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Several compact ssscc̄ pentaquark resonances are predicted in a potential quark model. The Hamiltonian 
is the best available one, which reproduces the masses of the low-lying charmed and strange hadrons 
well. Full five-body calculations are carried out by the use of the Gaussian expansion method, and the 
relevant baryon-meson thresholds are taken into account explicitly. Employing the real scaling method, 
we predict four sharp resonances, J P = 1/2− (E = 5180 MeV, � = 20 MeV), 5/2− (5645 MeV, 30 
MeV), 5/2− (5670 MeV, 50 MeV), and 1/2+ (5360 MeV, 80 MeV). These are the candidates of compact 
pentaquark resonance states from the current best quark model, which should be confirmed either by 
experiments or lattice QCD calculations.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Observations of candidates of multi-quark hadrons such as 
tetraquarks X, Y , Z [1,2] and pentaquarks Pc [3,4] gave a great im-
pact to hadron physics community and drove many theoretical dis-
cussions. There have been various suggestions for their structures, 
here in particular for Pc ; compact multi-quarks [5–9], hadronic 
molecules [10–14], their admixtures [15] and even baryocharmo-
nium [16]. The well established X(3872) and recently observed 
narrow pentaquark states Pc ’s (4312, 4440, 4457) are widely ex-
pected to emerge as hadronic molecules of long range nature. Yet 
compact multiquark structure with quark dynamics is an impor-
tant issue to be investigated when the molecular picture can not 
explain high energy production processes [17]. In this paper we 
address this question in a quark model solved by the latest ad-
vanced few-body method.

The model we employ is the constituent quark model which 
accommodates important dynamics of quarks; color confinement 
and color magnetic spin-dependent interactions. Hadrons are then 
made of minimum numbers of valence quarks. Incorporating non-
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SCOAP3.
relativistic kinetic and potential energies in its Hamiltonian, the 
model has successfully explained many properties of low-lying 
conventional hadrons including their quantum numbers, masses 
and even interactions.

For multi-quark states, however, the situation changes dramati-
cally not only because of more degrees of freedom but also due to 
couplings to fall-apart (scattering) channels. The latter occurs be-
cause multiquarks can be decomposed into more than one color 
singlet subsets. Considering these aspects two of the present au-
thors (E.H. and A.H.) and collaborators studied the pentaquark 
systems corresponding to �+ [18] and Pc [19] in the constituent 
quark model with the scattering channels in the energy region of 
the observed states taken into account. They, however, did not find 
states in the experimentally observed region, but a few narrow 
states at significantly higher energies.

In these studies, it was found that the coupling to the scatter-
ing states is crucially important; many states that could be found 
in the absence of the coupling disappear when scattering states 
are taken into account. It was also found that the surviving narrow 
states with higher energies had a spatially compact structure with 
little coupling to any scattering states. Hence the five-body anal-
ysis considering the fall-apart dynamics is essentially important. 
Yet, other features which are difficult to implement and were not 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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considered, are those of pion dynamics; the pion exchange force 
and pion emission decays. The former is important for the forma-
tion of hadronic molecules with spatially extended structure, the 
latter appear as three-body decays.

Knowing these merits and demerits of the five-body method, 
we propose to study the pentaquark state of ssscc̄. Because of 
the flavor contents without u, d quarks, the coupling to the pion 
can be expected to be suppressed. Possible meson exchange is 
also suppressed due to their heavier flavor contents such as ss̄ or 
sc̄. Moreover, thresholds of three-body open channels containing 
strange hadrons appear about 500 MeV above the lowest two-body 
ones, significantly larger than 200 MeV for the decays accompany-
ing the pion. This work’s focus on the ssscc̄ system is furthermore 
promising for future comparisons between the quark model and 
lattice QCD calculations [20], since a lattice calculation would have 
lowered computational costs due to the absence of the light (u
and d) valance quarks. In addition, as the quark model calculation 
is performed at finite volume, the guidance this work provides can 
be helpful to understand the finite volume lattice spectrum better. 
A related lattice QCD study is currently underway.

This paper is organized as follows. After the introduction, the 
Hamiltonian and the employed computational method are dis-
cussed in Secs. 2 and 3, respectively. In Sec. 4, we discuss our 
results and give a summary in Sec. 5.

2. Model Hamiltonian

The Hamiltonian of the non-relativistic quark model is given by

H =
5∑
i

(
mi + pi

2

2mi

)
− T G

− 3

16

5∑
i< j=1

8∑
a

(
(λa

i · λa
j)V ij(ri j)

)
,

(1)

where mi and pi are the mass and momentum of the ith quark, 
respectively. T G is the kinetic energy of the center-of-mass motion. 
λa

i are the color SU(3) Gell-Mann matrices for the ith quark with 
color index a. We label the strange quarks, s as i = 1, 2, 3, the 
charm quark, c as i = 4, and the anticharm quark c̄ as i = 5.

We use the quark-quark interaction potential proposed by Se-
may and Silvestre-Brac [21,22], given by

V ij(r) = − κ

r
+ λr p − �

+ 2πκ ′

3mim j

exp(−r2/r2
0)

π3/2r3
0

σ i · σ j,
(2)

with

r0(mi,m j) = A(
2mim j

mi + m j
)−B . (3)

This potential consists of the color Coulomb potential, the lin-
ear confining part, a (color-electric) constant term and the color-
magnetic spin-spin interaction term. The last term comes from a 
magnetic gluon exchange, where the δ function in the Breit-Fermi 
interaction is modified by a cutoff parameter r0. Note that r0 de-
pends on the reduced quark masses. The two sets of parameter 
choices appearing in this work, AP1 and AL1, are listed in Table 1.

The present Hamiltonian is tested by computing the static prop-
erties of low-lying baryons and mesons. The calculated masses are 
given in Table 2 for the AP1 and AL1 parameters together with 
the corresponding experimental values. In one earlier work, this 
Hamiltonian was used in a pentaquark system (qqqcc̄) calculation 
[15]. We choose AP1 in our present calculation since it reproduces 
Table 1
The two parameter sets of the em-
ployed quark-quark interaction, AP1 
and AL1 [21].

AP1 AL1

p 2/3 1
mu,d (GeV) 0.277 0.315
ms (GeV) 0.553 0.577
mc (GeV) 1.819 1.836
κ 0.4242 0.5069
κ ′ 1.8025 1.8609
λ (GeVp+1) 0.3898 0.1653
� (GeV) 1.1313 0.8321
B 0.3263 0.2204
A (GeVB−1) 1.5296 1.6553

Table 2
The calculated masses (in MeV) of the mesons 
and baryons relevant for the thresholds to be 
considered together with the experimental val-
ues.

Hadron J P Exp. AP1 AL1

ηc 0− 2984 2984 3007
J/ψ 1− 3097 3104 3103
Ds 0− 1968 1955 1963
D∗

s 1− 2112 2107 2102
� 3/2+ 1672 1673 1675
�c 1/2+ 2695 2685 2679
�∗

c 3/2+ 2766 2759 2752

the relevant thresholds better. In addition, we have tested the AL1 
in our five-body calculation also and have confirmed that the re-
sults are not qualitatively modified by this alternative choice.

3. Method

In this section, we briefly discuss our method of numerically 
solving the five-body Schrödinger equation. We describe the five-
body wave function with five types of Jacobi coordinates shown 
in Fig. 1. C = 1 and 2 are configurations in which two color-
singlet clusters may fall apart along the inter-cluster coordinates 
R(c)(C = 1, 2). Namely, for C = 1, the color wave function is cho-
sen as the product of color-singlet sss plus cc̄, which correspond 
to ηc� and J/ψ� configurations. For C = 2, the color wave func-
tion is chosen as the product of color-singlet ssc plus sc̄, which 
correspond to Ds�c , D∗

s �c , Ds�
∗
c , and D∗

s �
∗
c configurations. In 

contrast, the other three configurations, C = 3 − 5, do not de-
scribe color-singlet subsystems, and represent the five quarks as 
always connected by a confining interaction. In this sense, we call 
C = 3 − 5 as the “connected” (confining) configurations.

The five-body Schrödinger equation for the total angular mo-
mentum J and its z-component M is given by

(H − E)� J M = 0. (4)

We solve it by using the Gaussian Expansion Method (GEM) [23,
24], which was successfully applied to various types of three-body 
and four-body systems [25–29]. The total wave function � J M is 
written as a sum of components, each described in terms of one 
of the Jacobi coordinate bases,

� J M =
∑

C

A123ξ
(C)
1

∑
γ

B(C)
γ

×
[
χ

(C)
S �

(C)
L (r(C), ρ(C), R(C), s(C))

]
J M

,

(5)

where C specifies the set of Jacobi coordinates. ξ (C)
1 , χ(C)

S , and �(C)
L

represent the color-singlet wave functions, spin wave functions for 
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Fig. 1. Five sets of the Jacobi coordinate systems. The s quarks, labeled as 1 −3, are to be antisymmetrized, while particles 4 and 5 stand for c quark and c̄ quark, respectively. 
Scatterings of sss + cc̄ and ssc + sc̄ are described in the coordinate bases C = 1 and 2, respectively.
total spin S and spatial wave functions for total orbital angular 
momentum L, respectively. A123 denotes the anti-symmetrization 
operator for the three s quarks (1,2,3).

The color-singlet total wave functions, ξ (C)
1 , for C = 1 − 5 are 

chosen as

ξ
(1)
1 = [(123)1(45)1]1,

ξ
(2)
1 = [(124)1(35)1]1,

ξ
(3)
1 = [[(12)3̄(34)3̄]35]1,

ξ
(4)
1 = [(12)3̄[(34)3̄5]3]1,

ξ
(5)
1 = [(12)3̄[(45)13]3]1. (6)

The spin wave functions for the total spin S are given by

χ
(1)
S = [[(12)s3]σ (45)s̄]S ,

χ
(2)
S = [[(12)s4]σ (35)s̄]S ,

χ
(3)
S = [[(12)s(34)s̄]σ 5]S ,

χ
(4)
S = [(12)s[(34)s̄5]σ ]S ,

χ
(5)
S = [(12)s[(45)s̄3]σ ]S , (7)

where s, s̄, and σ represent the spins of the subsystem designated 
in each definition.

The spatial wave function is expanded by Gaussian basis func-
tions as

�
(C)
L (r(C),ρ(C), R(C), s(C)) =[

φ(n1, l1,m1, r(C)) × φ(n2, l2,m2,ρ
(C))

×φ(n3, l3,m3, R(C)) × φ(n4, l4,m4, s(C))
]

L,

(8)

where φ(n, l, m, r) is defined as

φ(n, l,m, r) = Nnlr
le−(r/rn)2

Ylm(r̂) (9)

with the Gaussian ranges taken in geometric progression,

rn = r1an−1 (n = 1 − nmax). (10)

The γ index in the total wave function � J M given in Eq. (5) is 
defined as

γ ≡ {s, s̄,σ , S,n1,n2,n3,n4, l1, l2, l3, l4, L}. (11)

For completeness, we note that the orbital angular momenta are 
combined in the order of (((l1, l2), l3), l4)L, where the intermediate 
quantum numbers are suppressed. Within the present calculation 
settings, they are determined uniquely, so that we can omit them.

The dimensions of the basis of Gaussian wave functions, n1max , 
n2max , n4max for the C = 1 − 5 channels are 6. n3max for C = 1 and 
2 equals 10, and for C = 3 − 5 are set to 6.

In the present calculation, we investigate both positive and neg-
ative parity states. For the negative parity states, we take the total 
orbital angular momentum as L = 0 and the total spin-parity as 
J P = 1/2− , 3/2− , and 5/2− . The orbital angular momenta of r, ρ , 
R , and s for C = 1 and 2 are chosen as (l1, l2, l3, l4) = (0, 0, 0, 0), 
(1, 0, 0, 1), and (0, 1, 0, 1). For C = 3 − 5, we set all the orbital an-
gular momenta to 0. For the positive parity states, the total orbital 
angular momentum is taken to L = 1 and the total spin-parity to 
J P = 1/2+ , 3/2+ , and 5/2+ . The orbital angular momenta of r, ρ , 
R , and s for C = 1 and 2 are chosen as (l1, l2, l3, l4) = (0, 0, 1, 0), 
(0, 0, 0, 1), (1, 0, 0, 0), and (0, 1, 0, 0), and for C = 3 − 5 are chosen 
as (l1, l2, l3, l4) = (0, 0, 1, 0).

In diagonalizing the five-body Hamiltonian, we use about 
40,000 basis functions for J P = 1/2− , 3/2− , 1/2+ , 3/2+ , and 
15,000 basis functions for J P = 5/2− and 5/2+ .

It should be noted here that all the obtained eigenvalues are 
discrete. Namely, as the system is computed in a finite volume, 
even the continuum states corresponding to the baryon-meson 
scattering solutions come out as discrete states. In earlier works 
[18,19], the real-scaling (stabilization) method [30] was adopted 
to distinguish genuine resonances from the discretized scattering 
states. In the present case, we scale the basis functions along R (1)

and R(2) by multiplying all the range parameters simultaneously 
with a factor α as R N → αR N . Then, any continuum state will fall 
off towards its threshold, while a compact resonant state should 
not be affected by the boundary at a large distance.

4. Results

As a first step, we calculated the spectra without the con-
tributions from scattering states. In these calculations, only the 
connected Jacobi coordinate bases in Fig. 1, C = 3 − 5 are in-
cluded. Solving the Schrödinger equation for J P = 1/2− , 3/2− , 
5/2− , 1/2+ , 3/2+ , and 5/2+ , we obtain the spectra shown in 
Figs. 2 and 3. It can be seen in these figures that all eigenvalues 
are obtained above the lowest meson-baryon thresholds. Because 
these calculations include only the connected channels C = 3 − 5
without contributions from the scattering channels C = 1 and 2, 
all states are stable against fall-apart decay. We call these states 
compactified states in the following because they are forces to be 
so.

In Figs. 2 and 3, the dashed lines indicate the relevant meson-
baryon thresholds, which couple to the shown compactified states. 
The calculated masses of the excited mesons and baryons cor-
responding to the thresholds, are given in Table 3 for the AP1 
parameters. Here, �′ stand for the first excited states with neg-
ative parity, while �′′ represent the positive-parity excited states 
of � baryons. As we neglect the spin-orbit interaction in the cur-
rent Hamiltonian, the p-wave mesons, χc(1P )( J P = 0+, 1+, 2+)

and D∗
s (1P )(0+, 1+, 2+), are degenerate. The same happens for 

�′(1/2−, 3/2−), �′
c(1/2−, 3/2−), and �∗

c
′(1/2−, 3/2−). Note that 

the lowest and second thresholds in our calculation [�c + Ds(1S)

and � + ηc(1S)] are reversed from the experimental data, which 
give �c + Ds(1S)(4663) and � + ηc(1S)(4656).

For spin-parity J P = 1/2− , the lowest energy state appears at 
4855 MeV, which is above the hidden charm threshold � + J/ψ
and open charm thresholds �c + Ds and �c + D∗

s , but below the 
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Fig. 2. The calculated energy spectra for quantum numbers J P = 1/2−, 3/2−, 5/2− , including only the connected configurations C = 3 − 5 are shown in units of MeV. The 
dashed lines are thresholds, drawn according to the theoretical numbers given in Tables 2 and 3.
open charm threshold �∗
c + D∗

s . The second state is located at 5044 
MeV.

For spin-parity J P = 3/2− , the lowest eigenvalue is obtained at 
4753 MeV. The second state appears at 4866 MeV which is slightly 
higher than the lowest state of J P = 1/2− , while the third one 
shows up at 4998 MeV.

For spin-parity J P = 5/2− , the lowest state is found at 4873 
MeV which is higher than all the open charm thresholds and hid-
den charm thresholds formed by ground states.

The lowest levels of the J P = 1/2+ and 5/2+ channels are lo-
cated at 5046 MeV and 5050 MeV, respectively. For J P = 3/2+ , 
the lowest eigenvalue appears at 4929 MeV. Compared to the neg-
ative parity states, the lowest energy levels of positive parity are 
located above all the thresholds which consist of only ground state 
baryons and ground state mesons.

Next, we consider the contributions from scattering states by 
including the scattering channels C = 1 and 2 in our calculation. 
According to Ref. [19], the coupling of the scattering states may 
cause some of the compactified states to melt into the continuum 
spectrum.

To investigate the nature of each compactified state, we include 
the scattering state one by one in the real scaling method calcu-
lation. Namely, we scale the range parameter R N of the Gaussian 
bases as R N → αR N for the scattering channel in the Jacobi coor-
dinates of C = 1 or 2. The eigenvalues corresponding to scattering 
states will fall down towards the respective thresholds with the in-
creasing α values. At the same time, the resonant states will stay 
at their energy independently from the scaling factor α. With this 
procedure, we can determine the dominant meson-baryon compo-
nent for each compactified state. For more details and examples, 
see Ref. [19].

Following the above procedure, we now study the coupling of 
each compactified state to specific scattering states. The results are 
summarized in Table 4 for negative parity states and in Table 5
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Fig. 3. Same as in Fig. 2, but for J P = 1/2+,3/2+,5/2+ .
for positive parity states. They show that most of the compacti-
fied states have significant coupling to some scattering states, and 
they do not survive as resonances. For instance, one sees that the 
lowest negative parity state, 4753 MeV (3/2−) is mainly an � +ηc

scattering state, while 4855 MeV (1/2−), 4866 MeV (3/2−), and 
4873 MeV (5/2−), have a dominant overlap with � + J/ψ scatter-
ing state. The next group of excited states are similarly assigned to 
�c + Ds , �∗

c + Ds , and �∗
c + D∗

s states.
After removing the scattering states, compact resonances re-

main at 5201 MeV and 5320 MeV for J P = 1/2− , at 5318 MeV 
for J P = 3/2− , at 5660 MeV and 5762 MeV for J P = 5/2− , at 
5408 MeV for J P = 1/2+ , and at 5582 MeV for J P = 5/2+ . For 
J P = 3/2+ , all the compactified states in the low energy region 
have dominant scattering configurations.

Let us investigate one of the compact resonances in more de-
tail. In Fig. 4, we show the stabilization plots using the real scaling 
method for the J P = 1/2− channel. Fig. 4(a) shows the results 
when only the scattering configurations C = 1 and 2 are included. 
Fig. 4(b) shows the results when all configurations C = 1 − 5 are 
incorporated in the calculation. As one can see, around 5201 MeV, 
there is a clear difference between only scattering configurations 
and full configurations. By including the connected configurations 
C = 3 − 5, a resonance structure appears at around 5180 MeV, for 
which the compactified state at 5201 MeV can be considered as a 
seed. With such stabilization plots, we can estimate the width of 
resonance states [30]. The width of the one around 5180 MeV is 
estimated to be 20 MeV.

We note that there are two more possible configurations, 
namely [[(12)3̄5]3(34)3̄]1 and [(12)3̄[(35)14]3]1, for the configu-
ration sets of C = 4 and C = 5, respectively. Our numerical tests 
indicate that these additional configurations indeed belong to con-
figuration sets C = 4 and C = 5, and their respective energies lay 
higher than that of C = 4 and C = 5 given in Eq. (6). Therefore, 
these additional configurations are unlikely to be helpful in gen-
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Fig. 4. The stabilization plots of the eigenenergies E for J P = 1/2− with the respect to the scaling factor α in two cases: (a) including only scattering configurations C = 1
and 2; (b) including full configurations C = 1 − 5. The Gaussian ranges RN for the coordinates R1 and R2 of C = 1 and 2 configurations are scaled as RN → αRN with 
α = 1.0 − 2.2. The red line is threshold. The blue line is the location of 5180 MeV.
Table 3
The calculated masses (in MeV) of 
the excited mesons and baryons rel-
evant to the thresholds to be con-
sidered.

Hadron J P AP1

hc(1P ) 1+ 3468
ηc(2S) 0− 3607
χc(1P ) 0+ , 1+ , 2+ 3492
ψ(2S) 1− 3647
Ds(1P ) 1+ 2479
Ds(2S) 0− 2648
D∗

s (1P ) 0+ , 1+ , 2+ 2507
D∗

s (2S) 1− 2708
�′ 1/2− , 3/2− 1971
�′′ 3/2+ 2190
�′

c 1/2− , 3/2− 3078
�′′

c 1/2+ 3185
�∗

c
′ 1/2− , 3/2− 3078

�∗
c
′′ 3/2+ 3227

erating the lowest energy level of this system. In addition, the 
resonance energies from a solution incorporating all the possible 
configurations typically deviate by at most a few 10 MeV from the 
energies obtained from a solution with the channels employing 
only C = 3, 4, 5.

With the same method, we studied all other compact resonance 
structures with different spin-parity quantum numbers. The results 
are summarized in Table 6.
To obtain more information about the spatial structures of the 
lowest J P = 1/2− compact resonance, we calculated the two-body 
correlation functions of ss and cc̄ for this state. The correlation 
functions are defined as

ρss(r1) =
∫

|� J M |2ds1dR1dρ1dr̂1

ρcc̄(s1) =
∫

|� J M |2dr1dR1dρ1dŝ1 (12)

where r1 and s1 are the relative distances between ss and cc̄. dr̂1
and dŝ1 denote the integral of angular parts of r1 and s1, respec-
tively. The integral is performed at E = 5180 MeV and α = 1.28. 
Fig. 5 shows the density distributions of r1

2ρss(r1) and s1
2ρcc̄(r1)

as functions of the distance r = r1 = s1 . The peak position of cc̄ is 
found at about 0.25 fm, which is more compact than charmonia 
J/ψ or ηc . The corresponding ss peak lies at about 0.85 fm which 
is more extended than the � baryon.

5. Summary

In this paper, we have studied ssscc̄ pentaquarks of J P = 1/2− , 
3/2− , 5/2− , 1/2+ , 3/2+ , and 5/2+ . The potential quark model is 
used to analyze the spectrum and resonance energies are obtained 
from the most precise five-body calculation available to date.

The key findings of our calculation can be summarized as fol-
lows.
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Table 4
Dominant Baryon-Meson components for the various compactified 
states in Fig. 2 for the J P = 1/2−, 3/2−, 5/2− channels.

J P = 1/2− energy 
(MeV)

configuration

4855 � + J/ψ(1S), �c + Ds(1S)

5044 �c + Ds(1S), �c + D∗
s (1S)

5094 � + J/ψ(1S), �∗
c + D∗

s (1S)

5140 � + J/ψ(1S)

5193 �′′
c + Ds(1S), �c + D∗

s (1S)

5201 -
5320 -

J P = 3/2− energy 
(MeV)

configuration

4753 � + ηc(1S), �∗
c + Ds(1S)

4866 � + J/ψ(1S), �∗
c + Ds(1S)

4998 � + ηc(1S), �∗
c + Ds(1S)

5088 �∗
c + D∗

s (1S)

5108 � + J/ψ(1S), �c + D∗
s (1S)

5199 �′′ + ηc(1S), �∗
c
′′ + Ds(1S), �∗

c + D∗
s (1S)

5220 � + J/ψ(1S)

5262 �′′ + ηc(1S)

5318 -

J P = 5/2− energy 
(MeV)

configuration

4873 � + J/ψ(1S)

5121 � + J/ψ(1S)

5256 �∗
c + D∗

s (1S)

5375 �′′ + J/ψ(1S), �∗
c
′′ + D∗

s (1S)

5444 �′′ + J/ψ(1S)

5454 �′′ + J/ψ(1S), �∗
c
′′ + D∗

s (1S)

5495 � + ψ(2S), �∗
c + D∗

s (2S)

5542 �∗
c + D∗

s (2S)

5566 � + ψ(2S), �∗
c + D∗

s (2S)

5617 � + ψ(2S)

5635 � + ψ(2S), �∗
c + D∗

s (2S)

5660 -
5683 � + ψ(2S)

5737 � + ψ(2S), �∗
c + D∗

s (2S)

5762 -

(1) Our Hamiltonian is taken from Semay and Silvestre-Brac 
(SSB) [21,22]. As is shown in Tables 2 and 3, the SSB model repro-
duces the hadron masses within 15 MeV, which are relevant for 
the open channel thresholds of the current pentaquark systems. 
This is very important to guarantee the correctness of the quark 
dynamics in the strange and charm sectors, and also to compare 
our results with the real (observed) spectrum that is influenced 
strongly by the open channel thresholds. In this sense this is the 
best available potential for the present calculation.

(2) In order to estimate the systematic uncertainties of the 
model, we have compared two sets of parameter choices of the 
SSB potential, AP1 and AL1. The main results shown above are for 
the AP1 potential, which fits the observed data better than AL1. 
However we have found that the pentaquark resonances for AL1 
come out at similar energies as AP1. For instance, we find a sharp 
1/2− resonance at 5220 MeV with a width of 25 MeV (AL1), com-
pared to 5180 MeV with a width of 20 MeV (AP1).

(3) For the given Hamiltonian, we have solved the ssscc̄ states 
as precisely as possible. The Gaussian expansion method (based on 
the variational principle) is employed for the full five-body system. 
In our five-body calculation, we include all relevant meson-baryon 
scattering channels (cf. C = 1, 2 of Fig. 1) such as � +ηc , � + J/ψ , 
�∗

c + D∗
s , and so on. As a result, we need more than 40,000 basis 

functions for this system. To distinguish two-body scattering states 
and compact resonant states, we have employed the real scaling 
method (stabilization method) which has been successfully applied 
in previous studies [18,19].
Table 5
Dominant Baryon-Meson components for the various compactified 
states in Fig. 3 for the J P = 1/2+, 3/2+, 5/2+ channels.

J P = 1/2+ energy 
(MeV)

configuration

5046 � + J/ψ(1S), �c + Ds(1S)

5116 �′ + ηc(1S), �c
′ + Ds(1S)

5184 �c
′′ + Ds(1S)

5226 �′ + J/ψ(1S)

5294 �∗
c + D∗

s (1S), �c + D∗
s (1S)

5309 �′′ + J/ψ(1S), �c + D∗
s (1S)

5320 �′′ + J/ψ(1S), �c + D∗
s (1S)

5351 � + ψ(2S), �∗
c
′ + D∗

s (1S)

5358 �′ + ηc(1S), �c + Ds(2S)

5373 �c + Ds(2S)

5408 -

J P = 3/2+ energy 
(MeV)

configuration

4929 � + ηc(1S)

5048 � + J/ψ(1S)

5197 � + hc(1P )

5206 � + hc(1P ), �∗
c
′ + D∗

s (1S)

5220 �′ + J/ψ(1S), �c + D∗
s (1S), �∗

c + Ds(1S)

5245 �∗
c + Ds(1P ), �∗

c
′ + D∗

s (1S)

5315 �∗
c + D∗

s (1S)

5323 �′′ + J/ψ(1S)

5346 � + ηc(2S)

5404 � + ηc(2S), �′′ + J/ψ(1S)

J P = 5/2+ energy 
(MeV)

configuration

5050 � + J/ψ(1S)

5259 � + χc(1P ), �∗
c + D∗

s (1S)

5323 �′′ + J/ψ(1S)

5422 � + ψ(2S), �∗
c + D∗

s (1P )

5550 �∗
c
′′ + D∗

s (1S)

5570 � + ψ(2S), �∗
c + D∗

s (2S)

5582 -

Table 6
Resonance structures, their “seed” compactified states and 
the estimated decay widths.

J P energy (MeV) width (MeV) “seed” (MeV)

1/2− 5180 20 5201
5290 >100 5320

3/2− 5300 >100 5318
5/2− 5645 30 5660

5670 50 5762
1/2+ 5360 80 5408
5/2+ 5570 >100 5582

Fig. 5. Density distributions r1
2ρss(r1) and s1

2ρcc̄(s1) as functions of the distance 
r = r1 = s1.
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(4) There, however, is a caveat in the current quark model. As 
neither qq̄ creations nor explicit mesons are introduced, the model 
Hamiltonian cannot describe meson exchange interactions between 
hadrons. It was pointed out that the Pc (uudcc̄) pentaquarks ob-
served by LHCb can be realized as molecular-type �c + D̄ and 
�c + D̄∗ resonances due to the attractive pion (meson) exchange 
potential. Such resonance states may not appear in the present cal-
culation because once the two color-singlet hadrons are separated 
in C = 1, or 2 in Fig. 1, there is no interaction between them.

Within these conditions, we predict four sharp resonances: 
J P = 1/2− (E = 5180 MeV, � = 20 MeV), 5/2− (5645 MeV, 30 
MeV), 5/2− (5670 MeV, 50 MeV), and 1/2+ (5360 MeV, 80 MeV) 
for the AP1 potential. They reside rather high up, excited by more 
than 500 MeV, from the lowest thresholds, �c + Ds or � + J/ψ . 
Nevertheless, they all happen to be compact five-quark states, as is 
shown in the calculated density distribution of Fig. 5, whose cou-
pling to baryon-meson scattering channels are weak.

Thus we conclude that the potential quark model predicts com-
pact pentaquark resonances through the full five-body calculation. 
It would be interesting to observe such sharp and compact pen-
taquarks in future experiments. Simultaneous production of two 
charm and three strange quarks is generally very unlikely, but one 
may utilize bottom quark decay processes such as �0

b → (ssscc̄) +
K + followed by the (ssscc̄) → � + J/ψ decay. Alternatively, high-
energy heavy ion collisions are known to produce many strange 
and charm quarks, which can lead to the formation of pentaquark 
states. Resonance states may be observed in the � − J/ψ (or some 
other) correlations in the final states. If these states are observed, 
it would be a strong indication of the quark dynamics described 
by the quark model Hamiltonian, such as the quark confinement 
mechanism and spin dependent structures.

Another way of confirming our prediction is to investigate the 
resonance spectrum from lattice QCD calculations. As these pen-
taquarks contain only charm and strange quarks, we expect the 
reliability of the lattice simulation to be better than for systems 
with light (u and d) quarks. Such a calculation is now in progress 
in our group.
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