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Abstract
The polarization properties of γ-rays elastically scattered by atoms have becomemore observable with
the development of polarized photon beams.However, systematic studies are required to explore the
elastic scattering in theMeV-energy range of the spectrumwhereDelbrück scattering becomesmore
significant, especially at large scattering angles.We implement a newMonteCarlo simulation to
account for the polarization effects of elastic scattering. The simulation is based on explicit expressions
driven in the formalismof Stokes parameters. The scattering amplitudes of Rayleigh, nuclear
Thomson, andDelbrück scattering processes are superimposed onto a two orthogonal set of complex
amplitudes. This set is then exploited to construct the core of the simulation in such away that the
simulation can handle arbitrary polarization states of the incoming beam and correspondingly
generate polarization states of the outgoing beam.We demonstrate how the polarization of scattered
photons is affected by the polarization of incoming photons. In addition, we explain the dependence
of depolarization on the azimuthal angle.

1. Introduction

Elastic scattering of γ-rays by atoms comprises four sub-processes, namely, Rayleigh scattering, nuclear
Thomson scattering, Delbrück scattering, and nuclear resonance scattering. Of these, Rayleigh scattering and
nuclear Thomson scattering are associatedwith the scattering of a photon by electronic and nuclear charges of
an atom, respectively. On the other hand,Delbrück scattering is an interaction between a photon and the strong
Coulombfield in the proximity of a nucleus. Nuclear resonance scattering is associatedwith giant dipole
resonance, and its contribution becomes appreciable when the energy of the incident photons exceeds
approximately 5 MeV [1]. All sub-processes contribute coherently to the scattering cross section via individual
scattering amplitudes. The cross section of elastic scattering is proportional to the square of the resultant
scattering amplitudes.Many experimental findings pertaining to the differential cross section have been
accounted for based on superposition of the four sub-processes. However, validation of the theoretical
calculations against experimental observations has focused on the scattering of unpolarized photons [2].

The availability of high-resolution and high-brightness polarized x-ray and γ-ray beams has facilitated
investigation of the polarization effects of elastic scattering of photons in theMeV energy rangewith
unprecedented accuracy. Recently, Blumenhangen et al [3]measured the polarization transfer caused by elastic
scattering of polarized 0.175MeVphotons scattered off gold atoms. They reported strong depolarization of
nearly 100%polarized synchrotron radiation. Theirfinding suggests that elastic scattering has potential use in
polarimetry of high-energy photons. Furthermore, Koga andHayakawa proposed a uniquemethod tomeasure
Delbrück scattering amplitudes separately by employing linearly polarized γ-rays generated by a laser Compton
scattering source [4]. An independentmeasurement ofDelbrück scatteringwould be the first opportunity to
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detect a nonlinear quantum electrodynamics phenomenon connected to vacuumpolarization [4, 5]. Besides,
the elastic scattering of γ-rays affects the studies of nuclear structure by interfering the electromagnetic
transitions of the nucleus [6].

Theoretical calculations have predicted that circularly polarized photonsmight turn into linearly polarized
photons uponRayleigh scattering [7]. This interesting phenomenon, so-called circular dichroism, involves
asymmetry in the scattered photon intensity for different helicities of the incident photon.Other theoretical
works have focused on polarization effects in Rayleigh scattering beyond nonrelativistic limits [8, 9].More
recently, Surzhykov et al [10] proposed the use of Rayleigh scattering as a polarization-diagnostic tool, supported
by the experimental results reported in [3]. Nonetheless, these calculations are limited to low energies, where
Delbrück scattering has aminimal effect.Moreover, validation of these calculations at high energies against
experimental observations is still questionable.

Monte Carlo simulation is an indispensable tool for studying the polarization effects of elastic scattering of
γ-rays because it represents a bridge connecting the theoretical predictions regarding a γ-ray interactionwith the
experimental procedures required to investigate the phenomenon. In addition, the simulation can account for
unavoidable overlapping of other interactions with the elastic scattering such as small angle Compton scattering.
Also, the particle transport simulation takes into account themultiple scattering events and polarizationmixing
at each scattering event.Many simulations have been implemented to account for the elastic scattering of
unpolarized photons [11], as well as linearly polarized photons [12, 13]. Other simulations have exploited Stokes
parameters formalism to handle different states of polarization [14, 15]. However, the treatment of elastic
scattering is limited to an oversimplified approximation of Compton scattering, ignoring the complexity of the
interaction.

In the present study, we analyze the elastic scattering phenomenon by using amatrix representation of
polarization [16] based on Stokes parameters formalism. This analysis results in a set of direct expressions that
highlight the general features of polarization effects in γ-ray elastic scattering. Then, we develop aMonte Carlo
simulation based on our analysis bywhich arbitrary states of polarization of incoming or outgoing photons can
be investigated.

2. Theory

Generally, the probability of detecting an elastically scattered γ-ray photonwith energyE by an atomof atomic
numberZ at a scattering angle θ can be expressed as a function of two complex and orthogonal sets of scattering
amplitudes,AP(E,Z, θ) andA⊥(E,Z, θ), and polarization of the incident and scattered photons.Here, we
considerAP to be parallel to the scattering plane (defined by themomentumdirection and the electric field
vector of the incident photon), whileA⊥is perpendicular to the scattering plane. According to thematrix
representation of polarization by using Stokes parameters, this probability is given as follows

x xs = ¢ ( )d , 1T
ES

where ES is a 4×4 polarization transfermatrix. ξ and x¢ are the normalized Stokes vectors of the incident and
scattered beams, respectively.

For zero-target polarization, that is, the target atoms are oriented randomly, the transformationmatrix can
be simplywritten for a linear diattenuator because, in general ¹ ^A A . In a coordinate frame inwhich the
incident photon is directed to the positive z-axis, the differential cross section then reads
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In the Stokes parameters notation considered herein, ξ1=+1(−1) represents linear polarizationwith the
electric field vector parallel to the x-axis (y-axis). ξ2 denotes linear polarization in a direction thatmakes an angle
ofπ/4 to the right of x-axis. x = + -( )1 13 denotes circular polarizationwith photon helicity in the clockwise
(anti-clockwise) direction.

It should be noted that equation (2) corresponds to equation (11) in [17] and equation (2.1.9) in [18], but the
matrix representation provides formulations for the polarization of scattered photons as well as for the
dependence of scattered photon polarization on the azimuthal angle. Furthermore, thematrix representation
simplifies implementation of theMonte Carlo simulation of the process within a unified and inclusive
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framework. The polarization vector of scattered photons can be calculated directly as

x x¢ = ( ). 3ES

In the following subsections, we analyze the possible effects of the polarization of incident and scattered photons
in terms ofmatrix representation.

2.1. Scattering of unpolarizedγ-rays
The Stokes parameters of an unpolarized photon beamare ξ1=ξ2=ξ3=0. This results in a transformation of
polarization given by
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The scattered photon is then linearly polarizedwith the degree of polarization
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-

+
^

^





(∣ ∣ ∣ ∣ )
(∣ ∣ ∣ ∣ )

( )
A A

A A
. 41

2 2

2 2

If ^  A A , the scattered photon exhibits approximately complete linear polarization in the direction of the
scattering plane (x¢ » +11 ). The opposite holds as well, that is, if ^A A , the scattered photonwould exhibit a
complete linear polarization orthogonal to the scattering plane. The differential cross section of elastic scattering
of an unpolarized beam is

s x= + + ¢ -^ ^ [(∣ ∣ ∣ ∣ ) (∣ ∣ ∣ ∣ )] ( )A A A Ad
1

4
. 5unpol 2 2

1
2 2

For a polarization-insensitive detector, the unpolarized cross section is obtained by averaging over the
directions of polarization of the scattered γ-rays x¢ = ( )11 . Thus, the unpolarized differential cross section is

s = + ^(∣ ∣ ∣ ∣ ) ( )A Ad
1

2
. 6unpol 2 2

2.2. Scattering of linearly polarizedγ-rays
The linear polarization of an incident photon is delineated by a non-zero value of either ξ1 or ξ2. In an analysis of
the scattering of linearly polarized photons, an appropriate rotationmust be performed before transformation
by the polarization transfermatrix. This rotation implies a transformation of the Stokes vector of the incident
photonwith respect to afixed laboratory frame. Such a transformation follows x x where is given as
follows
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wheref is the angle between the electric field vector of the incident photon and the x-axis of the laboratory
frame. This rotation has no effect on the circular polarization parameter of the Stokes vector, ξ3. The
transformation ismandatory formultiple events of photon elastic scatteringwithin the scattering target.

Assuming sd is the cross section of the scattering of a linearly polarized photon associatedwith the Stokes
parameter ξ1, one can directly obtain
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Equation (8) explains the intensity asymmetry of the scattered photons in terms of the azimuthal angle. Two
main cases can be distinguished easily. Thefirst case is the intensitymeasured in the scattering plane
corresponding to f = 0. If we consider that the incident photon is completely linearly polarized, the differential

cross section parallel to the scattering plane is s s= = Ad d 1

2
. The second case involvesmeasurement of the

scattered photons in a plane orthogonal to the scattering planewhere f p= 2 and s s= =^ Âd d 1

2
.

The scattered photons are, in general, elliptically polarized.However, in theses two special cases, the
scattered photons are linearly polarized. The degree of linear polarization can be calculated using equation (3).
For a polarization-insensitive detector the differential cross section is
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Similarly, the cross section of elastic scattering associatedwith ξ2 can be expressed as
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For polarization-insensitive detectors

s x f= + + -á ^ ^ [∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ ) ] ( )A A A Ad
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sin 2 112 2
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In the case of x2, the polarization is only preserved atf=π/4 andf=3π/4 as presumed from equation (10).

2.3. Scattering of circularly polarizedγ-rays
The existence of circular polarization in the incident photon, that is x ¹ 03 , gives rise to the cross section
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Similar to the scattering of linearly polarized photons, the scattering of circularly polarized photons results in
elliptically polarized photons. The scattered beam contains a linear polarization component in the scattering
planewhenever ¹ ^A A . Additionally, the scattered beammay have a linear polarization component in a plane
making an angle ofπ/4with the scattering plane if the term * *-^ ^ A A A A is non-zero. Interestingly,Manakove
et al [7] showed by numerical calculations that circular dichroismmay be observed as a result of the Rayleigh
scattering of hard x-rays, evenwith randomly oriented atoms.However, they ignored the correlation between
the Stokes vectors of the incident and the scattered beams. This correlation, given by equation (3), does not allow
x¢ = 12 when x = 13 . In the case that the polarization of the scattered photons is notmeasured, the differential
cross section is given by

s = + ^(∣ ∣ ∣ ∣ ) ( )◦ A Ad
1

4
. 132 2

3.MonteCarlo simulation

3.1. Rayleigh scattering amplitudes
Computation of Rayleigh scattering amplitudes follows themethod of Kissel et al [2, 19].Wave functions of the
self-consistentDirac-Hartree–Fock-Slater potential were employed to calculate the scattering amplitudes. The
scattering amplitudes were expressed in terms of a summation ofmultipole amplitudes combinedwith
associated Legendre polynomials [20]. Themultipole amplitudes give the dependence of the scattering
amplitudes on the energy of the scattering photonwhile the associated Legendre polynomials contains the
angular dependence. Depending on the energy of the scattered photons and the shellmutlipoles, 6–60
multipoles were required to converge at four-digits accuracy.

Contributions ofK-, L-, andM-shell electronswere considered. Except at the forward angle scattering
amplitudes (typically q 10 ), the addition ofmore shells would have almost no effect on the scattering
amplitudes, especially at high energies [10, 17]. At forward angle, the symmetry considerations dictate that

q p q p= = =^∣ ( )∣ ∣ ( )∣A E A E, 0, , 0, which in turn vanishes the Stokes parameter of the scattered photons
regardless the scattering amplitudes, as indicated by equation (4). The independence of the scattered photon
polarization on the shell contribution beyondM-shell is consistent with the recent calculationsmade by
Surzhykov et al [21].

3.2.Delbrück scattering amplitudes
Calculation ofDelbrück scattering amplitudes appears to be so difficult to calculate numerically due to
convergence problems and singularites in the real and imaganary parts of the amplitude [4, 22, 23]. However, a
tabular formof theDelbrück scattering amplitudes calculated in the lowest-order Born approximation is
avilable at wide range of photon energy and scattering angles [24]. This approximation involves proportionality
of the scattering amplitude with (Zα)2, whereα is thefine structure constant. However, the higher orders
include amulti-photon exchange, also known as Coulomb corrections toDelbrück scattering amplitudes. These
higher orders result in scattering amplitudes proportional to a( )Z n2 with n being the order succeeding the
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lowest-order. Corrections, including higher orders, are not considered because the value of the term (Zα)
decreases rapidly with increasing power [22, 23].

A drawback of the tabulatedDelbrück scattering amplitudes is that the scattering amplitudes at forward
angle do not exist.We overcame this problemusing the analytical formula suggested byRohrlich andGluckstern
[25]. Thenwe apply a cubic interpolation on the individual scattering amplitudes. To check the validity of
interpolation, we compared the obtainedDelbrück amplitudes with those calculated in [1] at photon energy of
2.75 MeV for uranium, lead, tantalum, cerium, and tin. The comparison resulted in amaximumdifference of
1.5%. This small difference arises from the fact thatDelbrück amplitudes (both dispersive and absorptive parts)
have amonotonic trend causing no issues with the interpolation procedure.

3.3. Nuclear Thomson andnuclear scattering amplitudes
The nuclear Thomson scattering amplitudes were calculated assuming that the atomic nucleus can be
considered a point charge. This assumption is justified by the fact that the energies of photons considered in the
present work are in the MeV range. As a result, the atomic nucleus (of size 10−15m) can safely be considered a
point charge. The nuclear Thomson amplitudes are given by (in units of the classical electron radius)

= -Â Z m M2 and q= ^A A cos , whereM is the nuclearmass.
The nuclear resonance scattering amplitudes can be calculated analytically as a low energy tail of the giant

dipole resonance. In the present work, we did not include the scattering amplitudes of nuclear resonance
scattering owing to their weak effect in the energy region of up to 5 MeV [1].

3.4. Implementing the simulation
Geant4 [26] is aMonteCarlo particle transport framework used to simulate various electromagnetic and
hadronic interactions of particles withmatter. InGeant4, particle polarization can be handled using the so-
called polarization vector, which represents the Stokes polarization vector with the same convention as that
mentioned in the previous section. The integrated cross section of the interactionmust be introduced into the
simulation toolkit such that the sampling of the process, among other competing processes, is calculated based
on the integrated cross section. On the other hand, the differential cross sections serve as a probability
distribution function of the angular distribution at the exit channel of the interaction. In the present work, we
developed a new electromagnetic interactionmodel to account for polarization effects in γ-ray elastic scattering.
The differential cross section of the interaction is calculated using equation (6), where the polarization states of
the outgoing photons are calculated using equation (3). The total cross section is computed numerically by using
themethod described in our recent work [27] and confirmed by others [28].

To handle the azimuthal angular distributions arising from the linear polarization effects, namely, ξ1 and ξ2,
we prepared a particular function for sampling the azimuthal angle. In this function, a fcos2 distribution is
generated in terms of ^∣ ∣ ∣ ∣A A,2 2, and the rotation angle of which the polarization plane of the incident beam is
makingwith afixed laboratory frame. In the case of the second Stokes parameter, an additional phase ofπ/4 is
implemented according to the definition of the second Stokes parameter. For circular polarization, the polar
angle is resampled according to the distribution given by equation (12), while the azimuthal angle is sampled
uniformly.

Finally, polarizationmixing is realized by using a probability distribution function composed of the three
differential cross sections given by equations (8), (10), and (12). However, if the polarization of the scattered
photon is notmeasured, this probability function is calculated using equations (9), (11), and (13). Notably,
polarizationmixing is important for themultiple scattering events, as well as polarization impurity, encountered
in practical situations [3, 10].

4. Results and discussion

In this section, we present examples of our calculations performed by conductingMonte Carlo simulations. The
calculation examples were selected carefully tomatch the existing experimentalmeasurements. Various types of
measurements can be found in the literature, and all of them are related to the linear polarization of either the
incoming photons, outgoing photons, or both.

4.1. Scattering of unpolarized photons
Thefirst type ofmeasurements is concernedwith the linear polarization resulting from the elastic scattering of
initially unpolarized photons. The degree of linear polarization of the scattered photons is given by equation (4).
Usually, polarization of the scattered photons is determined experimentally by using a Compton polarimeter.
Among the early examples of suchmeasurements are theworks ofWilliams andMcNeil [29] and Singh and
Sood [30]. As shown infigure 1(a), the results of a simulation of the elastic scattering of 1.33 MeVunpolarized
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photons by lead agree well with the experimental data in [29]. Similarly, the results of the simulation of
0.662MeVphotons agreewell with the data in [30] as shown infigure 1(b). Notably, an interference pattern is
observed in the simulation at higher energies. This pattern originates from the interference ofmultipole
amplitudes, which are summedwith factors of varying sings at large angles when summedup to compose the
total-atomRayleigh scattering amplitudes. Also, themagnitudes of the amplitudes are very small compared to
the small angle amplitudes. This gives rise to an increase in the error of the calculations [2].

Unlike the predictionsmade using the theory of form factor approximation, the geometricalmaxima of the
polarization of scattered photons deviate from 90 as the energy of the photons increase. This is because the
form factor approximation is independent of the polarization of the incident photons. Furthermore, the
deviation of the geometricalmaxima increases with heavy scatterers because theDelbrück scattering amplitudes
becomemore effective.

The Stokes parameter, x¢1 shown infigure 1 indicates a remarkable feature that the polarization plane of the
scattered photon is orthogonal to the scattering plane. This is identical to the effect of Compton scattering.
However, there are favorable cases inwhich the polarization of the scattered photons is parallel to the scattering
plane. The former case corresponds to  ^A A while the latter corresponds to ^ A A . It can be inferred from
figure 1 that themagnitude of polarization due to the elastic scattering approaches unity at 56 for the 1.33 MeV
photons and at 73 for the 0.662MeV-photons. Thismagnitude cannot be attained byCompton scattering of
unpolarized beams (maximumdegrees of polarization are 40% and 61%at 1.33 and 0.662MeV, respectively).
Therefore, despite the fact Compton scattering has a larger cross section than elastic scattering, the elastic
scattering of γ-rays acts as a perfect polarizer for high energy γ-rays with the advantage of preserving the photon
energy.

A comparison between our simulation and calculations performed by Johnson andCheng [20] is shown in
figure 1(b). The simulation data set for the scattering of 0.662MeVphotons off lead atoms agrees with the
calculations provided in [20]. At this energy, Rayleigh scattering amplitudes dominate those of nuclear
Thomson andDelbrück processes, especially at small angles. For example, x¢1 at 30 increases only by
approximately 0.6% (0.7%)when including nuclear Thomson (Delbrück) amplitudes.However, at large angles,
for example, 120 the polarization of the scattered photon change from x¢ = -0.2061 to x¢ = -0.2451 with a
change of 19%upon adding nuclear Thomson amplitude.Moreover, the polarization of the scattered photon
reaches x¢ = -0.2291 with a change of 11%upon addingDelbrück amplitudes. The significance of nuclear
Thomson andDelbrück amplitudes appears at large angle scattering because Rayleigh amplitudes fallmore
rapidly than nuclear Thomson andDelbrück amplitudes with increasing the scattering angle.

Nuclear Thomson andDelbrück amplitudes gainmore importance at higher photon energies. Figure 1(a)
demonstrates how each scattering process affects the polarization of the scattered photonswhose energy is
1.33 MeV scattered by lead. At forward angles, the effect of nuclear Thomson andDelbrück amplitudes is
minimal with respect to pure Rayleigh amplitudes. However, at 120 , the inclusion ofDelbrück amplitudes
reduces the polarization of the scattered photon by a factor of 3. Despite the lack of experimentalmeasurements
of polarization at this energy and scattering angle, the role ofDelbrück amplitudes at 1.33 MeV is consistent with
measurements of the differential cross section of elastic scattering of 1.33 MeVby uraniumprovided by
Muckenheim and Schumacher [31]. In general, the elastic scattering of photons is a phase-dependent process,

Figure 1.Polarization of scattered photons simulated as a function of scattering angle. The triangles denote experimental
measurements taken from the literature (see text for details) for (a)Pb at 1.33 MeV and (b)Pb at 0.662 MeV.
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whichmeans the contributing amplitudesmust be added coherently before squaring. At forward angles,
Rayleigh and nuclear Thomson have the same phase which opposites the phase ofDelbrück amplitudes. In
contrast, at backward angles, Delbrück amplitudes are in phase with bothRayleigh and nuclear Thomson
amplitudes. Depending on themagnitude ofDelbrück amplitudes, Delbrück and nuclear Thomson processes
tend to cancel each other at forward angles leaving Rayleigh scattering to be the effective process.

4.2. Scattering of partially polarized photons
Many experiments have been performed to study the polarization effects of the elastic scattering of γ-rays
[32–34]. In these experiments, the partially polarized incoming beamwas generated byCompton scattering of
unpolarized γ-rays from radioactive sources. Then, the polarized beamwas allowed to hit the elastic scattering
targets. Owing toCompton scattering, the incident photonswere orthogonally polarizedwith respect to the
scattering plane. Therefore, ξ1 was generally negative. Such experiments involvedmeasurement of the
asymmetry ratioR, which is defined as the ratio of the intensities of the scattered photons in the scattering plane
and the scattered photons in a perpendicular plane. Using equation (9),R can be expressed as

x
x

=
+ + -

+ - -
^ ^

^ ^

 

 

(∣ ∣ ∣ ∣ ) (∣ ∣ ∣ ∣ )
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2 2
1

2 2

2 2
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In general, the experimentally determined ratios are systematically lower than the theoretically calculated
values [17]. This underestimation ofR can be interpreted in terms of the depolarization occurring because of the
extended detector size over the azimuthal angle. To investigate the dependence ofR, we simulated the scattering
of a polarized beamwith the azimuthal angle extending over fD = 0.01 and fD = 0.37 rad. Thefirst case of
Δfcorresponds to ideal case inwhich the size of the detector is negligiable. The second case corresponds to the
extended detector size defined in the experiment [32].

As shown infigure 2, themeasured asymmetry ratios are approximately 20% lower than the expected values.
However, the agreement of themeasured values ismuch better if depolarization due to the extended azimuthal
angle is considered. The sensitivity of the asymmetry ratio to the extended azimuthal angle can be inferred from
figure 3 aswell. This figure shows the results of a simulationwith 109 photons of energy E=0.4 MeV and
polarization ξ1=−0.5 scattered by a lead target. The photons scattered at azimuthal angle off=0 andf=π/
2 radwere recordedwith angular divergences ofΔf=0.01 andΔf=0.37 rad. The depolarization caused by
extension of the azimuthal angle tended to decrease the numerator of equation (14) to a greater extent than it
decreased the denominator. As a result, a small reduction in the asymmetry ratio occurred.

4.3. Polarization transfer
Testing polarization transfer requires one tomeasure the polarization of the scattered photonswhen the
incident photon is polarized. Recently, an experiment was conducted using approximately completely linearly
polarized (degree of linear polarization is 98.01%) synchrotron radiation [3]. The polarization of the scattered
photonswasmeasured at three different angles for photons of energy 0.175MeV scattered by gold. The
experimental results indicated that the polarization of the scattered photon exhibited a resonance-like shape
with the scattering angle.Moreover, the polarization of the scattered photonswas extremely sensitive to the
polarization of the incident photon. This sensitivity was found to depend on the relative values of ∣ ∣A 2 and ^∣ ∣A 2.

We benchmarked the proposedmethod described in the previous section by simulating the elastic scattering
of polarized 0.175MeVphotons by gold atoms. The angular distribution of the scattered photons’ polarization
is shown infigure 4 alongwith the experimental findings from [3]. Our simulation agrees, within the

Figure 2.Asymmetry ratio as a function of scattering angle. The red histogram represents the simulationwithΔf=0.01 rad. while
the green histogram represents the simulationwithΔf=0.37 rad. The triangle denote experimentalmeasurements from the
literature (see text for details) for Pb at 0.4 MeV. The incident beam is polarized such that ξ1=−0.5.
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experimental uncertainty, with themost recently reported experimental results on polarization transfer.We
additionally depict numerical values of the polarization of the scattered photons in table 1.Note that if the
incident photon is completely polarized, that is, ξ1=+1, the scattered photons are completely polarizedwith

Figure 3. Simulated angular distribution of scattered photons in two orthogonal planes. (a)Parallel to scattering planewith
f = 0 0.01 rad (red curve) andwithf=0±0.37 rad (blue curve). (b)Perpendicular to scattering planewithf=π/
2±0.01 rad (red curve) andwithf=π/2±0.37 rad (blue curve). The incident beamparameters areE=0.4 MeV,Z=82, and
ξ1=−0.5.

Figure 4.Angular distribution of scattered photon polarization, x¢1. The incoming photonswith energy of 0.175 MeV and linear
polarizationwith degree of polarization of 98.01% are scattered by gold atoms. The triangles denote the experimentalmeasurements
taken from [3].

Table 1.Correlation of the Stokes parameter of the incoming beam and
scattered beam.

Z E θ ξ1
x¢1

(MeV) (deg.) (%) Previousworks Thiswork

79 0.175 65 98.0 + 85.0 3.6a +85.9

90 98.0 + 27.0 12a +20.7

120 98.0 +91.2±4.2a +94.5

82 0.145 86 90.0 −89.2b −89.7

99.0 −26.1b −26.2

99.9 +71.8b +71.2

a Experimental data are from [3].
b Calculations are from [10].
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x¢ = +11 . By contrast, only 2% reduction in the degree of polarization of the incident photon reduced the degree
of polarization of the scattered photons by 27%at 90°.

The results of our simulation are consistent with a recent set of calculations pertaining to Rayleigh scattering
by lead [10]. Table 1 shows the polarization of scattered photons for a lead target at an energy of 0.145MeV and a
scattering angle of 86°, which corresponds to themaximumpolarization.Here, the effect of the incident photon
polarization ismore apparent than that in the case of gold. The asymmetry ratio in the case of lead is one order of
magnitude higher than that in the case of gold.

It should be emphasized that polarization transfer due to the elastic scattering of γ-rays is strongly correlated
to the polarization of the incident beam. This fact is proved experimentally for linear polarization in [3],
theoretically in [10], and confirmed in the present work. Similar behavior is also expected for the case of circular
polarization. Thus, the circular dichroism effect pointed out in [7], and in the references therein,must be re-
investigated considering the correlation between the Stokes vectors of the incoming and outgoing beams. In [7],
it was particularly supposed that a complete linear polarizationwould result from the scattering of a circularly
polarized beam.However, our calculations show that the degree of linear polarization of the scattered photons is
proportional to * *-^ ^ A A A A , which is very small especially whenDelbrück scattering is not considered.
Moreover, the results shown in [7] for uranium at high energy ignored the effect ofDelbrück scattering, which is
proven experimentally. The present simulation toolmay helpwith a broad exploration of the polarization effects
including the circular dichroismphenomenon.

5. Conclusions

To summarize, we analyzed the problemof elastic scattering of γ-rays by using thematrix representation of
polarization and Stokes parameters formalism. Explicit formulas of differential cross sections corresponding to
the three components of the Stokes vector of the input channel were obtained.We used the Stokes parameter
formalism to implement aMonte Carlo simulation tool that considered the polarization effects arising from the
elastic scattering of γ-rays.We validated the proposedmethod by using available experimental data. In
particular, three aspects were investigated, including the polarization due to the scattering process,
depolarization over the azimuthal angle, and sensitivity of the scattered photon polarization to the incident
photon polarization. The implemented simulation can be used to study interesting polarization effects of elastic
scattering interaction, especially the circular dichroism associatedwith linear and circular polarization
scenarios, as well as the potential use of elastic scattering as a polarization-diagnostic tool.
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