iκ
∑
σ=↑,↓

â†σ,xâσ,y + h.c., (39)
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where x = {1, ξ}, y = {2, ξ + ρb} and shifts in the rhombic lattice are defined
as follows: ρ1 = {0, 0}, ρ2 = {−1, 1}, ρ3 = {−1, 0}. The final form of the free
current-current correlator is written as the following combination of the free
lattice fermionic propagators Γ(x, τ, x, τ ′) (see [46] for the derivation):

G(τ) = − 2Tbc

3
√

3Ns

∑
x1,x2,y1,y2

[
jb(y1, x1)Γ(x1, 0, x2, τ)jc(x2, y2)Γ(y2, τ, y1, 0)

]
+

4Tbc

3
√

3Ns

∑
x,y

[
jb(y, x)Γ(x, 0, y, 0)

]
·
∑
x,y

[
jc(y, x)Γ(x, τ, y, τ )

]
. (40)

Here jb is current vertex:∑
ξ

Ĵσ,b(ξ) =
∑

x={s,ξ}
y={s′,ξ′}

â†σ,xâσ,yjb(x, y). (41)

All calculations were done for the free current-current correlator in the tight-
binding model of Eq. (35) on a 48 × 48 lattice with a temperature of 1/β =
0.125 eV. The number of Euclidean time slices is Nt = 80.

The static conductivity of 2+1 dimensional Dirac quasiparticles usually is
the quantity of most central interest to be extracted from this correlator. It is
in principle given by the limit σ(ω)|ω→0. However, the complicated structure of
the spectral function makes a clear reconstruction difficult. The first problem
is the Drude peak proportional to δ(ω) [47] which appears in the spectral func-
tion calculated for any sample without open boundaries. Another difficulty is
the drop-down of the spectral function at small but nonzero frequencies which
reflects the finite sample size. Finally, at large frequencies ω ≈ 2κ, we have
a peak associated with the van Hove singularity in the density of states. All
these features can be observed in the exact calculation of the full profile σ(ω)
presented in [46] for the free tight-binding model (35). From this calculation on
can see explicitly that the true static conductivity of the Dirac quasiparticles is
represented by a plateau located in between the low frequency “gap” due to the
finite lattice size and the high-frequency peak from the van Hove singularity.
The aim of the analytic continuation methods in this case is therefore not to
identify the position of the peaks, but to reproduce the correct value of the
spectral function at the plateau and, of course, to reproduce the plateau itself.

The results of this analysis are shown in Fig. 18. One can see that only the
BG method consistently reproduces all distinct features of the spectral function:
the Drude peak at zero frequency, the drop-down at small ω, the plateau at low
energies and finally the peak at larger energies, ω ≈ 5 eV. The plateau also has
the correct height, σ ≈ 0.25. The Maximum Entropy Method shows a significant
increase of the electrical conductivity at very small energies and therefore seems
to be very sensitive to the Drude peak while a plateau at small energies is not
visible. The SP method on the other hand shows neither a peak nor a plateau
at small energies. Both the MEM as well as the SP method are however able
to reconstruct the peak at ω ≈ 5 eV while the peak from the BG method is
artificially broadened.
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Figure 18: Left: Input data on the current-current correlator in the tight-binding model for
graphene compared to the Green-Kubo representations of Eq. (36), as obtained from the three
reconstructed electrical conductivity functions shown on the right: via MEM, the BG method
and the SP method.
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Figure 19: Left: Calculation of the conductivity σ(ω) using the BG method from real QMC
data obtained on a 48×48 lattice for graphene on a substrate with dielectric permittivity ε = 2.
The filled area shows the statistical error. Right: Comparison of two BG reconstructions of
the graphene conductivity at two temperatures. Here we used the exact current-current
propagator for free fermions on a 96 × 96 lattice. We plotted both the spectral function and
resolution functions at ω0 = 0 and near the plateau.

The importance of the Drude peak for the reproduction of the initial Eu-
clidean correlator data is demonstrated in the left panel of Fig. 18. One can see
that, since BG and MEM reproduce the Drude peak, their curves are the closest
to the initial lattice data near the middle point of the correlator. In contrast,
the SP method does not reproduce the peak and shows the largest discrepancy
with respect to the Euclidean correlator data.

In general, the BG method reproduces the plateau accurately once the typ-
ical width of the resolution functions is smaller than the width of the plateau.
Here we partially reproduce this analysis, following two previous papers on the
subject: [45] and [48]. On the right panel of Fig. 19 we show the compari-
son of the BG reconstructions made at two different temperatures. The width
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of the resolution function (at least at relatively low ω0) is proportional to the
temperature, thus the quality of the reconstruction increases and the plateau
feature becomes more prominent once the temperature decreases. We also see
how small the width of the resolution function is at ω0 = 0: it guarantees the
reconstruction of the Drude peak. It also explains the difference to Fig. 16,
where the sharp peak and the step in the spectral function were not reproduced
that well by the BG algorithm. The difference is that in the case of the graphene
conductivity all these sharp features are located at low frequencies, where the
resolution functions are substantially narrower.

It is also important to note that all these properties of the algorithm are not
lost due to the errors in the real QMC data, which is demonstrated in Fig. 19
on the left panel: we are still able to reconstruct the plateau and the Drude
peak, despite the appearance of some statistical uncertainties.

7. Summary

In this work we have performed a direct comparison of three different nu-
merical analytic continuation methods each of which have their own merits: the
Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger
point or Resonances Via Padé method. In particular MEM and the Backus-
Gilbert method are frequently used in order to extract spectral functions or
other real-time properties from Euclidean input data. The SP (or RVP) method
on the other hand has only rarely been used in this context. This work rep-
resents the first application of this method to data from lattice QCD and the
other examples studied here.

First, we have applied these three methods to mock data obtained from a
Breit-Wigner model spectral function and compared the reconstructions. The
regime of applicability of these methods in dependence of the number of input
points on the Euclidean correlator and their statistical error has been discussed.
It was found that the SP method gives almost exact reconstructions if the num-
ber of input points is large enough and their error is small while MEM and
the BG method also give reasonable reconstructions for larger errors, at least
for positions of the peaks in the spectrum. For other features of the spectral
function, sometimes the MEM, sometimes the BG method performs better, as
summarized below.

We applied these reconstruction methods to Euclidean data on propagators
obtained from a Functional Renormalization Group calculation for different tem-
peratures in order to extract the corresponding spectral functions. This recently
developed analytically continued aFRG setup allows to not only calculate the
Euclidean propagators but also the real-time spectral functions directly. We
were therefore able to compare the aFRG spectral functions with the ones ob-
tained from the numerical continuation methods using the Euclidean propagator
as input, and to use the aFRG spectral functions in the Lehmann representa-
tion in order to check the consistency with the Euclidean propagator for the
first time.
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Although the error of these data is very small and many data points are
available the quality of the numerical reconstruction decreases with increasing
temperature for all three methods, as expected. We found that the SP method
always gives the best reconstruction for these data and is able to reconstruct
the peak as well as the continuum of the spectral function rather well. MEM is
also able to capture the dominant peaks but has difficulties with the continuum
while the BG method yields only very rough estimates of the overall spectral
functions.

When applied to lattice QCD data on the Euclidean correlator of the iso-
vector vector current, we find that MEM performs better than the other two
methods and is able to identify the main peak correctly. The BG method as
well as the SP method are not able to reconstruct the spectral function which in
the case of the SP method is clearly due to the large errors of the data points.

As a last example, we studied data obtained from a free tight-binding model
for graphene in order to extract its electrical conductivity. In particular the
plateau structure at low energies and hence the DC conductivity is best re-
constructed by the BG method, which can be checked by switching to lower
temperatures and/or better quality data, when we can reduce the width of the
resolution functions. On the other hand, the dominant peak at larger energies
is more clearly seen by the MEM and the SP method.

In summary, the SP method has proven to be a potentially very powerful
numerical method for analytic continuation that suggests itself as a serious
alternative to the more well-established MEM and the BG method, if the errors
of the input data are small enough and if the sampling rate is sufficiently high.
This model-independent method might therefore be the preferred choice when
applied to data from numerical solutions to functional equations such as the
FRG flow equations for QFT correlation functions or also their Dyson-Schwinger
equations [49].

For data with larger statistical errors and somewhat coarser sampling, as
typical for present-day, even large-scale lattice simulations, MEM is once again
confirmed as the most reliable method available to date. Specifically, we ob-
serve that its particular strength is in the reconstruction of pronounced peak
structures where MEM usually yields the most accurate estimates of both, the
peak position and its width. For such sharp structures, that arise for example
from narrow resonances or well separated states in a discrete spectrum, the BG
method will most likely still give the correct estimate of the peak position, but
the peak width is usually reconstructed not so accurately, because of the addi-
tional broadening that arises due to the finite widths of the resolution functions.

In contrast, the BG method is much more reliable in the reconstruction of
some smooth features of spectral functions, like plateaus. For those to be re-
constructed correctly, one only needs to reduce the width of the corresponding
resolution function to be smaller then the width of the plateau. Once this re-
quirement is satisfied, the BG method is very robust and provides the most
stable results. The interpretation of the data and the error estimates are rel-
atively straightforward with the BG method, while this is aggravated by the
typical ringing that occurs in MEM which can produce unphysical fluctuations
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around the plateau and often makes it difficult to even recognize its position.
Although MEM is more suitable for resonances, the more natural application
of the BG method should therefore be the calculation of transport coefficients,
for example.
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molecular complex resonances from real eigenvalues using standard (hermi-
tian) electronic structure calculations, The Journal of Physical Chemistry
A 120 (19) (2016) 3098–3108.

[15] A. Landau, D. Bhattacharya, I. Haritan, A. Ben-Asher, N. Moiseyev, Chap-
ter fifteen-ab initio complex potential energy surfaces from standard quan-
tum chemistry packages, Advances in Quantum Chemistry 74 (2017) 321–
346.

[16] I. Haritan, N. Moiseyev, On the calculation of resonances by analytic con-
tinuation of eigenvalues from the stabilization graph, The Journal of Chem-
ical Physics 147 (1) (2017) 014101.
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